Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurophysiol ; 111(10): 1927-39, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24554785

RESUMO

Mice with a single copy of the peptide amidating monooxygenase (Pam) gene (PAM(+/-)) are impaired in contextual and cued fear conditioning. These abnormalities coincide with deficient long-term potentiation (LTP) at excitatory thalamic afferent synapses onto pyramidal neurons in the lateral amygdala. Slice recordings from PAM(+/-) mice identified an increase in GABAergic tone (Gaier ED, Rodriguiz RM, Ma XM, Sivaramakrishnan S, Bousquet-Moore D, Wetsel WC, Eipper BA, Mains RE. J Neurosci 30: 13656-13669, 2010). Biochemical data indicate a tissue-specific deficit in Cu content in the amygdala; amygdalar expression of Atox-1 and Atp7a, essential for transport of Cu into the secretory pathway, is reduced in PAM(+/-) mice. When PAM(+/-) mice were fed a diet supplemented with Cu, the impairments in fear conditioning were reversed, and LTP was normalized in amygdala slice recordings. A role for endogenous Cu in amygdalar LTP was established by the inhibitory effect of a brief incubation of wild-type slices with bathocuproine disulfonate, a highly selective, cell-impermeant Cu chelator. Interestingly, bath-applied CuSO4 had no effect on excitatory currents but reversibly potentiated the disynaptic inhibitory current. Bath-applied CuSO4 was sufficient to potentiate wild-type amygdala afferent synapses. The ability of dietary Cu to affect signaling in pathways that govern fear-based behaviors supports an essential physiological role for Cu in amygdalar function at both the synaptic and behavioral levels. This work is relevant to neurological and psychiatric disorders in which disturbed Cu homeostasis could contribute to altered synaptic transmission, including Wilson's, Menkes, Alzheimer's, and prion-related diseases.


Assuntos
Tonsila do Cerebelo/fisiologia , Cobre/metabolismo , Animais , Condicionamento Psicológico/fisiologia , Cobre/administração & dosagem , Dieta , Medo/fisiologia , Feminino , Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Inibição Neural/fisiologia , Plasticidade Neuronal/fisiologia , Técnicas de Patch-Clamp , Células Piramidais/fisiologia , Sinapses/fisiologia , Transmissão Sináptica , Tálamo/fisiologia , Técnicas de Cultura de Tecidos
2.
Neurobiol Aging ; 95: 69-80, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32768866

RESUMO

Nontransgenic and 3xTG transgenic mice, which express mutant transgenes encoding human amyloid precursor protein (hAPP) along with Alzheimer's disease-associated versions of hTau and a presenilin mutation, acquired the Barnes Maze escape task equivalently at 3-9 months of age. Although nontransgenics retested at 6 and 9 months acquired the escape task more quickly than naïve mice, 3xTG mice did not. Deficits in Kalirin, a multidomain protein scaffold and guanine nucleotide exchange factor that regulates dendritic spines, has been proposed as a contributor to the cognitive decline observed in Alzheimer's disease. To test whether deficits in Kalirin might amplify deficits in 3xTG mice, mice heterozygous/hemizygous for Kalirin and the 3xTG transgenes were generated. Mouse strain, age and sex affected cortical expression of key proteins. hAPP levels in 3xTG mice increased total APP levels at all ages. Kalirin expression showed strong sex-dependent expression in C57 but not B6129 mice. Decreasing Kalirin levels to half had no effect on Barnes Maze task acquisition or retraining in 3xTG hemizygous mice.


Assuntos
Envelhecimento/genética , Envelhecimento/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/psicologia , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Aprendizagem em Labirinto/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Retenção Psicológica/fisiologia , Memória Espacial/fisiologia , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Córtex Cerebral/metabolismo , Disfunção Cognitiva/genética , Modelos Animais de Doenças , Feminino , Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Hemizigoto , Heterozigoto , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Serina-Treonina Quinases/fisiologia , Caracteres Sexuais
3.
Elife ; 62017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28513435

RESUMO

The pathways controlling cilium biogenesis in different cell types have not been fully elucidated. We recently identified peptidylglycine α-amidating monooxygenase (PAM), an enzyme required for generating amidated bioactive signaling peptides, in Chlamydomonas and mammalian cilia. Here, we show that PAM is required for the normal assembly of motile and primary cilia in Chlamydomonas, planaria and mice. Chlamydomonas PAM knockdown lines failed to assemble cilia beyond the transition zone, had abnormal Golgi architecture and altered levels of cilia assembly components. Decreased PAM gene expression reduced motile ciliary density on the ventral surface of planaria and resulted in the appearance of cytosolic axonemes lacking a ciliary membrane. The architecture of primary cilia on neuroepithelial cells in Pam-/- mouse embryos was also aberrant. Our data suggest that PAM activity and alterations in post-Golgi trafficking contribute to the observed ciliogenesis defects and provide an unanticipated, highly conserved link between PAM, amidation and ciliary assembly.


Assuntos
Chlamydomonas/enzimologia , Cílios/metabolismo , Oxigenases de Função Mista/metabolismo , Complexos Multienzimáticos/metabolismo , Biogênese de Organelas , Animais , Técnicas de Silenciamento de Genes , Camundongos/embriologia , Camundongos Knockout , Oxigenases de Função Mista/genética , Complexos Multienzimáticos/genética , Planárias/enzimologia
4.
Eur J Cell Biol ; 96(5): 407-417, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28377049

RESUMO

Peptidylglycine α-amidating monooxygenase (PAM) is highly expressed in neurons and endocrine cells, where it catalyzes one of the final steps in the biosynthesis of bioactive peptides. PAM is also expressed in unicellular organisms such as Chlamydomonas reinhardtii, which do not store peptides in secretory granules. As for other granule membrane proteins, PAM is retrieved from the cell surface and returned to the trans-Golgi network. This pathway involves regulated entry of PAM into multivesicular body intralumenal vesicles (ILVs). The aim of this study was defining the endocytic pathways utilized by PAM in cells that do not store secretory products in granules. Using stably transfected HEK293 cells, endocytic trafficking of PAM was compared to that of the mannose 6-phosphate (MPR) and EGF (EGFR) receptors, established markers for the endosome to trans-Golgi network and degradative pathways, respectively. As in neuroendocrine cells, PAM internalized by HEK293 cells accumulated in the trans-Golgi network. Based on surface biotinylation, >70% of the PAM on the cell surface was recovered intact after a 4h chase and soluble, bifunctional PAM was produced. Endosomes containing PAM generally contained both EGFR and MPR and ultrastructural analysis confirmed that all three cargos accumulated in ILVs. PAM containing multivesicular bodies made frequent dynamic tubular contacts with younger and older multivesicular bodies. Frequent dynamic contacts were observed between lysosomes and PAM containing early endosomes and multivesicular bodies. The ancient ability of PAM to localize to ciliary membranes, which release bioactive ectosomes, may be related to its ability to accumulate in ILVs and exosomes.


Assuntos
Amidina-Liases/metabolismo , Oxigenases de Função Mista/metabolismo , Corpos Multivesiculares/metabolismo , Transporte Proteico/fisiologia , Receptores ErbB/metabolismo , Células HEK293 , Humanos , Receptor IGF Tipo 2/metabolismo , Vesículas Secretórias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA