RESUMO
Because equine tendinopathies are slow to heal and often recur, therapeutic strategies are being considered that aid tendon repair. Given the success of utilizing vitamin C to promote tenogenesis in other species, we hypothesized that vitamin C supplementation would produce dose-dependent improvements in the tenogenic properties of tendon proper (TP) and peritenon (PERI) cells of the equine superficial digital flexor tendon (SDFT). Equine TP- and PERI-progenitor-cell-seeded fibrin three-dimensional constructs were supplemented with four concentrations of vitamin C. The gene expression profiles of the constructs were assessed with 3'-Tag-Seq and real-time quantitative polymerase chain reaction (RT-qPCR); collagen content and fibril ultrastructure were also analyzed. Moreover, cells were challenged with dexamethasone to determine the levels of cytoprotection afforded by vitamin C. Expression profiling demonstrated that vitamin C had an anti-inflammatory effect on TP and PERI cell constructs. Moreover, vitamin C supplementation mitigated the degenerative pathways seen in tendinopathy and increased collagen content in tendon constructs. When challenged with dexamethasone in two-dimensional culture, vitamin C had a cytoprotective effect for TP cells but not necessarily for PERI cells. Future studies will explore the effects of vitamin C on these cells during inflammation and within the tendon niche in vivo.
Assuntos
Tendinopatia , Tendões , Animais , Cavalos , Tendões/metabolismo , Colágeno/metabolismo , Engenharia Tecidual/métodos , Tendinopatia/tratamento farmacológico , Tendinopatia/metabolismo , Ácido Ascórbico/farmacologia , Ácido Ascórbico/metabolismo , Dexametasona/farmacologia , Dexametasona/metabolismoRESUMO
BACKGROUND: Tendon injuries amount to one of the leading causes of career-ending injuries in horses due to the inability for tendon to completely repair and the high reinjury potential. As a result, novel therapeutics are necessary to improve repair with the goal of decreasing leg lameness and potential reinjury. Small leucine-rich repeat proteoglycans (SLRPs), a class of regulatory molecules responsible for collagen organization and maturation, may be one such therapeutic to improve tendon repair. Before SLRP supplementation can occur in vivo, proper evaluation of the effect of these molecules in vitro needs to be assessed. The objective of this study was to evaluate the effectiveness of purified bovine biglycan or decorin on tendon proper and peritenon cell populations in three-dimensional tendon constructs. METHODS: Equine tendon proper or peritenon cell seeded fibrin three-dimensional constructs were supplemented with biglycan or decorin at two concentrations (5 nM or 25 nM). The functionality and ultrastructural morphology of the constructs were assessed using biomechanics, collagen content analysis, transmission electron microscopy (TEM), and gene expression by real time - quantitative polymerase chain reaction (RT-qPCR). RESULTS: SLRP supplementation affected both tendon proper and peritenon cells-seeded constructs. With additional SLRPs, material and tensile properties of constructs strengthened, though ultrastructural analyses indicated production of similar-sized or smaller fibrils. Overall expression of tendon markers was bolstered more in peritenon cells supplemented with either SLRP, while supplementation of SLRPs to TP cell-derived constructs demonstrated fewer changes in tendon and extracellular matrix markers. Moreover, relative to non-supplemented tendon proper cell-seeded constructs, SLRP supplementation of the peritenon cells showed increases in mechanical strength, material properties, and collagen content. CONCLUSIONS: The SLRP-supplemented peritenon cells produced constructs with greater mechanical and material properties than tendon proper seeded constructs, as well as increased expression of matrix assembly molecules. These findings provide evidence that SLRPs should be further investigated for their potential to improve tendon formation in engineered grafts or post-injury.
Assuntos
Colágeno , Proteínas da Matriz Extracelular , Animais , Biglicano , Bovinos , Decorina , Cavalos , TendõesRESUMO
OBJECTIVES: Equine tendinopathies are challenging because of the poor healing capacity of tendons commonly resulting in high re-injury rates. Within the tendon, different regions - tendon proper (TP) and peritenon (PERI) - contribute to the tendon matrix in differing capacities during injury and aging. Aged tendons have decreased repair potential; the underlying transcriptional and epigenetic changes that occur in the TP and PERI regions are not well understood. The objective of this study was to assess TP and PERI regional differences in adolescent, midlife, and geriatric horses using RNA sequencing and DNA methylation techniques. RESULTS: Differences existed between TP and PERI regions of equine superficial digital flexor tendons by age as evidenced by RNASeq and DNA methylation. Cluster analysis indicated that regional distinctions existed regardless of age. Genes such as DCN, COMP, FN1, and LOX maintained elevated TP expression while genes such as GSN and AHNAK were abundant in PERI. Increased gene activity was present in adolescent and geriatric populations but decreased during midlife. Regional differences in DNA methylation were also noted. Notably, when evaluating all ages of TP against PERI, five genes (HAND2, CHD9, RASL11B, ADGRD1, and COL14A1) had regions of differential methylation as well as differential gene expression.
Assuntos
Doenças dos Cavalos , Transcriptoma , Cavalos/genética , Animais , Metilação , Tendões/metabolismo , Envelhecimento/genética , GenômicaRESUMO
Tendinopathies remain the leading contributor to career-ending injuries in horses because of the complexity of tendon repair. As such, cell-based therapies like injections of adipose-derived mesenchymal stem cells (ADMSCs, or MSCs) into injured tendons are becoming increasingly popular though their long-term efficacy on a molecular and wholistic level remains contentious. Thus, we co-cultured equine MSCs with intrinsic (tendon proper) and extrinsic (peritenon) tendon cell populations to examine interactions between these cells. Gene expression for common tenogenic, perivascular, and differentiation markers was quantified at 48 and 120 hours. Additionally, cellular metabolism of proliferation was examined every 24 hours for peritenon and tendon proper cells co-cultured with MSCs. MSCs co-cultured with tendon proper or peritenon cells had altered expression profiles demonstrating trend toward tenogenic phenotype with the exception of decreases in type I collagen (COL1A1). Peritenon cells co-cultured with MSCs had a trending and significant decrease in biglycan (BGN) and CSPG4 at 48 hours and 120 hours but overall significant increases in lysyl oxidase (LOX), mohawk (MKX), and scleraxis (SCX) within 48 hours. Tendon proper cells co-cultured with MSCs also exhibited increases in LOX and SCX at 48 hours. Furthermore, cell proliferation improved overall for tendon proper cells co-cultured with MSCs. The co-culture study results suggest that adipose-derived MSCs contribute beneficially to tenogenic stimulation of peritenon or tendon proper cells.