RESUMO
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide. USP25 in adipocytes has been proven to be involved in insulin resistance, a noteworthy characteristic of NAFLD. However, the roles of USP25 in NAFLD remain unclear. In this study, we aimed to elucidate the role of USP25 in NAFLD. Hepatic USP25 protein levels were measured in NAFLD patients and models. USP25 expression was manipulated in both mice and cells to evaluate its role in NAFLD. A downstream target of USP25 in NAFLD progression was identified through proteomic profiling analyses and confirmed. Additionally, a USP25 inhibitor was used to determine whether USP25 could be a viable treatment target for NAFLD. We found that USP25 protein levels were significantly decreased in the livers of NAFLD patients and NAFLD model mice. USP25 protein levels were also decreased in both mouse primary hepatocytes and Huh7 cells treated with free fatty acids (FFAs). We also found that Usp25 knockout mice presented much more severe hepatic steatosis when they were fed a high-fat diet. Similarly, knocking down USP25 in Huh7 cell lines aggravated FFA-induced steatosis, whereas USP25 overexpression ameliorated FFA-induced steatosis in Huh7 cell lines. Further proteomic profiling revealed that the PPARα signaling pathway was a downstream target of USP25, which was confirmed in both mice and cell lines. Moreover, USP25 could stabilize PPARα by promoting its deubiquitination. Finally, a USP25 inhibitor exacerbated diet-induced steatosis in mice. In conclusion, USP25 may play a role in NAFLD through the PPARα signaling pathway and could be a potential therapeutic target for NAFLD.
RESUMO
Triclosan (TCS) is an antimicrobial toxicant found in a myriad of consumer products and has been detected in human tissues, including breastmilk. We have evaluated the impact of lactational TCS on UDP-glucuronosyltransferase 1A1 (UGT1A1) expression and bilirubin metabolism in humanized UGT1 (hUGT1) neonatal mice. In hUGT1 mice, expression of the hepatic UGT1A1 gene is developmentally delayed resulting in elevated total serum bilirubin (TSB) levels. We found that newborn hUGT1 mice breastfed or orally treated with TCS presented lower TSB levels along with induction of hepatic UGT1A1. Lactational and oral treatment by gavage with TCS leads to the activation of hepatic nuclear receptors constitutive androstane receptor (CAR), peroxisome proliferator-activated receptor alpha (PPARα), and stress sensor, activating transcription factor 4 (ATF4). When CAR-deficient hUGT1 mice (hUGT1/Car-/-) were treated with TCS, TSB levels were reduced with a robust induction of hepatic UGT1A1, leaving us to conclude that CAR is not tied to UGT1A1 induction. Alternatively, when PPARα-deficient hUGT1 mice (hUGT1/Pparα-/-) were treated with TCS, hepatic UGT1A1 was not induced. Additionally, we had previously demonstrated that TCS is a potent inducer of ATF4, a transcriptional factor linked to the integrated stress response. When ATF4 was deleted in liver of hUGT1 mice (hUGT1/Atf4ΔHep) and these mice treated with TCS, we observed superinduction of hepatic UGT1A1. Oxidative stress genes in livers of hUGT1/Atf4ΔHep treated with TCS were increased, suggesting that ATF4 protects liver from excessive oxidative stress. The increase oxidative stress may be associated with superinduction of UGT1A1. The expression of ATF4 in neonatal hUGT1 hepatic tissue may play a role in the developmental repression of UGT1A1.
Assuntos
Fator 4 Ativador da Transcrição , Animais Recém-Nascidos , Bilirrubina , Glucuronosiltransferase , Fígado , PPAR alfa , Triclosan , Animais , Glucuronosiltransferase/metabolismo , Glucuronosiltransferase/genética , PPAR alfa/metabolismo , PPAR alfa/genética , Camundongos , Fator 4 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/genética , Triclosan/farmacologia , Humanos , Bilirrubina/farmacologia , Bilirrubina/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Camundongos Knockout , Feminino , Receptor Constitutivo de Androstano , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/genéticaRESUMO
AIMS/HYPOTHESIS: Fenofibrate, a peroxisome proliferator-activated receptor alpha agonist, shows some promise in alleviating beta cell stress and preserving beta cell function in preclinical studies of type 1 diabetes. The aim of this phase 2, placebo-controlled, double-blinded, randomised clinical trial was to investigate the efficacy and safety of fenofibrate in adults and adolescents with newly diagnosed type 1 diabetes. METHODS: We enrolled 58 individuals (aged 16 to 40 years old) with newly diagnosed type 1 diabetes and randomised them to daily oral treatment with fenofibrate 160 mg or placebo for 52 weeks (in a block design with a block size of 4, assigned in a 1:1 ratio). Our primary outcome was change in beta cell function after 52 weeks of treatment, assessed by AUC for C-peptide levels following a 2 h mixed-meal tolerance test. Secondary outcomes included glycaemic control (assessed by HbA1c and continuous glucose monitoring), daily insulin use, and proinsulin/C-peptide (PI/C) ratio as a marker of beta cell stress. We assessed outcome measures before and after 4, 12, 26 and 52 weeks of treatment. Blinding was maintained for participants, their healthcare providers and all staff involved in handling outcome samples and assessment. RESULTS: The statistical analyses for the primary outcome included 56 participants (n=27 in the fenofibrate group, after two withdrawals, and n=29 in the placebo group). We found no significant differences between the groups in either 2 h C-peptide levels (mean difference of 0.08 nmol/l [95% CI -0.05, 0.23]), insulin use or glycaemic control after 52 weeks of treatment. On the contrary, the fenofibrate group showed a higher PI/C ratio at week 52 compared with placebo (mean difference of 0.024 [95% CI 0.000, 0.048], p<0.05). Blood lipidome analysis revealed that fenofibrate repressed pathways involved in sphingolipid metabolism and signalling at week 52 compared with placebo. The 52 week intervention evoked few adverse events and no serious adverse events. Follow-up in vitro experiments in human pancreatic islets demonstrated a stress-inducing effect of fenofibrate. CONCLUSIONS/INTERPRETATION: Contrary to the beneficial effects of fenofibrate found in preclinical studies, this longitudinal, randomised, placebo-controlled trial does not support the use of fenofibrate for preserving beta cell function in individuals with newly diagnosed type 1 diabetes. TRIAL REGISTRATION: EudraCT number: 2019-004434-41 FUNDING: This study was funded by the Sehested Hansens Foundation.
RESUMO
Insulin resistance is a significant contributor to the development of type 2 diabetes (T2D) and is associated with obesity, physical inactivity, and low maximal oxygen uptake. While intense and prolonged exercise may have negative effects, physical activity can have a positive influence on cellular metabolism and the immune system. Moderate exercise has been shown to reduce oxidative stress and improve antioxidant status, whereas intense exercise can increase oxidative stress in the short term. The impact of exercise on pro-inflammatory cytokine production is complex and varies depending on intensity and duration. Exercise can also counteract the harmful effects of ageing and inflamm-ageing. This review aims to examine the molecular pathways altered by exercise in non-obese individuals at higher risk of developing T2D, including glucose utilization, lipid metabolism, mitochondrial function, inflammation and oxidative stress, with the potential to improve insulin sensitivity. The focus is on understanding the potential benefits of exercise for improving insulin sensitivity and providing insights for future targeted interventions before onset of disease.
Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Obesidade/metabolismo , Antioxidantes/metabolismo , Estresse Oxidativo , Exercício Físico , Insulina/metabolismoRESUMO
We previously demonstrated hepatic, cardiac, and skin inflammation in a high-fat diet-induced steatotic liver disease (SLD) model. However, the molecular mechanism in the kidneys in this model remains unclear. It has been recently reported that SGLT2 inhibitors improve chronic kidney disease (CKD). Therefore, we used this model to evaluate the effects of tofogliflozin on renal lipid metabolism and inflammation. Male 8-10-week-old C57Bl/6 mice were fed a high-fat/high-cholesterol/high-sucrose/bile acid (HF/HC/HS/BA) diet with 0.015% tofogliflozin (Tofo group) or an HF/HC/HS/BA diet alone (SLD group). After eight weeks, serum lipid profiles, histology, lipid content, and mRNA/microRNA and protein expression levels in the kidney were examined. The Tofo group showed significant reductions in body (26.9 ± 0.9 vs. 24.5 ± 1.0 g; p < 0.001) and kidney weight compared to those of the SLD group. Renal cholesterol (9.1 ± 1.6 vs. 7.5 ± 0.7 mg/g; p < 0.05) and non-esterified fatty acid (NEFA) (12.0 ± 3.0 vs. 8.4 ± 1.5 µEq/g; p < 0.01) were significantly decreased in the Tofo group. Transmission electron microscopy revealed the presence of fewer lipid droplets. mRNA sequencing analysis revealed that fatty acid metabolism-related genes were upregulated and NFκB signaling pathway-related genes were downregulated in the Tofo group. MicroRNA sequencing analysis indicated that miR-21a was downregulated and miR-204 was upregulated in the Tofo group. Notably, the expression of PPARα, which has been known to be negatively regulated by miR-21, was significantly increased, leading to enhancing ß-oxidation genes, Acox1 and Cpt1 in the Tofo group. Tofogliflozin decreased renal cholesterol and NEFA levels and improved inflammation through the regulation of PPARα and miR-21a.
RESUMO
Aging results in progressive decline of renal function as well as histological alterations including glomerulosclerosis and interstitial fibrosis. The objective of current study was to test the benefits of moderate swimming exercise in aged rats on renal function and structure and investigate its molecular mechanisms. Aged rats of 21-months old were given moderate swimming exercise for 12 weeks. Swimming exercise in aged rats led to reduced plasma levels of creatinine and blood urea nitrogen. Periodic acid-Schiff staining results revealed reduced renal injury scores in aged rats after swimming exercise. Swimming exercise in aged rats mitigated renal fibrosis and downregulated the mRNA expression of Acta2, Fn, Col1a, Col4a, and Tgfb1 in kidneys. Swimming exercise in aged rats attenuated lipid accumulation and reduced levels of triglyceride in kidneys. Swimming exercise in aged rats abated oxidative stress, evidenced by reduced MDA levels and increased MnSOD activities in kidneys. Swimming exercise in aged rats inhibited NF-κB activities and reduced renal expression of pro-inflammatory cytokines including MCP-1, IL-1ß and IL-6. Mechanistically, swimming exercise restored mRNA and protein expression of PPAR-α in kidney of aged rats. Furthermore, swimming exercise in aged rats increased expression of PPAR-α-targeting microRNAs including miR-21 and miR-34a. Collectively, swimming exercise activated PPAR-α, which partly explained the benefits of moderate swimming exercise in aging kidneys.
Assuntos
Nefropatias , MicroRNAs , Ratos , Animais , PPAR alfa/metabolismo , Natação , Nefropatias/metabolismo , Rim/metabolismo , Fibrose , MicroRNAs/metabolismo , RNA Mensageiro/metabolismoRESUMO
Few studies have examined the relationship between lipid metabolism and kidney stone formation, particularly the role of key lipid regulatory factors in kidney stone formation. We evaluated the effect of the lipid regulatory factor-peroxisome proliferator-activated receptor alpha on the formation of renal stones in mice by injecting them with glyoxylate followed by treatment with either a peroxisome proliferator-activated receptor alpha agonist fenofibrate or an antagonist GW6471 (GW). Liquid chromatography coupled with trapped ion mobility spectrometry-quadrupole-time-of-flight mass spectrometry-based lipidomics was used to determine the lipid profile in the mouse kidneys. Histological and biochemical analyses showed that the mice injected with glyoxylate exhibited crystal precipitation and renal dysfunction. Crystallization decreased significantly in the fenofibrate group, whereas it increased significantly in the GW group. A total of 184 lipids, including fatty acyls, glycerolipids, glycerophospholipids, and sphingolipids differed significantly between the mice in the model and control groups. Peroxisome proliferator-activated receptor alpha activity negatively correlated with glyoxylate-induced kidney stone formation in mice, which may be related to improved fatty acid oxidation, maintenance of ceramide/complex sphingolipids cycle balance, and alleviation of disorder in phospholipid metabolism.
Assuntos
Fenofibrato , Cálculos Renais , Camundongos , Animais , PPAR alfa/agonistas , PPAR alfa/metabolismo , Lipidômica , Cálculos Renais/induzido quimicamente , Cálculos Renais/tratamento farmacológico , Cálculos Renais/prevenção & controle , Esfingolipídeos , Cromatografia Líquida , Glioxilatos , Espectrometria de MassasRESUMO
Hexafluoropropylene oxide tetramer acid (HFPO-TeA) is an emerging environmental contaminant, with environmental presence but limited toxicological information. To investigate its potential developmental toxicities, various doses of HFPO-TeA exposure were achieved in chicken embryos via air cell injection, and the exposed embryos were incubated until hatch. Within 24 h of hatch, the hatchling chickens were assessed with electrocardiography and histopathology for toxicological evaluation. For mechanistic investigation, in ovo silencing of PPARα was achieved via lentivirus microinjection, then the morphological/functional endpoints along with protein expression levels of PPARα-regulated genes were assessed. HFPO-TeA exposure in chicken embryo resulted in developmental cardiotoxicity and hepatotoxicity. Specifically, decreased right ventricular wall thickness, increased heart rate and hepatic steatosis were observed, whereas silencing of PPARα resulted in alleviation of observed toxicities. Western blotting for EHHADH and FABPs suggested that developmental exposure to HFPO-TeA effectively increased the expression levels of both targets in hatchling chicken heart and liver tissue samples, while PPARα silencing prevented such changes, suggesting that PPARα and its downstream genes are playing critical roles in HFPO-TeA induced developmental toxicities.
Assuntos
Galinhas , Fluorocarbonos , Embrião de Galinha , Animais , Galinhas/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Fluorocarbonos/toxicidade , Coração , Fígado/metabolismoRESUMO
Esophageal cancer (EC) is the sixth cause of cancer-related deaths and still is a significant public health problem globally. Nitrosamines exposure represents a major health concern increasing EC risks. Exploring the mechanisms induced by nitrosamines may contribute to the prevention and early detection of EC. However, the mechanism of nitrosamine carcinogenesis remains unclear. Ribonucleic acid export 1 (RAE1), has an important role in mediating diverse cancer types, but, to date, there has been no study for any functional role of RAE1 in esophageal carcinogenesis. Here, we successfully verified the nitrosamine-induced malignant transformation cell (MNNG-M) by xenograft tumor model, based on which it was found that RAE1 was upregulation in the early stage of nitrosamine-induced esophageal carcinogenesis and EC tissues. RAE1 knockdown led to severe blockade in G2/M phase and significant inhibition of proliferation of MNNG-M cells, whereas RAE1 overexpression had the opposite effect. In addition, peroxisome proliferator-activated receptor-alpha (PPARα), was demonstrated as a downstream target gene of RAE1, and its down-regulation reduced lipid accumulation, resulting in causing cells accumulation in the G2/M phase. Mechanistically, we found that RAE1 regulates the lipid metabolism by maintaining the stability of PPARα mRNA. Taken together, our study reveals that RAE1 promotes malignant transformation of human esophageal epithelial cells (Het-1A) by regulating PPARα-mediated lipid metabolism to affect cell cycle progression, and offers a new explanation of the mechanisms underlying esophageal carcinogenesis.
RESUMO
BACKGROUND: Granulosa cell (GC) proliferation and apoptosis are critical events of the ovum energy supply, which lead to follicular growth retardation or atresia, and various ovulatory obstacles, eventually resulting in the development of ovarian disorders such as polycystic ovarian syndrome (PCOS). Apoptosis and dysregulated miRNA expression in GCs are manifestations of PCOS. miR-4433a-3p has been reported to be involved in apoptosis. However, there is no study reporting the roles of miR-4433a-3p in GC apoptosis and PCOS progression. METHODS: miR-4433a-3p and peroxisome proliferator-activated receptor alpha (PPAR-α) levels in GCs of PCOS patients or in tissues of a PCOS rat model were examined by quantitative polymerase chain reaction and immunohistochemistry. Bioinformatics analyses and luciferase assays were used to examine the association between miR-4433a-3p and PPAR-α, as well as PPAR-α and immune cell infiltration, in PCOS patients. RESULTS: miR-4433a-3p expression in GCs of PCOS patients was increased. miR-4433a-3p overexpression inhibited the growth of the human granulosa-like tumor cell line (KGN) and promoted apoptosis, while co-treatment with PPAR-α and miR-4433a-3p mimic rescued miR-4433a-3p-induced apoptosis. PPAR-α was a direct target of miR-4433a-3p and its expression was decreased in PCOS patients. PPAR-α expression was also positively correlated with the infiltration of activated CD4+ T cells, eosinophils, B cells, gamma delta T cells, macrophages, and mast cells, but negatively correlated with the infiltration of activated CD8+ T cells, CD56+ bright natural killer cells, immature dendritic cells, monocytes, plasmacytoid dendritic cells, neutrophils, and type 1 T helper cells in PCOS patients. CONCLUSION: The miR-4433a-3p/PPAR-α/immune cell infiltration axis may function as a novel cascade to alter GC apoptosis in PCOS.
Assuntos
MicroRNAs , Síndrome do Ovário Policístico , Feminino , Humanos , Ratos , Animais , PPAR alfa/genética , PPAR alfa/metabolismo , Síndrome do Ovário Policístico/patologia , Células da Granulosa/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Apoptose/genética , Proliferação de Células/genéticaRESUMO
The mechanistic target of rapamycin (mTOR) is often referred to as a master regulator of the cellular metabolism that can integrate the growth factor and nutrient signaling. Fasting suppresses hepatic mTORC1 activity via the activity of the tuberous sclerosis complex (TSC), a negative regulator of mTORC1, to suppress anabolic metabolism. The loss of TSC1 in the liver locks the liver in a constitutively anabolic state even during fasting, which was suggested to regulate peroxisome proliferator-activated receptor alpha (PPARα) signaling and ketogenesis, but the molecular determinants of this regulation are unknown. Here, we examined if the activation of the mTORC1 complex in mice by the liver-specific deletion of TSC1 (TSC1L-/-) is sufficient to suppress PPARα signaling and therefore ketogenesis in the fasted state. We found that the activation of mTORC1 in the fasted state is not sufficient to repress PPARα-responsive genes or ketogenesis. Furthermore, we examined whether the activation of the anabolic program mediated by mTORC1 complex activation in the fasted state could suppress the robust catabolic programming and enhanced PPARα transcriptional response of mice with a liver-specific defect in mitochondrial long-chain fatty acid oxidation using carnitine palmitoyltransferase 2 (Cpt2L-/-) mice. We generated Cpt2L-/-; Tsc1L-/- double-KO mice and showed that the activation of mTORC1 by deletion of TSC1 could not suppress the catabolic PPARα-mediated phenotype of Cpt2L-/- mice. These data demonstrate that the activation of mTORC1 by the deletion of TSC1 is not sufficient to suppress a PPARα transcriptional program or ketogenesis after fasting.
Assuntos
Jejum/metabolismo , Fígado/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Transdução de Sinais , Proteína 1 do Complexo Esclerose Tuberosa/genética , Animais , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Deleção de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Proteína 1 do Complexo Esclerose Tuberosa/metabolismoRESUMO
Oral cancer, a type of head and neck cancer, can pose a significant risk of death unless diagnosed and treated early. Alternative treatments are urgently needed owing to the high mortality rate, limitations of conventional treatments, and many complications. The anthraquinone compound chrysophanol acts as a tumor suppressor on some types of cancer cells. To date, it has not been clarified how chrysophanol affects human tongue squamous carcinoma. This study was aimed to examine the effects of chrysophanol on oral cancer treatment. The results show that chrysophanol caused cell death, reduced the expression of the mammalian target of rapamycin (mTOR)/peroxisome proliferator-activated receptor-alpha (PPAR-α), and increased reactive oxygen species (ROS) production. We also used two ion chelators, deferoxamine (DFO) and liproxstatin-1 (Lipro), to further determine whether chrysophanol inhibits cell growth and regulates mTOR/PPAR-α expression and ROS production, both of which are involved in iron homeostasis. The results show that DFO and Lipro reversed the increase in cell death, downregulation of mTOR/PPAR-α, and decrease in ROS accumulation. In conclusion, chrysophanol inhibits the growth of oral squamous cell carcinoma cells by modulating mTOR/PPAR-α and by causing ROS accumulation.
RESUMO
OBJECTIVE: Nonalcoholic fatty liver disease (NAFLD) is associated with metabolic dysregulation and is linked with various cardiovascular complications, which often lead to poor prognostic outcomes. To develop a standard therapy for NAFLD and to urgently address its complications, the current study aimed to investigate the mechanisms of NAFLD-related heart disease and the therapeutic effects of drugs targeting various metabolic pathways. METHODS: To explore the mechanism of NAFLD-related heart disease, a medaka model of high-fat diet-induced NAFLD was utilized. The gross structural, histological, and inflammatory changes in the myocardium were evaluated in a time-dependent manner. In addition, the therapeutic effects of medicines used for NAFLD treatment including, selective peroxisome proliferator-activated receptor α modulator (SPPARMα, pemafibrate), sodium-glucose cotransporter 2 (SGLT2) inhibitor (tofogliflozin), and statin (pitavastatin), and their combinations on heart pathology were evaluated. To determine the mechanisms underlying the therapeutic effects, the expression of genes related to liver inflammation was assessed via whole transcriptome sequencing analysis. RESULTS: The fish with NAFLD-related heart injury presented with cardiomyocyte hypertrophy, which led to cardiac hypertrophy. This morphological change was caused by the infiltration of inflammatory cells, including macrophages and CD4- and CD8-positive lymphocytes, in the cardiac wall and the expression of transforming growth factor beta 1 in the cardiomyocytes. Further, the livers of the fish had upregulated expressions of senescence-associated secretory phenotype-related genes. Treatment with pemafibrate, tofogliflozin, and pitavastatin reduced these changes and, consequently, cardiomyopathy. CONCLUSION: Our results demonstrated that NAFLD-related heart disease was attributed to the senescence-associated secretory phenotype-induced inflammatory activity in the cardiac wall, which resulted in myocardial hypertrophy. Moreover, the effects of SPPARMα, SGLT2 inhibitor, and statin on NAFLD-related heart disease were evident in the medaka NAFLD model.
Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Hepatopatia Gordurosa não Alcoólica , Oryzias , Animais , Cardiomegalia/patologia , Dieta Hiperlipídica , Glucose/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Fígado/metabolismo , Miocárdio/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , PPAR alfa/metabolismo , Sódio/metabolismoRESUMO
The non-genotoxic synthetic pyrethroid insecticide permethrin produced hepatocellular adenomas and bronchiolo-alveolar adenomas in female CD-1 mice, but not in male CD-1 mice or in female or male Wistar rats. Studies were performed to evaluate possible modes of action (MOAs) for permethrin-induced female CD-1 mouse liver and lung tumor formation. The MOA for liver tumor formation by permethrin involves activation of the peroxisome proliferator-activated receptor alpha (PPARα), increased hepatocellular proliferation, development of altered hepatic foci, and ultimately liver tumors. This MOA is similar to that established for other PPARα activators and is considered to be qualitatively not plausible for humans. The MOA for lung tumor formation by permethrin involves interaction with Club cells, followed by a mitogenic effect resulting in Club cell proliferation, with prolonged administration producing Club cell hyperplasia and subsequently formation of bronchiolo-alveolar adenomas. Although the possibility that permethrin exposure may potentially result in enhancement of Club cell proliferation in humans cannot be completely excluded, there is sufficient information on differences in basic lung anatomy, physiology, metabolism, and biologic behavior of tumors in the general literature to conclude that humans are quantitatively less sensitive to agents that increase Club cell proliferation and lead to tumor formation in mice. The evidence strongly indicates that Club cell mitogens are not likely to lead to increased susceptibility to lung tumor development in humans. Overall, based on MOA evaluation it is concluded that permethrin does not pose a tumorigenic hazard for humans, this conclusion being supported by negative data from permethrin epidemiological studies.
Assuntos
Adenoma , Neoplasias Hepáticas , Neoplasias Pulmonares , Adenoma/metabolismo , Animais , Feminino , Humanos , Fígado , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , PPAR alfa/metabolismo , PPAR alfa/farmacologia , Permetrina/toxicidade , Ratos , Ratos WistarRESUMO
BACKGROUND: Stomatitis is inflammation of the oral mucosa. Angiopoietin-like protein 4 (ANGPTL4) has pleiotropic functions both anti-inflammatory and pro-inflammatory properties. In the present study, we tested whether there is a correlation between increased ANGPTL4 expression and inflammation in stomatitis mice and the mechanisms involved. METHODS AND RESULTS: In this study, the oral mucosa of mice was burned with 90% phenol and intraperitoneal injection of 5-fluorouracil to establish the model of stomatitis mice. The pathological changes of stomatitis mice were observed by H&E staining of paraffin section. The expressions of cytokines and ANGPTL4 were detected by fluorescence quantitative PCR, and the protein levels of ANGPTL4 were detected by western blot. Compared with control group, the oral mucosal structure of model mice was damaged. The expression of ANGPTL4 were significantly increased concomitantly with elevated production of anti-inflammatory cytokine (peroxisome proliferator-activated receptor alpha) and pro-inflammatory cytokines [nuclear transcription factor-kappa B, interleukin-6 (IL-6), IL-1ß, and tumor necrosis factor-α] in mice with stomatitis. CONCLUSIONS: This study suggests that ANGPTL4 may be a double-edged sword in multiple inflammatory responses in stomatitis mice.
Assuntos
Angiopoietinas/metabolismo , Interleucina-6 , Estomatite , Proteína 4 Semelhante a Angiopoietina/genética , Angiopoietinas/genética , Animais , Citocinas , Fluoruracila , Inflamação , Interleucina-6/genética , Camundongos , NF-kappa B , PPAR alfa , Parafina , Fenóis , Fator de Necrose Tumoral alfaRESUMO
Several randomized, double blind, placebo-controlled trials (RCTs) have demonstrated that low-density lipoprotein cholesterol (LDL-C) lowering by using statins, including high-doses of strong statins, reduced the development of cardiovascular disease (CVD). However, among the eight RCTs which investigated the effect of statins vs. placebos on the development of CVD, 56-79% of patients had the residual CVD risk after the trials. In three RCTs which investigated the effect of a high dose vs. a usual dose of statins on the development of CVD, 78-87% of patients in the high-dose statin arms still had the CVD residual risk after the trials. An analysis of the characteristics of patients in the RCTs suggests that elevated triglyceride (TG) and reduced high-density lipoprotein cholesterol (HDL-C), the existence of obesity/insulin resistance, and diabetes may be important metabolic factors which determine the statin residual CVD risk. To understand the association between lipid abnormalities and the development of atherosclerosis, we show the profile of lipoproteins and their normal metabolism, and the molecular and biological mechanisms for the development of atherosclerosis by high TG and/or low HDL-C in insulin resistance. The molecular biological mechanisms for the statin residual CVD risk include an increase of atherogenic lipoproteins such as small dense LDL and remnants, vascular injury and remodeling by inflammatory cytokines, and disturbed reverse cholesterol transport. Peroxisome proliferator-activated receptor alpha (PPARα) agonists improve atherogenic lipoproteins, reverse the cholesterol transport system, and also have vascular protective effects, such as an anti-inflammatory effect and the reduction of the oxidative state. Ezetimibe, an inhibitor of intestinal cholesterol absorption, also improves TG and HDL-C, and reduces intestinal cholesterol absorption and serum plant sterols, which are increased by statins and are atherogenic, possibly contributing to reduce the statin residual CVD risk.
Assuntos
Aterosclerose , Doenças Cardiovasculares , Inibidores de Hidroximetilglutaril-CoA Redutases , Resistência à Insulina , Aterosclerose/tratamento farmacológico , Doenças Cardiovasculares/tratamento farmacológico , Colesterol , HDL-Colesterol , Ezetimiba/uso terapêutico , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Lipoproteínas , PPAR alfa , Ensaios Clínicos Controlados Aleatórios como Assunto , TriglicerídeosRESUMO
PURPOSE OF REVIEW: Adoption of poor lifestyles (inactivity and energy-dense diets) has driven the worldwide increase in the metabolic syndrome, type 2 diabetes mellitus and non-alcoholic steatohepatitis (NASH). Of the defining features of the metabolic syndrome, an atherogenic dyslipidaemia characterised by elevated triglycerides (TG) and low plasma concentration of high-density lipoprotein cholesterol is a major driver of risk for atherosclerotic cardiovascular disease. Beyond lifestyle intervention and statins, targeting the nuclear receptor peroxisome proliferator-activated receptor alpha (PPARα) is a therapeutic option. However, current PPARα agonists (fibrates) have limitations, including safety issues and the lack of definitive evidence for cardiovascular benefit. Modulating the ligand structure to enhance binding at the PPARα receptor, with the aim of maximising beneficial effects and minimising adverse effects, underlies the SPPARMα concept. RECENT FINDINGS: This review discusses the history of SPPARM development, latterly focusing on evidence for the first licensed SPPARMα, pemafibrate. Evidence from animal models of hypertriglyceridaemia or NASH, as well as clinical trials in patients with atherogenic dyslipidaemia, are overviewed. The available data set the scene for therapeutic application of SPPARMα in the metabolic syndrome, and possibly, NASH. The outstanding question, which has so far eluded fibrates in the setting of current evidence-based therapy including statins, is whether treatment with pemafibrate significantly reduces cardiovascular events in patients with atherogenic dyslipidaemia. The PROMINENT study in patients with type 2 diabetes mellitus and this dyslipidaemia is critical to evaluating this.
Assuntos
Benzoxazóis/uso terapêutico , Butiratos/uso terapêutico , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/metabolismo , PPAR alfa/metabolismo , Animais , HumanosRESUMO
INTRODUCTION: Cyclic adenosine monophosphate (AMP)-responsive element-binding protein H (CREBH), an endoplasmic reticulum-anchored transcription factor essential for lipid metabolism and inflammation in nonalcoholic fatty liver disease (NAFLD), is covalently modified by N-acetylglucosamine. Glycosylation is a ubiquitous type of protein involved in posttranslational modifications, and plays a critical role in various biological processes. However, the mechanism of glycosylated CREBH remains poorly understood in NAFLD. METHODS: CREBH glycosylation mutants were obtained by site-mutation methods. After transfection with plasmids, AML-12, LO2, or HepG2 cells were treated with palmitic acid (PA) proteolysis, tunicamycin (Tm), or their combination. Glycosyltransferase V (GnT-V) was used induce hyperglycosylation to further understand the effect of CREBH. In addition, glycosylation mutant mice and hyperglycosylated mice were generated by lentivirus injection to construct two kinds of NAFLD animal models. The expression of NAFLD-related factors was detected to further verify the role of N-linked glycosylation of CREBH in lipid and sterol metabolism, inflammation, and lipotoxicity. RESULTS: N-glycosylation enhanced the ability of CREBH to activate transcription and modulated the production of peroxisome proliferator-activated receptor alpha (PPARα) and stearoyl-CoA desaturase-1 (SCD-1) activity by affecting their promoter-driven transcription activity and protein interactions, leading to reduce lipid deposition and attenuate lipotoxicity. Deglycosylation of CREBH induced by Tm could inhibit the proteolysis of CREBH induced by PA. The addition of unglycosylated CREBH to cells upregulates gene and protein expression of lipogenesis, lipotoxicity, and inflammation, and aggravates liver damage by preventing glycosylation in cells, as well as in mouse models of NAFLD. Furthermore, increased N-glycosylation of CREBH, as achieved by overexpressing GnT-V could significantly improve liver lesion caused by unglycosylation of CREBH. CONCLUSION: These findings have important implications for the role of CREBH N-glycosylation in proteolytic activation, and they provide the first link between N-glycosylation of CREBH, lipid metabolism, and lipotoxicity processes in the liver by modulating PPARα and SCD-1. These results provide novel insights into the N-glycosylation of CREBH as a therapeutic target for NAFLD.
Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Regulação da Expressão Gênica , Lipídeos/toxicidade , Lipogênese , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , PPAR alfa/metabolismo , Estearoil-CoA Dessaturase/metabolismo , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/química , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Modelos Animais de Doenças , Glicosilação , Células HEK293 , Humanos , Metabolismo dos Lipídeos , Masculino , Camundongos , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , PPAR alfa/genética , Estearoil-CoA Dessaturase/genéticaRESUMO
Many nongenotoxic chemicals have been shown to produce liver tumors in mice and/or rats by a mode of action (MOA) involving activation of the constitutive androstane receptor (CAR). Studies with phenobarbital (PB) and other compounds have identified the key events for this MOA: CAR activation; increased hepatocellular proliferation; altered foci formation; and ultimately the development of adenomas/carcinomas. In terms of human relevance, the pivotal species difference is that CAR activators are mitogenic agents in mouse and rat hepatocytes, but they do not stimulate increased hepatocellular proliferation in humans. This conclusion is supported by substantial in vitro studies with cultured rodent and human hepatocytes and also by in vivo studies with chimeric mice with human hepatocytes. Examination of the literature reveals many similarities in the hepatic effects and species differences between activators of rodent CAR and the peroxisome proliferator-activated receptor alpha (PPARα), with PPARα activators also not being mitogenic agents in human hepatocytes. Overall, a critical analysis of the available data demonstrates that the established MOA for rodent liver tumor formation by PB and other CAR activators is qualitatively not plausible for humans. This conclusion is supported by data from several human epidemiology studies.
Assuntos
Neoplasias Hepáticas , Animais , Receptor Constitutivo de Androstano , Hepatócitos , Humanos , Fígado , Camundongos , Fenobarbital/toxicidade , Ratos , Receptores Citoplasmáticos e Nucleares/genética , RoedoresRESUMO
Selenium-binding protein 1 (Selenbp1) is a 2,3,7,8-tetrechlorodibenzo-p-dioxin inducible protein whose function is yet to be comprehensively elucidated. As the highly homologous isoform, Selenbp2, is expressed at low levels in the kidney, it is worthwhile comparing wild-type C57BL mice and Selenbp1-deficient mice under dioxin-free conditions. Accordingly, we conducted a mouse metabolomics analysis under non-dioxin-treated conditions. DNA microarray analysis was performed based on observed changes in lipid metabolism-related factors. The results showed fluctuations in the expression of numerous genes. Real-time RT-PCR confirmed the decreased expression levels of the cytochrome P450 4a (Cyp4a) subfamily, known to be involved in fatty acid ω- and ω-1 hydroxylation. Furthermore, peroxisome proliferator-activated receptor-α (Pparα) and retinoid-X-receptor-α (Rxrα), which form a heterodimer with Pparα to promote gene expression, were simultaneously reduced. This indicated that reduced Cyp4a expression was mediated via decreased Pparα and Rxrα. In line with this finding, increased levels of leukotrienes and prostaglandins were detected. Conversely, decreased hydrogen peroxide levels and reduced superoxide dismutase (SOD) activity supported the suppression of the renal expression of Sod1 and Sod2 in Selenbp1-deficient mice. Therefore, we infer that ablation of Selenbp1 elicits oxidative stress caused by increased levels of superoxide anions, which alters lipid metabolism via the Pparα pathway.