Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Eur J Mass Spectrom (Chichester) ; 24(1): 116-123, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29050496

RESUMO

Recent research has revealed that more than 1.3 billion tons of food is wasted globally every year. The disposal of such huge biomass has become a challenge. In the present paper, we report the production of the bio-oil by hydrothermal liquefaction of three classes of food waste: meat, cheese and fruits. The highest yield of the bio-oil was observed for meat (∼60%) and cheese (∼75%), while for fruits, it was considerably low (∼10%). The molecular composition of the obtained bio-oil was investigated using ultrahigh resolution Fourier Transform Ion Cyclotron Resonance mass spectrometry and was found to be similar to that obtained from algae. Several thousand heteroatom compounds (N, N2, ON2, etc. classes) were reliably identified from each sample. It was found that bio-oils produced from meat and cheese have many compounds (∼90%) with common molecular formulas, while bio-oil produced from fruits differs considerably (∼30% of compounds are unique).

2.
Environ Sci Pollut Res Int ; 30(42): 95738-95757, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37556063

RESUMO

Multiple studies have focused on the effect of long-term weathering processes on oils after spill events, without considering the chemical compositional changes occurring shortly after the release of oil into the environment. Therefore, the present study provides a broad chemical characterization for understanding of the changes occurring in the chemical compositions of intermediate (°API = 27.0) and heavy (°API = 20.9) oils from the Sergipe-Alagoas basin submitted to two simulated situations, one under marine conditions and the other in a riverine environment. Samples of the oils were collected during the first 72 h of contact with the simulated environments, followed by evaluation of their chemical compositions. SARA fractionation was used to isolate the resins, which were characterized at the molecular level by UHRMS. The evaporation process was highlighted, with the GC-FID chromatographic profiles showing the disappearance of compounds from n-C10 until n-C16, as well as changes in the weathering indexes and pristane + n-C17/phytane + n-C18 ratios for the crude oils submitted to the riverine conditions. Analysis of the resins fraction showed that basic polar compounds underwent little or no alterations during the early stages of weathering. The marine environment was shown to be much less oxidative than the riverine environment. For both environments, a feature highlighted was an increase of acidic oxygenated compounds with the increase of weathering, especially for the crude oil with °API = 27.0.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Petróleo/análise , Óleos/química , Cromatografia Gasosa , Tempo (Meteorologia) , Poluição por Petróleo/análise , Poluentes Químicos da Água/análise
3.
Anal Chim Acta ; 1238: 340379, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36464441

RESUMO

The application of atmospheric pressure ionization (API) sources in gas chromatography-mass spectrometry (GC-MS) determinations is becoming more popular since they have shown great capabilities to sort out the main drawbacks of vacuum ionization techniques like electron ionization (EI) and chemical ionization (CI). The development of new API techniques and set-ups have grown in the last decades, opening the field of GC-MS to new applications and facing some of the major issues in current analytical methodologies such as the requirement of a compromise between sensitivity and selectivity. Thus, this review is mainly focused on the use of GC-API-MS in different application fields such as food analysis (food safety and food metabolomics), environmental analysis, clinical analysis, drug and pharmaceutical analysis, and petroleomics, among others. The methodologies have been critically reviewed to compare the performance of different API sources and approaches, highlighting the main contributions to overcoming some of the major limitations of the current methodologies as well as the new perspectives that GC-API-MS might open in the different fields.


Assuntos
Pressão Atmosférica , Metabolômica , Cromatografia Gasosa-Espectrometria de Massas , Vácuo , Movimento Celular
4.
J Chromatogr A ; 1673: 463194, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35688015

RESUMO

Online liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS) has attracted much attention in the molecular characterization of crude oil. Neither open access nor commercially available petroleomics tools were developed specifically to process LC-HRMS data. Here, a novel data processing pipeline was specifically designed for LC-HRMS-based petroleomics data. A customizable formula database was established deriving from the detected sample, which could avoid the interference caused by a large number of redundant molecules in a conventionally theoretical molecular database. Molecular formula candidates were assigned by the formula database using a low noise threshold, and false-positive assignments were eliminated by the chromatographic retention behaviors. Multi-dimensional information was obtained, including heteroatom class, double bond equivalent (DBE), carbon number, retention time, and MS/MS spectra. The developed method was compared with a popular petroleomics software, similar relative abundance class distribution was obtained, and much more formulas of low abundant components were uniquely extracted by the developed method. Finally, it was applied to reveal variation between feed and product oils in hydrodenitrogenation. Significantly compositional and structural differences were revealed. The developed method provides a useful pipeline for molecular data mining of petroleum samples.


Assuntos
Petróleo , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida , Petróleo/análise
5.
J Chromatogr A ; 1677: 463307, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35834889

RESUMO

This study reports for the first time the use of a microchip electrophoresis (ME) device with integrated capacitively coupled contactless conductivity detection (C4D) to analyze naphthenic acids in produced water. A mixture containing 9-anthracenecarboxylic, 1-naphthoic, and benzoic acids was separated and detected using a running buffer composed of 10 mmol L-1 carbonate buffer (pH = 10.2). The separation was achieved within ca. 140 s with baseline resolution greater than 2 and efficiency values ranging from 1.9 × 105 to 2.4 × 105 plates m-1. The developed methodology provided linear correlation with determination coefficients greater than 0.992 for the concentration ranges between 50 and 250 µmol L-1 for benzoic and 9-anthracenecarboxylic acids, and between 50 and 200 µmol L-1 for 1-naphthoic acid. The achieved limit of detection values varied between 4.7 and 7.7 µmol L-1. The proposed methodology revealed satisfactory repeatability with RSD values for a sequence of eight injections between 5.5 and 7.7% for peak areas and lower than 1% for migration times. In addition, inter-day precision was evaluated for sixteen injections (a sequence of four injections performed during four days), and the RSD values were lower than 11.5 and 4.9% for peak areas and migration time, respectively. Five produced water samples were analyzed, and it was possible to detect and quantify 9-anthracenecarboxylic acid. The concentrations ranged from 1.05 to 2.24 mmol L-1 with recovery values between 90.8 and 96.0%. ME-C4D demonstrated satisfactory analytical performance for determining naphthenic acids in produced water for the first time, which is useful for petroleum or oil industry investigation.


Assuntos
Eletroforese em Microchip , Carbonatos , Ácidos Carboxílicos , Condutividade Elétrica , Eletroforese em Microchip/métodos , Água
6.
Mar Pollut Bull ; 185(Pt B): 114360, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36413931

RESUMO

Photooxidation can alter the environmental fate and effects of spilled oil. To better understand this process, oil slicks were generated on seawater mesocosms and exposed to sunlight for 8 days. The molecular composition of seawater under irradiated and non-irradiated oil slicks was characterized using ion mobility spectrometry-mass spectrometry and polyaromatic hydrocarbons analyses. Biomimetic extraction was performed to quantify neutral and ionized constituents. Results show that seawater underneath irradiated oil showed significantly higher amounts of hydrocarbons with oxygen- and sulfur-containing by-products peaking by day 4-6; however, concentrations of dissolved organic carbon were similar. Biomimetic extraction indicated toxic units in irradiated mesocosms increased, mainly due to ionized components, but remained <1, suggesting limited potential for ecotoxicity. Because the experimental design mimicked important aspects of natural conditions (freshly collected seawater, natural sunlight, and relevant oil thickness and concentrations), this study improves our understanding of the effects of photooxidation during a marine oil spill.


Assuntos
Poluição por Petróleo , Petróleo , Luz Solar , Água , Água do Mar
7.
J Chromatogr A ; 1655: 462485, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34474190

RESUMO

In this study, we describe the development of an analytical method to profile naphthenic acids (NAs) from produced water (PW). The NAs were isolated by hollow fiber liquid-phase microextraction (HF-LPME). A microwave-assisted methylation method was used to convert the free acids into its corresponding naphthenic methyl esters (NAMEs). The best reaction conditions were ascertained using central composite design. The optimized sample preparation method exhibited an improved analytical eco-scale value (80 vs. 61) compared to conventional liquid-liquid extraction. Although the primary goal was qualitative analysis of NAMEs (e.g., group-type separation) in produced water, the quantitative performance was also evaluated for future investigations. The instrumental detection and quantification limits were 0.10 ng mL-1 and 0.16 ng mL-1, respectively, using full spectrum data acquisition. The accuracy and precision of the proposed method ranged from 90.4 to 96.6 % and 3.3 to 13.1 %, respectively, using matrix-matched working solutions (0.1, 0.5, and 1.0 µg mL-1). The monoisotopic masses of the adduct ions ([M+H]+) and its corresponding fine isotopic patterns were used to determine the elemental composition of the NAMEs in the PW samples. Qualitative analysis indicated the O2 class as the predominant class in all samples with carbon numbers ranging from C5 to C19 and double bond equivalent (DBE) values of 1 to 8. Additional classes of polar compounds, i.e., O3, O4 and nitrogen-containing classes, are reported for the first time by gas chromatography coupled to Fourier transform Orbitrap mass spectrometry and chemical ionization.


Assuntos
Microextração em Fase Líquida , Água , Ácidos Carboxílicos , Análise de Fourier , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas
8.
Anal Chim Acta ; 1160: 338425, 2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-33894963

RESUMO

In this study, we describe a proof-of-concept investigation of the potential and limitations of employing channel occlusion for sample preparation in untargeted analysis in petroleomics. A middle petroleum distillate composed of fatty acid methyl esters (FAME) and a complex mixture of linear, branched, and cyclic hydrocarbons were selected as the model samples for this investigation. A microfluidic device was engineered to overcome the limitations of channel occlusion, resulting in a quick and robust method for sample preparation. The 3D-printed device using fused deposition modelling (FDM) allowed the combination of a 13-h multi-step sample handling protocol into a 2-min single-step procedure, which is also automation-friendly. Such developments were also evaluated using the analytical eco-scale to guide the development of a green analytical method. The relative standard deviation decreased 2-fold with method miniaturization. The efficiency of n-alkane removal was extended from tridecane (n-C13) to heptadecane (n-C17), compared to original method (n-C16 to n-C17). The analytical performance of the method was investigated for untargeted analysis. The tool used to probe the intra- and inter-class variance was multi-way principal component analysis (MPCA). MPCA modelling revealed that both methods generated equivalent chemical information, highlighting the benefits of reliable and reproducible sample preparation methods, especially for untargeted analysis. Such awareness is critical to avoid the generation of misleading results in fields that heavily rely on untargeted analysis and fingerprinting, such as petroleomics.

9.
Annu Rev Anal Chem (Palo Alto Calif) ; 13(1): 405-430, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32197051

RESUMO

The detailed molecular characterization of petroleum-related samples by mass spectrometry, often referred to as petroleomics, continues to present significant analytical challenges. As a result, petroleomics continues to be a driving force for the development of new ultrahigh resolution instrumentation, experimental methods, and data analysis procedures. Recent advances in ionization, resolving power, mass accuracy, and the use of separation methods, have allowed for record levels of compositional detail to be obtained for petroleum-related samples. To address the growing size and complexity of the data generated, vital software tools for data processing, analysis, and visualization continue to be developed. The insights gained impact upon the fields of energy and environmental science and the petrochemical industry, among others. In addition to advancing the understanding of one of nature's most complex mixtures, advances in petroleomics methodologies are being adapted for the study of other sample types, resulting in direct benefits to other fields.

10.
Sci Total Environ ; 672: 438-455, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30965259

RESUMO

"-Omics" is a powerful screening method with applications in molecular biology, toxicology, wildlife biology, natural product discovery, and many other fields. Genomics, proteomics, metabolomics, and lipidomics are common examples included under the "-omics" umbrella. This screening method uses combinations of untargeted, semi-targeted, and targeted analyses paired with data mining to facilitate researchers' understanding of the genome, proteins, and small organic molecules in biological systems. Recently, however, the use of "-omics" has expanded into the fields of geology, specifically petrology, and paleolimnology. Specifically, untargeted analyses stand to transform these fields as petroleomics, and sediment-"omics" become more prevalent. "-Omics" facilitates the visualization of small molecule profiles from environmental matrices (i.e. oil and sediment). Small molecule profiles can provide improved understanding of small molecules distributions throughout the environment, and how those compositions can change depending on conditions (i.e. climate change, weathering, etc.). "-Omics" also facilities discovery of next-generation biomarkers that can be used for oil source identification and as proxies for reconstructing past environmental changes. Untargeted analyses paired with data mining and multivariate statistical analyses represents a powerful suite of tools for hypothesis generation, and new method development for environmental reconstructions. Here we present an introduction to "-omics" methodology, technical terms, and examples of applications to paleolimnology and petrology. The purpose of this review is to highlight the important considerations at each step in the "-omics" workflow to produce high quality and statistically powerful data for petrological and paleolimnological applications.

11.
Talanta ; 202: 308-316, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31171187

RESUMO

Comprehensive chemical investigation of non-volatile complex mixtures, without extensive sample pretreatment, remains challenging due to the high number of constituents with different chemical properties. In past years, direct high-resolution mass spectrometry established itself as powerful technique for the detailed molecular description of ultra-complex mixtures, but was mainly used with atmospheric pressure ionization. In this study, we present a direct inlet approach with vacuum ionization and high-resolution time-of-flight mass spectrometry. Exemplary, the non-volatile fractions of crude oil were directly inserted into the ion source and volatilized under reduced pressure conditions. An applied temperature gradient enabled thermal pre-separation, according to volatility, prior to electron ionization and mass spectrometric detection. With exact mass information, peaks were assigned to elemental compositions and grouped into component classes. Moreover, the application of supervised and unsupervised statistical tools allowed differentiation of the samples on a molecular level and the identification and attribution of significant chemical features.

12.
J Chromatogr A ; 1499: 190-195, 2017 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-28396087

RESUMO

This study describes the development of an analytical methodology for the separation of quaternary amines using non-aqueous microchip electrophoresis (NAME) coupled with capacitively coupled contactless conductivity detection (C4D). All experiments were performed using a commercial microchip electrophoresis system consisting of a C4D detector, a high-voltage sequencer and a microfluidic platform to assemble a glass microchip with integrated sensing electrodes. The detection parameters were optimized and the best response was reached applying a 700-kHz sinusoidal wave with 14Vpp excitation voltage. The running electrolyte composition was optimized aiming to achieve the best analytical performance. The mixture containing methanol and acetonitrile at the proportion of 90:10 (v:v) as well as sodium deoxycholate provided separations of ten quaternary amines with high efficiency and baseline resolution. The separation efficiencies ranged from 8.7×104 to 3.0×105 plates/m. The proposed methodology provided linear response in the concentration range between 50 and 1000µmol/L and limits of detection between 2 and 27µmol/L. The analytical feasibility of the proposed methodology was tested in the determination of quaternary amines in corrosion inhibitor samples often used for coating oil pipelines. Five quaternary amines (dodecyltrimethylammonium chloride, tetradecyltrimetylammonium bromide, cetyltrimethylammonium bromide, tetraoctylammonium bromide and tetradodecylammonium bromide) were successfully detected at concentration levels from 0.07 to 6.45mol/L. The accuracy of the developed methodology was investigated and the achieved recovery values varied from 85 to 122%. Based on the reported data, NAME-C4D devices exhibited great potential to provide high performance separations of hydrophobic compounds. The developed methodology can be useful for the analysis of species that usually present strong adsorption on the channel inner walls.


Assuntos
Aminas/química , Eletroforese em Microchip/métodos , Aminas/isolamento & purificação , Condutividade Elétrica , Eletrodos , Eletroforese em Microchip/instrumentação
13.
Food Chem ; 227: 255-263, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28274430

RESUMO

UHPLC-LTQ-Orbitrap-high resolution mass spectrometry (HRMS) was applied to investigate complex polymeric polyphenols, before and after acid-catalysed depolymerisation in the presence of a nucleophile (phloroglucinol). Reaction products of (-)-epicatechin with acetaldehyde formed in model solution were selected for a proof-of concept experiment. The complexity of the UHPLC-HRMS dataset obtained after 4h incubation was reduced with petroleomics-inspired strategies using Van Krevelen diagrams and modified Kendrick mass defect filtering targeting ethyl-epicatechin (C17H16O6) units. Combining these approaches with mass fragmentation and phloroglucinolysis allowed us to describe reaction of epicatechin and acetaldehyde. More than 65 compounds were found, including the homogeneous bridged derivatives (up to the undecamer), vinyl and ethanol adducts, and xanthene and xanthylium salt derivatives which were identified for the first time.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Extratos Vegetais/química , Polifenóis/química , Polimerização
14.
J Chromatogr A ; 1472: 99-106, 2016 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-27793391

RESUMO

The geochemical characterization of petroleum is an essential task to develop new strategies and technologies when analyzing the commercial potential of crude oils for exploitation. Due to the chemical complexity of these samples, the use of modern analytical techniques along with multivariate exploratory data analysis approaches is an interesting strategy to extract relevant geochemical characteristics about the oils. In this work, important geochemical information obtained from crude oils from different production basins were obtained analyzing the maltene fraction of the oils by comprehensive two-dimensional gas chromatography coupled to quadrupole mass spectrometry (GC×GC-QMS), and performing multiway principal component analysis (MPCA) of the chromatographic data. The results showed that four MPC explained 93.57% of the data variance, expressing mainly the differences on the profiles of the saturated hydrocarbon fraction of the oils (C13-C18 and C19-C30n-alkanes and the pristane/phytane ratio). The MPC1 grouped the samples severely biodegraded oils, while the type of the depositional paleoenvironments of the oils and its oxidation conditions (as well as their thermal maturity) could be inferred analysing others relevant MPC. Additionally, considerations about the source of the oil samples was also possible based on the overall distribution of relevant biomarkers such as the phenanthrene derivatives, tri-, tetra- and pentacyclic terpanes.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Hidrocarbonetos/análise , Hidrocarbonetos/química , Petróleo/análise , Análise de Componente Principal , Alcanos/análise , Biodegradação Ambiental , Brasil , Diterpenos/análise , Fenantrenos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA