Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Chinês | MEDLINE | ID: mdl-38311948

RESUMO

Objective: To establish a method for determination of Perchloroethylene (PCE) in blood by headspace gas chromatography-mass spectrometry (HS/GC-MS) . Methods: From Dctober to December 2021, A total of 3 mL blood samples were taken into a 10 mL headspace bottle, after heated at 60 ℃ for 30 mins, PCE in the top air was separated by VF-WAXms capillary column and detected by GC-MS. The retention time and external standard method were used for qualitative and quantitative analysis of PCE in samples, respectively. Results: There was good linear relationship in the range of 5.09-200.17 µg/L. The linear correlation coefficient was 0.9993.The detection limit was 0.21 µg/L and the lower limit of quantitation was 0.70 µg/L. The recovery rates of samples with different concentrations were 95.3%-103.8%. The intra-batch relative standard deviations (RSD) were 3.2%-4.6%, and inter-batch RSD was 4.0%-6.1%. The samples can be stored at 4 ℃ for three days and at -20 ℃ for seven days. Conclusion: This method is proved to be simple, practical and highly sensitive, which is suitable for the determination of PCE in blood.


Assuntos
Tetracloroetileno , Cromatografia Gasosa-Espectrometria de Massas/métodos , Temperatura Alta
2.
J Med Case Rep ; 16(1): 272, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35818079

RESUMO

BACKGROUND: Advanced understanding of tumor biology has recently revealed the complexity of cancer genetics, intra/inter-tumor heterogeneity, and diverse mechanisms of resistance to cancer treatment. In turn, there has been a growing interest in cancer prevention and minimizing exposure to potential environmental carcinogens that surround us. In the 1980s, several chemical carcinogens, including perchloroethylene (PCE), trichloroethylene (TCE), and benzene, were detected in water systems supplying Camp Lejeune, a US Marine Corps Base Camp located in North Carolina. CASE PRESENTATION: This article presents three cases of cancer patients who have lived at Camp Lejeune, and, decades later, came to our clinic located 1000 miles from the original exposure site. The first patient is a young Caucasian man who was diagnosed with T cell acute lymphoblastic leukemia at the age of 37, and the second patient is a Caucasian man who had multiple types of cancer in the prostate, lung, and colon as well as chronic lymphocytic leukemia in his 60s and 70s. The third patient is another Caucasian man who had recurrent skin cancers of different histology, namely basal cell carcinomas, squamous cell carcinomas, and melanoma, from his 50s to 70s. CONCLUSIONS: The US Congress passed the Honoring America's Veterans and Caring for Camp Lejeune Families Act in 2012, which covers appropriate medical care for the people affected by the contamination. We hope that this article raises awareness about the history of Camp Lejeune's water contamination among cancer care providers, so the affected patients can receive appropriate medical coverage and cancer screening across the country.


Assuntos
Água Subterrânea , Militares , Neoplasias , Humanos , Masculino , North Carolina , Água
3.
Artigo em Inglês | MEDLINE | ID: mdl-31936349

RESUMO

Nearly 25 percent of US children live within 2 km of toxic-waste sites, most of which are in urban areas. They face higher rates of cancer than adults, partly because the dominant contaminants at most US hazardous-waste sites include genotoxic carcinogens, like trichloroethylene, that are much more harmful to children. The purpose of this article is to help protect the public, especially children, from these threats and to improve toxics-remediation by beginning to test our hypothesis: If site-remediation assessments fail data-usability evaluation (DUE), they likely compromise later cleanups and public health, especially children's health. To begin hypothesis-testing, we perform a focused DUE for an unremediated, Pasadena, California toxic site. Our DUE methods are (a) comparing project-specific, remediation-assessment data with the remediation-assessment conceptual site model (CSM), in order to identify data gaps, and (b) using data-gap directionality to assess possible determinate bias (whether reported toxics risks are lower/higher than true values). Our results reveal (1) major CSM data gaps, particularly regarding Pasadena-toxic-site risks to children; (2) determinate bias, namely, risk underestimation; thus (3) likely inadequate remediation. Our discussion shows that if these results are generalizable, requiring routine, independent, DUEs might deter flawed toxic-site assessment/cleanup and resulting health threats, especially to children.


Assuntos
Saúde da Criança , Recuperação e Remediação Ambiental , Locais de Resíduos Perigosos , California , Criança , Resíduos Perigosos , Humanos , Saúde Pública , Medição de Risco
4.
Front Microbiol ; 10: 89, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30809199

RESUMO

Microcosm experiments with CE-contaminated groundwater from a former industrial site were set-up to evaluate the relationships between biological CE dissipation, dehalogenase genes abundance and bacterial genera diversity. Impact of high concentrations of PCE on organohalide respiration was also evaluated. Complete or partial dechlorination of PCE, TCE, cis-DCE and VC was observed independently of the addition of a reducing agent (Na2S) or an electron donor (acetate). The addition of either 10 or 100 µM PCE had no effect on organohalide respiration. qPCR analysis of reductive dehalogenases genes (pceA, tceA, vcrA, and bvcA) indicated that the version of pceA gene found in the genus Dehalococcoides [hereafter named pceA(Dhc)] and vcrA gene increased in abundance by one order of magnitude during the first 10 days of incubation. The version of the pceA gene found, among others, in the genus Dehalobacter, Sulfurospirillum, Desulfuromonas, and Geobacter [hereafter named pceA(Dhb)] and bvcA gene showed very low abundance. The tceA gene was not detected throughout the experiment. The proportion of pceA(Dhc) or vcrA genes relative to the universal 16S ribosomal RNA (16S rRNA) gene increased by up to 6-fold upon completion of cis-DCE dissipation. Sequencing of 16S rRNA amplicons indicated that the abundance of Operational Taxonomic Units (OTUs) affiliated to dehalogenating genera Dehalococcoides, Sulfurospirillum, and Geobacter represented more than 20% sequence abundance in the microcosms. Among organohalide respiration associated genera, only abundance of Dehalococcoides spp. increased up to fourfold upon complete dissipation of PCE and cis-DCE, suggesting a major implication of Dehalococcoides in CEs organohalide respiration. The relative abundance of pceA and vcrA genes correlated with the occurrence of Dehalococcoides and with dissipation extent of PCE, cis-DCE and CV. A new type of dehalogenating Dehalococcoides sp. phylotype affiliated to the Pinellas group, and suggested to contain both pceA(Dhc) and vcrA genes, may be involved in organohalide respiration of CEs in groundwater of the study site. Overall, the results demonstrate in situ dechlorination potential of CE in the plume, and suggest that taxonomic and functional biomarkers in laboratory microcosms of contaminated groundwater following pollutant exposure can help predict bioremediation potential at contaminated industrial sites.

5.
Chemosphere ; 119: 1120-1125, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25460751

RESUMO

The performance of Fe(2+)-catalyzed sodium percarbonate (SPC) stimulating the oxidation of perchloroethylene (PCE) in groundwater remediation was investigated. The experimental results showed that PCE could be completely oxidized in 5 min at 20 °C with a Fe(2+)/SPC/PCE molar ratio of 8/8/1, indicating the effectiveness of Fe(2+)-catalyzed SPC oxidation for PCE degradation. Fe(2+)-catalyzed SPC oxidation was suitable for the nearly neutral pH condition, which was superior to the conventional Fenton oxidation in acidic condition. In addition, the investigations by using hydroxyl radical scavengers and free radical probe compounds elucidated that PCE was degraded mainly by hydroxyl radical (HO) oxidation in Fe(2+)/SPC system. In conclusion, Fe(2+)-catalyzed SPC oxidation is a highly promising technique for PCE-contaminated groundwater remediation, but more complex constituents in groundwater should be carefully considered for its practical application.


Assuntos
Carbonatos/química , Ferro/química , Tetracloroetileno/química , Poluentes Químicos da Água/química , Catálise , Água Subterrânea/química , Concentração de Íons de Hidrogênio , Radical Hidroxila/química , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA