Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 354: 120416, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38408391

RESUMO

Hydrogen sulfide (H2S) is a toxic gas massively released during chicken manure composting. Diminishing its release requires efficient and low cost methods. In recent years, heterotrophic bacteria capable of rapid H2S oxidation have been discovered but their applications in environmental improvement are rarely reported. Herein, we investigated H2S oxidation activity of a heterotrophic thermophilic bacterium Geobacillus thermodenitrificans DSM465, which contains a H2S oxidation pathway composed by sulfide:quinone oxidoreductase (SQR) and persulfide dioxygenase (PDO). This strain rapidly oxidized H2S to sulfane sulfur and thiosulfate. The oxidation rate reached 5.73 µmol min-1·g-1 of cell dry weight. We used G. thermodenitrificans DSM465 to restrict H2S release during chicken manure composting. The H2S emission during composting process reduced by 27.5% and sulfate content in the final compost increased by 34.4%. In addition, this strain prolonged the high temperature phase by 7 days. Thus, using G. thermodenitrificans DSM465 to control H2S release was an efficient and economic method. This study provided a new strategy for making waste composting environmental friendly and shed light on perspective applications of heterotrophic H2S oxidation bacteria in environmental improvements.


Assuntos
Compostagem , Geobacillus , Sulfeto de Hidrogênio , Animais , Galinhas , Esterco , Proteínas de Bactérias/metabolismo , Sulfetos/metabolismo , Geobacillus/metabolismo , Oxirredução
2.
J Biol Chem ; 293(32): 12429-12439, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-29980601

RESUMO

Hydrogen sulfide (H2S) is a signaling molecule with many beneficial effects. However, its cellular concentration is strictly regulated to avoid toxicity. Persulfide dioxygenase (PDO or ETHE1) is a mononuclear non-heme iron-containing protein in the sulfide oxidation pathway catalyzing the conversion of GSH persulfide (GSSH) to sulfite and GSH. PDO mutations result in the autosomal-recessive disorder ethylmalonic encephalopathy (EE). Here, we developed γ-glutamyl-homocysteinyl-glycine (GHcySH), in which the cysteinyl moiety in GSH is substituted with homocysteine, as a mechanism-based PDO inhibitor. Human PDO used GHcySH as an alternative substrate and converted it to GHcy-SO2H, mimicking GS-SO2H, the putative oxygenated intermediate formed with the natural substrate. Because GHcy-SO2H contains a C-S bond rather than an S-S bond in GS-SO2H, it failed to undergo the final hydrolysis step in the catalytic cycle, leading to PDO inhibition. We also characterized the biochemical penalties incurred by the L55P, T136A, C161Y, and R163W mutations reported in EE patients. The variants displayed lower iron content (1.4-11-fold) and lower thermal stability (1.2-1.7-fold) than WT PDO. They also exhibited varying degrees of catalytic impairment; the kcat/Km values for R163W, L55P, and C161Y PDOs were 18-, 42-, and 65-fold lower, respectively, and the T136A variant was most affected, with a 200-fold lower kcat/Km Like WT enzyme, these variants were inhibited by GHcySH. This study provides the first characterization of an intermediate in the PDO-catalyzed reaction and reports on deficits associated with EE-linked mutations that are distal from the active site.


Assuntos
Glicina/farmacologia , Sulfeto de Hidrogênio/farmacologia , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/metabolismo , Proteínas de Transporte Nucleocitoplasmático/antagonistas & inibidores , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Sulfetos/farmacologia , Domínio Catalítico , Humanos , Proteínas Mitocondriais/genética , Mutação , Proteínas de Transporte Nucleocitoplasmático/genética , Oxirredução , Ligação Proteica , Conformação Proteica
3.
Appl Environ Microbiol ; 83(22)2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28864655

RESUMO

Production of sulfide (H2S, HS-, and S2-) by heterotrophic bacteria during aerobic growth is a common phenomenon. Some bacteria with sulfide:quinone oxidoreductase (SQR) and persulfide dioxygenase (PDO) can oxidize self-produced sulfide to sulfite and thiosulfate, but other bacteria without these enzymes release sulfide into the medium, from which H2S can volatilize into the gas phase. Here, we report that Cupriavidus necator H16, with the fccA and fccB genes encoding flavocytochrome c sulfide dehydrogenases (FCSDs), also oxidized self-produced H2S. A mutant in which fccA and fccB were deleted accumulated and released H2S. When fccA and fccB were expressed in Pseudomonas aeruginosa strain Pa3K with deletions of its sqr and pdo genes, the recombinant rapidly oxidized sulfide to sulfane sulfur. When PDO was also cloned into the recombinant, the recombinant with both FCSD and PDO oxidized sulfide to sulfite and thiosulfate. Thus, the proposed pathway is similar to the pathway catalyzed by SQR and PDO, in which FCSD oxidizes sulfide to polysulfide, polysulfide spontaneously reacts with reduced glutathione (GSH) to produce glutathione persulfide (GSSH), and PDO oxidizes GSSH to sulfite, which chemically reacts with polysulfide to produce thiosulfate. About 20.6% of sequenced bacterial genomes contain SQR, and only 3.9% contain FCSD. This is not a surprise, since SQR is more efficient in conserving energy because it passes electrons from sulfide oxidation into the electron transport chain at the quinone level, while FCSD passes electrons to cytochrome c The transport of electrons from the latter to O2 conserves less energy. FCSDs are grouped into three subgroups, well conserved at the taxonomic level. Thus, our data show the diversity in sulfide oxidation by heterotrophic bacteria.IMPORTANCE Heterotrophic bacteria with SQR and PDO can oxidize self-produced sulfide and do not release H2S into the gas phase. C. necator H16 has FCSD but not SQR, and it does not release H2S. We confirmed that the bacterium used FCSD for the oxidation of self-produced sulfide. The bacterium also oxidized added sulfide. The common presence of SQRs, FCSDs, and PDOs in heterotrophic bacteria suggests the significant role of heterotrophic bacteria in sulfide oxidation, participating in sulfur biogeochemical cycling. Further, FCSDs have been identified in anaerobic photosynthetic bacteria and chemolithotrophic bacteria, but their physiological roles are unknown. We showed that heterotrophic bacteria use FCSDs to oxidize self-produced sulfide and extraneous sulfide, and they may be used for H2S bioremediation.


Assuntos
Proteínas de Bactérias/metabolismo , Cupriavidus necator/enzimologia , Grupo dos Citocromos c/metabolismo , Oxirredutases/metabolismo , Sulfetos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Cupriavidus necator/química , Cupriavidus necator/genética , Cupriavidus necator/crescimento & desenvolvimento , Grupo dos Citocromos c/química , Grupo dos Citocromos c/genética , Sulfeto de Hidrogênio/metabolismo , Cinética , Oxirredução , Oxirredutases/química , Oxirredutases/genética
4.
Appl Environ Microbiol ; 83(23)2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28939597

RESUMO

Heterotrophic bacteria have recently been reported to oxidize sulfide to sulfite and thiosulfate by using sulfide:quinone oxidoreductase (SQR) and persulfide dioxygenase (PDO). In chemolithotrophic bacteria, both SQR and PDO have been reported to function in the periplasmic space, with SQR as a peripheral membrane protein whose C terminus inserts into the cytoplasmic membrane and PDO as a soluble protein. Cupriavidus pinatubonensis JMP134, best known for its ability to degrade 2,4-dichlorophenoxyacetic acid and other aromatic pollutants, has a gene cluster of sqr and pdo encoding C. pinatubonensis SQR (CpSQR) and CpPDO2. When cloned in Escherichia coli, the enzymes are functional. Here we investigated whether they function in the periplasmic space or in the cytoplasm in heterotrophic bacteria. By using sequence analysis, biochemical detection, and green fluorescent protein (GFP)/PhoA fusion proteins, we found that CpSQR was located on the cytoplasmic side of the membrane and CpPDO2 was a soluble protein in the cytoplasm with a tendency to be peripherally located near the membrane. The location proximity of these proteins near the membrane in the cytoplasm may facilitate sulfide oxidation in heterotrophic bacteria. The information may guide the use of heterotrophic bacteria in bioremediation of organic pollutants as well as H2S.IMPORTANCE Sulfide (H2S, HS-, and S2-), which is common in natural gas and wastewater, causes a serious malodor at low levels and is deadly at high levels. Microbial oxidation of sulfide is a valid bioremediation method, in which chemolithotrophic bacteria that use sulfide as the energy source are often used to remove sulfide. Heterotrophic bacteria with SQR and PDO have recently been reported to oxidize sulfide to sulfite and thiosulfate. Cupriavidus pinatubonensis JMP134 has been extensively characterized for its ability to degrade organic pollutants, and it also contains SQR and PDO. This paper shows the localization of SQR and PDO inside the cytoplasm in the vicinity of the membrane. The information may provide guidance for using heterotrophic bacteria in sulfide bioremediation.


Assuntos
Proteínas de Bactérias/metabolismo , Cupriavidus/enzimologia , Citoplasma/enzimologia , Dioxigenases/metabolismo , Quinona Redutases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Membrana Celular/enzimologia , Membrana Celular/genética , Cupriavidus/química , Cupriavidus/genética , Citoplasma/genética , Dioxigenases/química , Dioxigenases/genética , Domínios Proteicos , Transporte Proteico , Quinona Redutases/química , Quinona Redutases/genética , Sulfetos/metabolismo
5.
Biochem Biophys Res Commun ; 480(2): 180-186, 2016 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-27742479

RESUMO

Reactive persulfide species such as glutathione persulfide (GSSH) are highly abundant biomolecules. Persulfide dioxygenase (also called ethylmalonic encephalopathy protein 1, ETHE1) reportedly metabolizes GSSH to GSH with simultaneous oxygen consumption. How ETHE1 activity is regulated is still unclear, however. In this study, we describe the possible role of protein polysulfidation in the catalytic activity of ETHE1. We first found that ETHE1 catalyzed the persulfide dioxygenase reaction mostly for glutathione polysulfides, GS-(S)n-H, as well as for GSSH, but not for other endogenous persulfides such as cysteine and homocysteine persulfides/polysulfides. We then developed a novel method to detect protein polysulfidation and named it the polyethylene glycol-conjugated maleimide-labeling gel shift assay (PMSA). PMSA analysis indicated that most cysteine residues in ETHE1 were polysulfidated. Site-directed mutagenesis of cysteine residues in ETHE1 combined with liquid chromatography tandem mass spectrometry for polysulfidation determination surprisingly indicated that the Cys247 residue was important for polysulfidation of other Cys residues and that the C247S mutant possessed no persulfide dioxygenase activity. These results suggested that ETHE1 is a major enzyme regulating endogenous GSSH/GS-(S)n-H and that its activity is controlled by polysulfidation of the Cys247 residue.


Assuntos
Proteínas Mitocondriais/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Proteínas/metabolismo , Células A549 , Cisteína/química , Dioxigenases/genética , Dioxigenases/metabolismo , Dissulfetos/metabolismo , Glutationa/análogos & derivados , Glutationa/metabolismo , Humanos , Proteínas Mitocondriais/genética , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas/química , Especificidade por Substrato , Sulfetos/metabolismo
6.
Methods ; 62(2): 177-81, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23811297

RESUMO

Sulfhydryl groups on protein Cys residues undergo an array of oxidative reactions and modifications, giving rise to a virtual redox zip code with physiological and pathophysiological relevance for modulation of protein structure and functions. While over two decades of studies have established NO-dependent S-nitrosylation as ubiquitous and fundamental for the regulation of diverse protein activities, proteomic methods for studying H2S-dependent S-sulfhydration have only recently been described and now suggest that this is also an abundant modification with potential for global physiological importance. Notably, protein S-sulfhydration and S-nitrosylation bear striking similarities in terms of their chemical and biological determinants, as well as reversal of these modifications via group-transfer to glutathione, followed by the removal from glutathione by enzymes that have apparently evolved to selectively catalyze denitrosylation and desulfhydration. Here we review determinants of protein and low-molecular-weight thiol S-sulfhydration/desulfhydration, similarities with S-nitrosylation/denitrosylation, and methods that are being employed to investigate and quantify these gasotransmitter-mediated cell signaling systems.


Assuntos
Cisteína/metabolismo , Sulfeto de Hidrogênio/metabolismo , Óxido Nítrico/fisiologia , S-Nitrosotióis/metabolismo , Transdução de Sinais , Animais , Cromatografia de Afinidade/normas , Cisteína/química , Cisteína/isolamento & purificação , Gasotransmissores/fisiologia , Dissulfeto de Glutationa/síntese química , Dissulfeto de Glutationa/metabolismo , Humanos , Processamento de Proteína Pós-Traducional , Proteoma/química , Proteoma/isolamento & purificação , Proteoma/metabolismo , Padrões de Referência , S-Nitrosotióis/química , S-Nitrosotióis/isolamento & purificação , Coloração e Rotulagem , Espectrometria de Massas em Tandem/normas
7.
Metabolites ; 13(2)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36837837

RESUMO

An incomplete Sox system lacking sulfane dehydrogenase SoxCD may produce and accumulate sulfane sulfur when oxidizing thiosulfate. However, how bacteria alleviate the pressure of sulfane sulfur accumulation remains largely unclear. In this study, we focused on the bacterium Cupriavidus pinatubonensis JMP134, which contains a complete Sox system. When soxCD was deleted, this bacterium temporarily produced sulfane sulfur when oxidizing thiosulfate. Persulfide dioxygenase (PDO) in concert with glutathione oxidizes sulfane sulfur to sulfite. Sulfite can spontaneously react with extra persulfide glutathione (GSSH) to produce thiosulfate, which can feed into the incomplete Sox system again and be oxidized to sulfate. Furthermore, the deletion strain lacking PDO and SoxCD produced volatile H2S gas when oxidizing thiosulfate. By comparing the oxidized glutathione (GSSG) between the wild-type and deletion strains, we speculated that H2S is generated during the interaction between sulfane sulfur and the glutathione/oxidized glutathione (GSH/GSSG) redox couple, which may reduce the oxidative stress caused by the accumulation of sulfane sulfur in bacteria. Thus, PDO and H2S release play a critical role in alleviating sulfane sulfur toxicity after the loss of soxCD in C. pinatubonensis JMP134.

8.
Redox Biol ; 53: 102345, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35653932

RESUMO

Heterotrophic bacteria and human mitochondria often use sulfide: quinone oxidoreductase (SQR) and persulfide dioxygenase (PDO) to oxidize sulfide to sulfite and thiosulfate. Bioinformatic analysis showed that the genes encoding RHOD domains were widely presented in annotated sqr-pdo operons and grouped into three types: fused with an SQR domain, fused with a PDO domain, and dissociated proteins. Biochemical evidence suggests that RHODs facilitate the formation of thiosulfate and promote the reaction between inorganic polysulfide and glutathione to produce glutathione polysulfide. However, the physiological roles of RHODs during sulfide oxidation by SQR and PDO could only be tested in an RHOD-free host. To test this, 8 genes encoding RHOD domains in Escherichia coli MG1655 were deleted to produce E. coli RHOD-8K. The sqrCp and pdoCp genes from Cupriavidus pinatubonensis JMP134 were cloned into E. coli RHOD-8K. SQRCp contains a fused RHOD domain at the N-terminus. When the fused RHOD domain of SQRCp was inactivated, the cells oxidized sulfide into increased thiosulfate with the accumulation of cellular sulfane sulfur in comparison with cells containing the intact sqrCp and pdoCp. The complementation of dissociated DUF442 minimized the accumulation of cellular sulfane sulfur and reduced the production of thiosulfate. Further analysis showed that the fused DUF442 domain modulated the activity of SQRCp and prevented it from directly passing the produced sulfane sulfur to GSH. Whereas, the dissociated DUF442 enhanced the PDOCp activity by several folds. Both DUF442 forms minimized the accumulation of cellular sulfane sulfur, which spontaneously reacted with GSH to produce GSSG, causing disulfide stress during sulfide oxidation. Thus, RHODs may play multiple roles during sulfide oxidation.


Assuntos
Sulfeto de Hidrogênio , Quinona Redutases , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Dissulfetos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glutationa/metabolismo , Humanos , Sulfeto de Hidrogênio/metabolismo , Oxirredução , Quinona Redutases/química , Quinona Redutases/genética , Quinona Redutases/metabolismo , Sulfetos/metabolismo , Enxofre/metabolismo , Tiossulfato Sulfurtransferase/genética , Tiossulfato Sulfurtransferase/metabolismo , Tiossulfatos/metabolismo
9.
Redox Biol ; 58: 102517, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36306676

RESUMO

Regulation of H2S homeostasis in humans is poorly understood. Therefore, we assessed the importance of individual enzymes in synthesis and catabolism of H2S by studying patients with respective genetic defects. We analyzed sulfur compounds (including bioavailable sulfide) in 37 untreated or insufficiently treated patients with seven ultrarare enzyme deficiencies and compared them to 63 controls. Surprisingly, we observed that patients with severe deficiency in cystathionine ß-synthase (CBS) or cystathionine γ-lyase (CSE) - the enzymes primarily responsible for H2S synthesis - exhibited increased and normal levels of bioavailable sulfide, respectively. However, an approximately 21-fold increase of urinary homolanthionine in CBS deficiency strongly suggests that lacking CBS activity is compensated for by an increase in CSE-dependent H2S synthesis from accumulating homocysteine, which suggests a control of H2S homeostasis in vivo. In deficiency of sulfide:quinone oxidoreductase - the first enzyme in mitochondrial H2S oxidation - we found normal H2S concentrations in a symptomatic patient and his asymptomatic sibling, and elevated levels in an asymptomatic sibling, challenging the requirement for this enzyme in catabolizing H2S under physiological conditions. Patients with ethylmalonic encephalopathy and sulfite oxidase/molybdenum cofactor deficiencies exhibited massive accumulation of thiosulfate and sulfite with formation of large amounts of S-sulfocysteine and S-sulfohomocysteine, increased renal losses of sulfur compounds and concomitant strong reduction in plasma total cysteine. Our results demonstrate the value of a comprehensive assessment of sulfur compounds in severe disorders of homocysteine/cysteine metabolism and provide evidence for redundancy and compensatory mechanisms in the maintenance of H2S homeostasis.


Assuntos
Sulfeto de Hidrogênio , Humanos , Sulfeto de Hidrogênio/metabolismo , Cisteína , Sulfetos/metabolismo , Homeostase , Enxofre , Homocisteína
10.
mBio ; 11(1)2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32098824

RESUMO

Eutrophication and deoxygenation possibly occur in coastal waters due to excessive nutrients from agricultural and aquacultural activities, leading to sulfide accumulation. Cyanobacteria, as photosynthetic prokaryotes, play significant roles in carbon fixation in the ocean. Although some cyanobacteria can use sulfide as the electron donor for photosynthesis under anaerobic conditions, little is known on how they interact with sulfide under aerobic conditions. In this study, we report that Synechococcus sp. strain PCC7002 (PCC7002), harboring an sqr gene encoding sulfide:quinone oxidoreductase (SQR), oxidized self-produced sulfide to S0, present as persulfide and polysulfide in the cell. The Δsqr mutant contained less cellular S0 and had increased expression of key genes involved in photosynthesis, but it was less competitive than the wild type in cocultures. Further, PCC7002 with SQR and persulfide dioxygenase (PDO) oxidized exogenous sulfide to tolerate high sulfide levels. Thus, SQR offers some benefits to cyanobacteria even under aerobic conditions, explaining the common presence of SQR in cyanobacteria.IMPORTANCE Cyanobacteria are a major force for primary production via oxygenic photosynthesis in the ocean. A marine cyanobacterium, PCC7002, is actively involved in sulfide metabolism. It uses SQR to detoxify exogenous sulfide, enabling it to survive better than its Δsqr mutant in sulfide-rich environments. PCC7002 also uses SQR to oxidize endogenously generated sulfide to S0, which is required for the proper expression of key genes involved in photosynthesis. Thus, SQR has at least two physiological functions in PCC7002. The observation provides a new perspective for the interplays of C and S cycles.


Assuntos
Quinona Redutases/metabolismo , Quinonas/metabolismo , Sulfetos/metabolismo , Enxofre/metabolismo , Synechococcus/enzimologia , Synechococcus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clorofila , Dioxigenases , Escherichia coli/genética , Sulfeto de Hidrogênio/metabolismo , Oxirredução , Fotossíntese/fisiologia , Quinona Redutases/genética , Synechococcus/genética , Transcriptoma
11.
Front Microbiol ; 9: 1610, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30072973

RESUMO

Persulfide dioxygenases (PDOs) are abundant in Bacteria and also crucial for H2S detoxification in mitochondria. One of the two pdo-genes of the acidophilic bacterium Acidithiobacillus caldus was expressed in Escherichia coli. The protein (AcPDO) had 0.77 ± 0.1 Fe/subunit and an average specific sulfite formation activity of 111.5 U/mg protein (Vmax) at 40°C and pH 7.5 with sulfur and GSH following Michaelis-Menten kinetics. KM for GSH and Kcat were 0.5 mM and 181 s-1, respectively. Glutathione persulfide (GSSH) as substrate gave a sigmoidal curve with a Vmax of 122.3 U/mg protein, a Kcat of 198 s-1 and a Hill coefficient of 2.3 ± 0.22 suggesting positive cooperativity. Gel permeation chromatography and non-denaturing gels showed mostly tetramers. The temperature optimum was 40-45°C, the melting point 63 ± 1.3°C in thermal unfolding experiments, whereas low activity was measurable up to 95°C. Site-directed mutagenesis showed that residues located in the predicted GSH/GSSH binding site and in the central hydrogen bond networks including the iron ligands are essential for activity. Among these, the R139A, D141A, and H171A variants were inactive concomitant to a decrease of their melting points by 3-8 K. Other variants were inactivated without significant melting point change. Two out of five cysteines are likewise essential, both of which lie presumably in close proximity at the surface of the protein (C87 and C224). MalPEG labeling experiments suggests that they form a disulfide bridge. The reducing agent Tris(2-carboxyethyl)phosphine was inhibitory besides N-ethylmaleimide and iodoacetamide suggesting an involvement of cysteines and the disulfide in catalysis and/or protein stabilization. Mass spectrometry revealed modification of C87, C137, and C224 by 305 mass units equivalent to GSH after incubation with GSSH and with GSH in case of the C87A and C224A variants. The results of this study suggest that disulfide formation between the two essential surface-exposed cysteines and Cys-S-glutathionylation serve as a protective mechanism against uncontrolled thiol oxidation and the associated loss of enzyme activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA