Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Chembiochem ; 25(1): e202300730, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-37877519

RESUMO

Engineering bioactive iminosugars with pH-responsive groups is an emerging approach to develop pharmacological chaperones (PCs) able to improve lysosomal trafficking and enzymatic activity rescue of mutated enzymes. The use of inexpensive l-malic acid allowed introduction of orthoester units into the lipophilic chain of an enantiomerically pure iminosugar affording only two diastereoisomers contrary to previous related studies. The iminosugar was prepared stereoselectively from the chiral pool (d-mannose) and chosen as the lead bioactive compound, to develop novel candidates for restoring the lysosomal enzyme glucocerebrosidase (GCase) activity. The stability of orthoester-appended iminosugars was studied by 1 H NMR spectroscopy both in neutral and acidic environments, and the loss of inhibitory activity with time in acid medium was demonstrated on cell lysates. Moreover, the ability to rescue GCase activity in the lysosomes as the result of a chaperoning effect was explored. A remarkable pharmacological chaperone activity was measured in fibroblasts hosting the homozygous L444P/L444P mutation, a cell line resistant to most PCs, besides the more commonly responding N370S mutation.


Assuntos
Doença de Gaucher , Glucosilceramidase , Humanos , Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/genética , Piperidinas/farmacologia , Piperidinas/metabolismo , Mutação , Fibroblastos , Concentração de Íons de Hidrogênio
2.
Chembiochem ; 25(15): e202400081, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38830828

RESUMO

Mucopolysaccharidosis type IIIB (MPS IIIB) is an autosomal inherited disease caused by mutations in gene encoding the lysosomal enzyme N-acetyl-alpha-glucosaminidase (NAGLU). These mutations result in reduced NAGLU activity, preventing it from catalyzing the hydrolysis of the glycosaminoglycan heparan sulfate (HS). There are currently no approved treatments for MPS IIIB. A novel approach in the treatment of lysosomal storage diseases is the use of pharmacological chaperones (PC). In this study, we used a drug repurposing approach to identify and characterize novel potential PCs for NAGLU enzyme. We modeled the interaction of natural and artificial substrates within the active cavity of NAGLU (orthosteric site) and predicted potential allosteric sites. We performed a virtual screening for both the orthosteric and the predicted allosteric site against a curated database of human tested molecules. Considering the binding affinity and predicted blood-brain barrier permeability and gastrointestinal absorption, we selected atovaquone and piperaquine as orthosteric and allosteric PCs. The PCs were evaluated by their capacity to bind NAGLU and the ability to restore the enzymatic activity in human MPS IIIB fibroblasts These results represent novel PCs described for MPS IIIB and demonstrate the potential to develop novel therapeutic alternatives for this and other protein deficiency diseases.


Assuntos
Acetilglucosaminidase , Mucopolissacaridose III , Humanos , Mucopolissacaridose III/tratamento farmacológico , Mucopolissacaridose III/metabolismo , Mucopolissacaridose III/patologia , Acetilglucosaminidase/metabolismo , Acetilglucosaminidase/antagonistas & inibidores , Acetilglucosaminidase/química , Acetilglucosaminidase/genética , Sítio Alostérico/efeitos dos fármacos , Regulação Alostérica/efeitos dos fármacos
3.
Brief Bioinform ; 23(5)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35595532

RESUMO

Pharmacological chaperones are chemical compounds able to bind proteins and stabilize them against denaturation and following degradation. Some pharmacological chaperones have been approved, or are under investigation, for the treatment of rare inborn errors of metabolism, caused by genetic mutations that often can destabilize the structure of the wild-type proteins expressed by that gene. Given that, for rare diseases, there is a general lack of pharmacological treatments, many expectations are poured out on this type of compounds. However, their discovery is not straightforward. In this review, we would like to focus on the computational methods that can assist and accelerate the search for these compounds, showing also examples in which these methods were successfully applied for the discovery of promising molecules belonging to this new category of pharmacologically active compounds.


Assuntos
Chaperonas Moleculares , Doenças Raras , Humanos , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/farmacologia , Mutação , Doenças Raras/tratamento farmacológico
4.
Mol Genet Metab ; 143(1-2): 108556, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39116528

RESUMO

RATIONALE: Gaucher disease (GD), an autosomal recessive lysosomal storage disease, results from GBA1 variants causing glucocerebrosidase (GCase) deficiency. While enzyme replacement therapy (ERT) helps with systemic symptoms, neurological complications in GD2 and GD3 persist due to the blood-brain-barrier (BBB) limiting ERT efficacy. Ambroxol, a BBB-permeable chaperone, enhances GCase activity. Our review explores high-dose ambroxol's therapeutic potential, both preclinical and clinical, in GD2 and GD3. METHODS: PubMed was searched for studies published before March 2023, including clinical, animal, and in vitro studies focusing on the effect of high-dose ambroxol in GD2 and GD3. A narrative synthesis was performed. RESULTS: Nine in vitro, three animal, and eight clinical studies were included, demonstrating varied responses to ambroxol across diverse outcome measures. In vitro and animal studies demonstrated reduced endoplasmatic reticulum stress due to the relocation of GCase from the ER to the lysosomes. In vitro cell lines exhibited varying degrees of increased GCase activity. Clinical trials observed reduced lyso-GL1 levels in plasma (41-89%) and cerebrospinal fluid (CSF) (26-97%), alongside increased GCase activity in GD3 patients. Ambroxol exhibited varying effects on neurological outcomes and development. No severe adverse events were reported. CONCLUSION: High-dose ambroxol shows promise in managing neurological manifestations in GD3, albeit with uncertainties resulting from genetic heterogeneity and variable response. Further clinical trials, are essential for elucidating dosage-response relationships and refining treatment outcomes and strategies for neuronopathic GD.

5.
Pharmacol Res ; 208: 107356, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39216838

RESUMO

Recent advances in genetic diagnosis identified variants in genes encoding GABAA receptors as causative for genetic epilepsy. Here, we selected eight disease-associated variants in the α1 subunit of GABAA receptors causing mild to severe clinical phenotypes and showed that they are loss of function, mainly by reducing the folding and surface trafficking of the α1 protein. Furthermore, we sought client protein-specific pharmacological chaperones to restore the function of pathogenic receptors. Applications of positive allosteric modulators, including Hispidulin and TP003, increase the functional surface expression of the α1 variants. Mechanism of action study demonstrated that they enhance the folding, assembly, and trafficking and reduce the degradation of GABAA variants without activating the unfolded protein response in HEK293T cells and human iPSC-derived neurons. Since these compounds cross the blood-brain barrier, such a pharmacological chaperoning strategy holds great promise to treat genetic epilepsy in a GABAA receptor-specific manner.


Assuntos
Epilepsia , Proteostase , Receptores de GABA-A , Humanos , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Receptores de GABA-A/efeitos dos fármacos , Proteostase/efeitos dos fármacos , Epilepsia/tratamento farmacológico , Epilepsia/genética , Epilepsia/metabolismo , Células HEK293 , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo
6.
J Inherit Metab Dis ; 47(3): 494-508, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38196161

RESUMO

Proteostatic regulation of tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine biosynthesis, is crucial for maintaining proper brain neurotransmitter homeostasis. Variants of the TH gene are associated with tyrosine hydroxylase deficiency (THD), a rare disorder with a wide phenotypic spectrum and variable response to treatment, which affects protein stability and may lead to accelerated degradation, loss of TH function and catecholamine deficiency. In this study, we investigated the effects of the TH cofactor tetrahydrobiopterin (BH4) on the stability of TH in isolated protein and in DAn- differentiated from iPSCs from a human healthy subject, as well as from THD patients with the R233H variant in homozygosity (THDA) and R328W and T399M variants in heterozygosity (THDB). We report an increase in TH and dopamine levels, and an increase in the number of TH+ cells in control and THDA cells. To translate this in vitro effect, we treated with BH4 a knock-in THD mouse model with Th variant corresponding to R233H in patients. Importantly, treatment with BH4 significantly improved motor function in these mice, as demonstrated by increased latency on the rotarod test and improved horizontal activity (catalepsy). In conclusion, our study demonstrates the stabilizing effects of BH4 on TH protein levels and function in THD neurons and mice, rescuing disease phenotypes and improving motor outcomes. These findings highlight the therapeutic potential of BH4 as a treatment option for THDA patients with specific variants and provide insights into the modulation of TH stability and its implications for THD management.


Assuntos
Biopterinas , Modelos Animais de Doenças , Neurônios , Fenótipo , Tirosina 3-Mono-Oxigenase , Biopterinas/análogos & derivados , Animais , Humanos , Tirosina 3-Mono-Oxigenase/metabolismo , Camundongos , Neurônios/metabolismo , Dopamina/metabolismo , Masculino , Fenilcetonúrias/tratamento farmacológico , Fenilcetonúrias/genética , Fenilcetonúrias/metabolismo , Feminino , Técnicas de Introdução de Genes
7.
Molecules ; 29(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38257371

RESUMO

Gaucher disease (GD) is a rare genetic metabolic disorder characterized by a dysfunction of the lysosomal glycoside hydrolase glucocerebrosidase (GCase) due to mutations in the gene GBA1, leading to the cellular accumulation of glucosylceramide (GlcCer). While most of the current research focuses on the primary accumulated material, lesser attention has been paid to secondary storage materials and their reciprocal intertwining. By using a novel approach based on flow cytometry and fluorescent labelling, we monitored changes in storage materials directly in fibroblasts derived from GD patients carrying N370S/RecNcil and homozygous L444P or R131C mutations with respect to wild type. In L444P and R131C fibroblasts, we detected not only the primary accumulation of GlcCer accumulation but also a considerable secondary increase in GM1 storage, comparable with the one observed in infantile patients affected by GM1 gangliosidosis. In addition, the ability of a trivalent trihydroxypiperidine iminosugar compound (CV82), which previously showed good pharmacological chaperone activity on GCase enzyme, to reduce the levels of storage materials in L444P and R131C fibroblasts was tested. Interestingly, treatment with different concentrations of CV82 led to a significant reduction in GM1 accumulation only in L444P fibroblasts, without significantly affecting GlcCer levels. The compound CV82 was selective against the GCase enzyme with respect to the ß-Galactosidase enzyme, which was responsible for the catabolism of GM1 ganglioside. The reduction in GM1-ganglioside level cannot be therefore ascribed to a direct action of CV82 on ß-Galactosidase enzyme, suggesting that GM1 decrease is rather related to other unknown mechanisms that follow the direct action of CV82 on GCase. In conclusion, this work indicates that the tracking of secondary storages can represent a key step for a better understanding of the pathways involved in the severity of GD, also underlying the importance of developing drugs able to reduce both primary and secondary storage-material accumulations in GD.


Assuntos
Gangliosídeo G(M1) , Doença de Gaucher , Humanos , Fibroblastos , beta-Galactosidase/genética , Corantes , Citometria de Fluxo , Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/genética , Glucosilceramidas
8.
Bull Exp Biol Med ; 176(6): 756-760, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38922549

RESUMO

The enzyme tryptophan hydroxylase 2 (TPH2) catalyzes the hydroxylation of L-tryptophan to L-5-hydroxytryptophan (5-HTP), the first and the key step in 5-HT synthesis in the mammalian brain. Mutations in the human Tph2 gene reducing enzyme activity increase the risk of psychopathology. Pharmacological chaperones are small molecules that can specifically bind to mutant protein molecules, restore their disturbed 3D structure to the native state, and increase their stability and functional activity. The chaperone activity of (R)-2-amino-6-(1R,2S)-1,2-dihydroxypropyl)-5,6,7,8-tetrahydropterin-4(3H)-one (BH4) is expressed by increasing the in vitro thermal stability of mutant tyrosine hydroxylase and phenylalanine hydroxylase molecules which are similar to TPH2 in their structure and characteristics. The P447R substitution in the mouse TPH2 molecule results in a 2-fold decrease in enzyme activity in their brains. We studied the effect of this mutation on the TPH2 thermal stability, as well as on the ability of BH4 and its 8 structural analogues to increase the thermal stability of the mutant TPH2 from midbrain extracts of BALB/C mice. Temperature stability was studied by the decrease in enzyme activity during its heating for 2 min at increasing temperatures and was evaluated by the T50 value that is the temperature at which the enzyme activity decreased by half. For the mutant TPH2, the T50 value was decreased compared to the wild type enzyme. BH4 and its closest structural analogue, 6-methyl-5,6,7,8-tetrahydropterin, increased the T50 value, i.e., exhibited chaperone activity. Other close BH4 analogs, 6,7-dimethyl-5,6,7,8-tetrahydropterin and folic acid, were not effective. It can be assumed that BH4 can be effective in the treatment of mental disorders caused by mutations in the Tph2 gene.


Assuntos
Estabilidade Enzimática , Triptofano Hidroxilase , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/metabolismo , Triptofano Hidroxilase/química , Animais , Camundongos , Humanos , Mutação , Temperatura , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Pterinas/química , Pterinas/metabolismo , Pterinas/farmacologia
9.
J Biol Chem ; 298(3): 101646, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35093385

RESUMO

Oxytocin is a potent uterotonic agent administered to nearly all patients during childbirth in the United States. Inadequate oxytocin response can necessitate Cesarean delivery or lead to uterine atony and postpartum hemorrhage. Thus, it may be clinically useful to identify patients at risk for poor oxytocin response and develop strategies to sensitize the uterus to oxytocin. Previously, we showed that the V281M variant in the oxytocin receptor (OXTR) gene impairs OXTR trafficking to the cell surface, leading to a decreased oxytocin response in cells. Here, we sought to identify pharmacological chaperones that increased oxytocin response in cells expressing WT or V281M OXTR. We screened nine small-molecule agonists and antagonists of the oxytocin/vasopressin receptor family and identified two, SR49059 and L371,257, that restored both OXTR trafficking and oxytocin response in HEK293T cells transfected with V281M OXTR. In hTERT-immortalized human myometrial cells, which endogenously express WT OXTR, treatment with SR49059 and L371,257 increased the amount of OXTR on the cell surface by two- to fourfold. Furthermore, SR49059 and L371,257 increased the endogenous oxytocin response in hTERT-immortalized human myometrial cells by 35% and induced robust oxytocin responses in primary myometrial cells obtained from patients at the time of Cesarean section. If future studies demonstrate that these pharmacological chaperones or related compounds function similarly in vivo, we propose that they could potentially be used to enhance clinical response to oxytocin.


Assuntos
Miométrio , Ocitocina , Receptores de Ocitocina , Bibliotecas de Moléculas Pequenas , Feminino , Células HEK293 , Humanos , Miométrio/efeitos dos fármacos , Miométrio/metabolismo , Ocitocina/agonistas , Ocitocina/antagonistas & inibidores , Ocitocina/metabolismo , Ocitocina/farmacologia , Gravidez , Receptores de Ocitocina/agonistas , Receptores de Ocitocina/antagonistas & inibidores , Receptores de Ocitocina/genética , Receptores de Ocitocina/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia
10.
Chemistry ; 29(19): e202203841, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36598148

RESUMO

Piperidine-based photoswitchable derivatives have been developed as putative pharmacological chaperones for glucocerebrosidase (GCase), the defective enzyme in Gaucher disease (GD). The structure-activity study revealed that both the iminosugar and the light-sensitive azobenzene are essential features to exert inhibitory activity towards human GCase and a system with the correct inhibition trend (IC50 of the light-activated form lower than IC50 of the dark form) was identified. Kinetic analyses showed that all compounds are non-competitive inhibitors (mixed or pure) of GCase and the enzyme allosteric site involved in the interaction was identified by means of MD simulations. A moderate activity enhancement of mutant GCase assessed in GD patients' fibroblasts (ex vivo experiments) carrying the most common mutation was recorded. This promising observation paves the way for further studies to improve the benefit of the light-to-dark thermal conversion for chaperoning activity.


Assuntos
Doença de Gaucher , Glucosilceramidase , Humanos , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/genética , Dobramento de Proteína , Fibroblastos/metabolismo , Mutação , Inibidores Enzimáticos/farmacologia
11.
Chemistry ; 29(53): e202301210, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37313991

RESUMO

The first phosphorus dendrimers built on a cyclotriphosphazene core and decorated with six or twelve monofluorocyclooctyne units were prepared. A simple stirring allowed the grafting of N-hexyl deoxynojirimycin inhitopes onto their surface by copper-free strain promoted alkyne-azide cycloaddition click reaction. The synthesized iminosugars clusters were tested as multivalent inhibitors of the biologically relevant enzymes ß-glucocerebrosidase and acid α-glucosidase, involved in Gaucher and Pompe lysosomal storage diseases, respectively. For both enzymes, all the multivalent compounds were more potent than the reference N-hexyl deoxynojirimycin. Remarkably, the final dodecavalent compound proved to be one of the best ß-glucocerebrosidase inhibitors described to date. These cyclotriphosphazene-based deoxynojirimycin dendrimers were then evaluated as pharmacological chaperones against Gaucher disease. Not only did these multivalent constructs cross the cell membranes but they were also able to increase ß-glucocerebrosidase activity in Gaucher cells. Notably, dodecavalent compound allowed a 1.4-fold enzyme activity enhancement at a concentration as low as 100 nM. These new monofluorocyclooctyne-presenting dendrimers may further find numerous applications in the synthesis of multivalent objects for biological and pharmacological purposes.


Assuntos
Dendrímeros , Doença de Gaucher , Humanos , Doença de Gaucher/tratamento farmacológico , Glucosilceramidase/metabolismo , Glucosilceramidase/uso terapêutico , Inibidores Enzimáticos/metabolismo
12.
Int J Mol Sci ; 24(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37240451

RESUMO

Mutations in the GBA1 gene, encoding the lysosomal enzyme glucocerebrosidase (GCase), cause Gaucher disease (GD) and are the most common genetic risk factor for Parkinson's disease (PD). Pharmacological chaperones (PCs) are being developed as an alternative treatment approach for GD and PD. To date, NCGC00241607 (NCGC607) is one of the most promising PCs. Using molecular docking and molecular dynamics simulation we identified and characterized six allosteric binding sites on the GCase surface suitable for PCs. Two sites were energetically more preferable for NCGC607 and located nearby to the active site of the enzyme. We evaluated the effects of NCGC607 treatment on GCase activity and protein levels, glycolipids concentration in cultured macrophages from GD (n = 9) and GBA-PD (n = 5) patients as well as in induced human pluripotent stem cells (iPSC)-derived dopaminergic (DA) neurons from GBA-PD patient. The results showed that NCGC607 treatment increased GCase activity (by 1.3-fold) and protein levels (by 1.5-fold), decreased glycolipids concentration (by 4.0-fold) in cultured macrophages derived from GD patients and also enhanced GCase activity (by 1.5-fold) in cultured macrophages derived from GBA-PD patients with N370S mutation (p < 0.05). In iPSC-derived DA neurons from GBA-PD patients with N370S mutation NCGC607 treatment increased GCase activity and protein levels by 1.1-fold and 1.7-fold (p < 0.05). Thus, our results showed that NCGC607 could bind to allosteric sites on the GCase surface and confirmed its efficacy on cultured macrophages from GD and GBA-PD patients as well as on iPSC-derived DA neurons from GBA-PD patients.


Assuntos
Doença de Gaucher , Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Simulação de Acoplamento Molecular , Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/genética , Técnicas de Cultura de Células , Sítios de Ligação , Glicolipídeos , Mutação
13.
Int J Mol Sci ; 24(6)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36982893

RESUMO

Whenever a protein fails to fold into its native structure, a profound detrimental effect is likely to occur, and a disease is often developed. Protein conformational disorders arise when proteins adopt abnormal conformations due to a pathological gene variant that turns into gain/loss of function or improper localization/degradation. Pharmacological chaperones are small molecules restoring the correct folding of a protein suitable for treating conformational diseases. Small molecules like these bind poorly folded proteins similarly to physiological chaperones, bridging non-covalent interactions (hydrogen bonds, electrostatic interactions, and van der Waals contacts) loosened or lost due to mutations. Pharmacological chaperone development involves, among other things, structural biology investigation of the target protein and its misfolding and refolding. Such research can take advantage of computational methods at many stages. Here, we present an up-to-date review of the computational structural biology tools and approaches regarding protein stability evaluation, binding pocket discovery and druggability, drug repurposing, and virtual ligand screening. The tools are presented as organized in an ideal workflow oriented at pharmacological chaperones' rational design, also with the treatment of rare diseases in mind.


Assuntos
Chaperonas Moleculares , Dobramento de Proteína , Chaperonas Moleculares/metabolismo , Conformação Proteica , Biologia , Biologia Computacional
14.
Proteomics ; 22(23-24): e2200222, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36205620

RESUMO

Rare diseases are most often caused by inherited genetic disorders that, after translation, will result in a protein with altered function. Decreased protein stability is the most frequent mechanism associated with a congenital pathogenic missense mutation and it implies the destabilization of the folded conformation in favour of unfolded or misfolded states. In the cellular context and when experimental data is available, a mutant protein with altered thermodynamic stability often also results in impaired homeostasis, with the deleterious accumulation of protein aggregates, metabolites and/or metabolic by-products. In the last decades, a significant effort has enabled the characterization of rare diseases associated to protein stability defects and triggered the development of innovative therapeutic intervention lines, say, the use of pharmacological chaperones to correct the intracellular impaired homeostasis. Here, we review the current knowledge on rare diseases caused by reduced protein stability, paying special attention to the thermodynamic aspects of the protein destabilization, also focusing on some examples where pharmacological chaperones are being tested.


Assuntos
Chaperonas Moleculares , Dobramento de Proteína , Humanos , Doenças Raras/tratamento farmacológico , Estabilidade Proteica , Agregados Proteicos
15.
Proc Jpn Acad Ser B Phys Biol Sci ; 98(7): 336-360, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35908956

RESUMO

For over 50 years, our group has been involved in synthetic studies on biologically active cyclitols including carbasugars. Among a variety of compounds synthesized, this review focuses on carbaglycosylamine glycosidase inhibitors, highlighting the following: (1) the naturally occurring N-linked carbaoligosaccharide α-amylase inhibitor acarbose and related compounds; (2) the novel synthetic ß-glycosidase inhibitors, 1'-epi-acarviosin and its 6-hydroxy analogue as well as ß-valienaminylceramide and its 4'-epimer; (3) the discovery of the ß-glycosidase inhibitors with chaperone activity, N-octyl-ß-valienamine (NOV) and its 4-epimer (NOEV); and (4) the recent development of the potential pharmacological chaperone N-alkyl-conduramine F-4 derivatives.


Assuntos
Inibidores Enzimáticos , Glicosídeo Hidrolases , Inibidores Enzimáticos/farmacologia
16.
Int J Mol Sci ; 23(9)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35562892

RESUMO

Phenylketonuria (PKU) is a rare metabolic disease caused by variations in a human gene, PAH, encoding phenylalanine hydroxylase (PAH), and the enzyme converting the essential amino acid phenylalanine into tyrosine. Many PKU-causing variations compromise the conformational stability of the encoded enzyme, decreasing or abolishing its catalytic activity, and leading to an elevated concentration of phenylalanine in the blood, which is neurotoxic. Several therapeutic approaches have been developed to treat the more severe manifestations of the disorder, but they are either not entirely effective or difficult to adhere to throughout life. In a search for novel pharmacological chaperones to treat PKU, a lead compound was discovered (compound IV) that exhibited promising in vitro and in vivo chaperoning activity on PAH. The structure of the PAH-IV complex has been reported. Here, using alchemical free energy calculations (AFEC) on the structure of the PAH-IV complex, we design a new generation of compound IV-analogues with a higher affinity for the enzyme. Seventeen novel analogues were synthesized, and thermal shift and isothermal titration calorimetry (ITC) assays were performed to experimentally evaluate their stabilizing effect and their affinity for the enzyme. Most of the new derivatives bind to PAH tighter than lead compound IV and induce a greater thermostabilization of the enzyme upon binding. Importantly, the correspondence between the calculated alchemical binding free energies and the experimentally determined ΔΔGb values is excellent, which supports the use of AFEC to design pharmacological chaperones to treat PKU using the X-ray structure of their complexes with the target PAH enzyme.


Assuntos
Fenilalanina Hidroxilase , Fenilcetonúrias , Calorimetria , Humanos , Fenilalanina/metabolismo , Fenilalanina Hidroxilase/química , Fenilcetonúrias/metabolismo , Dobramento de Proteína
17.
Int J Mol Sci ; 23(9)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35563496

RESUMO

Fabry disease is caused by a deficiency of lysosomal alpha galactosidase and has a very large genotypic and phenotypic spectrum. Some patients who carry hypomorphic mutations can benefit from oral therapy with a pharmacological chaperone. The drug requires a very precise regimen because it is a reversible inhibitor of alpha-galactosidase. We looked for molecules that can potentiate this pharmacological chaperone, among drugs that have already been approved for other diseases. We tested candidate molecules in fibroblasts derived from a patient carrying a large deletion in the gene GLA, which were stably transfected with a plasmid expressing hypomorphic mutants. In our cell model, three drugs were able to potentiate the action of the pharmacological chaperone. We focused our attention on one of them, acetylsalicylic acid. We expect that acetylsalicylic acid can be used in synergy with the Fabry disease pharmacological chaperone and prolong its stabilizing effect on alpha-galactosidase.


Assuntos
Doença de Fabry , alfa-Galactosidase , 1-Desoxinojirimicina/farmacologia , 1-Desoxinojirimicina/uso terapêutico , Aspirina/farmacologia , Aspirina/uso terapêutico , Reposicionamento de Medicamentos , Doença de Fabry/tratamento farmacológico , Doença de Fabry/genética , Humanos , Lisossomos , Chaperonas Moleculares/genética , Mutação , alfa-Galactosidase/genética , alfa-Galactosidase/uso terapêutico
18.
Molecules ; 27(13)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35807262

RESUMO

GM1 gangliosidosis is a rare lysosomal disease caused by the deficiency of the enzyme ß-galactosidase (ß-Gal; GLB1; E.C. 3.2.1.23), responsible for the hydrolysis of terminal ß-galactosyl residues from GM1 ganglioside, glycoproteins, and glycosaminoglycans, such as keratan-sulfate. With the aim of identifying new pharmacological chaperones for GM1 gangliosidosis, the synthesis of five new trihydroxypiperidine iminosugars is reported in this work. The target compounds feature a pentyl alkyl chain in different positions of the piperidine ring and different absolute configurations of the alkyl chain at C-2 and the hydroxy group at C-3. The organometallic addition of a Grignard reagent onto a carbohydrate-derived nitrone in the presence or absence of a suitable Lewis Acid was exploited, providing structural diversity at C-2, followed by the ring-closure reductive amination step. An oxidation-reduction process allowed access to a different configuration at C-3. The N-pentyl trihydroxypiperidine iminosugar was also synthesized for the purpose of comparison. The biological evaluation of the newly synthesized compounds was performed on leucocyte extracts from healthy donors and identified two suitable ß-Gal inhibitors, namely compounds 10 and 12. Among these, compound 12 showed chaperoning properties since it enhanced ß-Gal activity by 40% when tested on GM1 patients bearing the p.Ile51Asn/p.Arg201His mutations.


Assuntos
Gangliosidose GM1 , Gangliosidose GM1/tratamento farmacológico , Gangliosidose GM1/genética , Humanos , Lisossomos , Chaperonas Moleculares/genética , Mutação , beta-Galactosidase/química
19.
Angew Chem Int Ed Engl ; 61(38): e202207974, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-35864061

RESUMO

Gaucher disease is a lysosomal storage disorder caused by mutations which destabilize the native folded form of GCase, triggering degradation and ultimately resulting in low enzyme activity. Pharmacological chaperones (PCs) which stabilize mutant GCase have been used to increase lysosomal activity through improving trafficking efficiency. By engineering their inherent basicity, we have synthesized PCs that change conformation between the ER and the lysosomal environment, thus weakening binding to GCase after its successful trafficking to the lysosome. NMR studies confirmed the conformational change while X-ray data reveal bound conformations and binding modes. These results were further corroborated by cell studies showing increases in GCase activity when using the pH-switchable probe at low dosing. Preliminary in vivo assays with humanized mouse models of Gaucher showed enhanced GCase activity levels in relevant tissues, including the brain, further supporting their potential.


Assuntos
Doença de Gaucher , Glucosilceramidase , Animais , Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/genética , Glucosilceramidase/química , Concentração de Íons de Hidrogênio , Camundongos , Modelos Animais , Chaperonas Moleculares/química , Mutação
20.
Chemistry ; 27(44): 11291-11297, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34106504

RESUMO

Mucopolysaccharidosis type IIIB is a devastating neurological disease caused by a lack of the lysosomal enzyme, α-N-acetylglucosaminidase (NAGLU), leading to a toxic accumulation of heparan sulfate. Herein we explored a pharmacological chaperone approach to enhance the residual activity of NAGLU in patient fibroblasts. Capitalizing on the three-dimensional structures of two modest homoiminosugar-based NAGLU inhibitors in complex with bacterial homolog of NAGLU, CpGH89, we have synthesized a library of 17 iminosugar C-glycosides mimicking N-acetyl-D-glucosamine and bearing various pseudo-anomeric substituents of both α- and ß-configuration. Elaboration of the aglycon moiety results in low micromolar selective inhibitors of human recombinant NAGLU, but surprisingly it is the non-functionalized and wrongly configured ß-homoiminosugar that was proved to act as the most promising pharmacological chaperone, promoting a 2.4 fold activity enhancement of mutant NAGLU at its optimal concentration.


Assuntos
Mucopolissacaridose III , Acetilglucosaminidase , Glicosídeos , Humanos , Doenças Raras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA