RESUMO
The rational design of polysulfide electrocatalysts is of vital importance to achieve longevous LiâS batteries. Notwithstanding fruitful advances made in elevating electrocatalytic activity, efforts to regulate precatalyst phase evolution and protect active sites are still lacking. Herein, an in situ graphene-encapsulated bimetallic model catalyst (CoNi@G) is developed for striking a balance between electrocatalytic activity and stability for sulfur electrochemistry. The layer numbers of directly grown graphene can be dictated by tuning the synthetic duration. Exhaustive experimental and theoretical analysis comprehensively reveals that the tailored graphene chainmail boosts catalytic durability while guaranteeing moderate phase evolution, accordingly attaining a decorated surface sulfidation with advanced catalytic essence. Benefiting from the sustainable polysulfide electrocatalysis, CoNi@G enabled sulfur electrodes to harvest a capacity output of 1276.2 mAh g-1 at 0.2 C and a negligible capacity decay of 0.055% per cycle after 1000 cycles at 1.0 C. Such a maneuver can be readily extended to other metallic catalysts including NiFe, CoFe, or Co. The work elucidates the precatalyst phase evolution mechanism through a controllable graphene-armored strategy, offering meaningful guidance to realize durable electrocatalysts in LiâS batteries.
RESUMO
Structural adhesives that do not require heating are in high demand in the automotive and electronics industries. However, it remains a challenge to develop robust adhesives that rapidly achieve super adhesion near ambient temperature. Herein, a room-temperature curable, fast-bonding, and super strong epoxy-based structural adhesive was designed from the perspective of cross-scale structure, which lies in threefold pivotal aspects: (i) high branching topology of glycerol carbonate-capped polyurethane (PUGC) increases the kinetics of the ring-opening reaction, contributing to fast crosslinking and the formation of abundant urethane and hydroxyl moieties; (ii) asynchronous crosslinking of epoxy and PUGC synergistically induces phase separation of PUGC within the epoxy resin and the resulting PUGC domains surrounded by interpenetrated shell serves to efficiently toughen the matrix; (iii) abundant dynamic hydrogen bonds including urethane and hydroxyl moieties, along with the elastomeric PUGC domains, dissipate energy of shearing force. As a result, the adhesive strength rapidly grows to 16â MPa within 4â hours, leveling off to 21â MPa after 7â hours, substantially outperforming commercial room-temperature curable epoxy adhesives. The results of this study could advance the field of high-performance adhesives and provide valuable insights into designing materials for efficient curing at room temperature.
RESUMO
The first wide-view image of multiple structural and phase transformations for MOFs from crystal state transformations further to the extreme limit approaching liquid/glass phase, was presented based on a square-layer framework of [Co2(pybz)2(CH3COO)2]·DMF (Co2). The process involves i) an initial crystalline transformation brings to a 3-fold interpenetrated and ordered vacancies contained framework [Co(pybz)2(CH3OH)2]·2CH3OH (CoM) due to in-situ disassemble-reassemble, ii) thermal induced departure of a pair of cis-form coordinated methanol in CoM leads to amorphous framework (a-dCoM), iii) glass transition (Tg = 566 K) to super-cooled liquid (scl-dCoM, spanning 38 K), iv) obtaining MOF glass g-dCoM upon quenching the super-cooled liquid, and v) re-crystallization of super-cooled liquid to six-fold interpenetrated dia-net framework [Co(pybz)2]6n (rec-dCoM) under heating above 604 K. The access to glass from CoM, provides a new self-perturbation strategy to create more MOF glasses without melting. The wider pore size distribution in amorphous/glassy MOFs than crystalline precursor realized the first time selective hydrocarbon gas separation by breakthrough experiments, which bring efficient separation of 1:99 C2H2/C2H4 by either a-dCoM or g-dCoM and produce polymer grade C2H4 with purity ≥ 99.5% after a single adsorption process. Furthermore, the mixture of 50:50 C3H6/C3H8 can be separated by a-dCoM.
RESUMO
Electrochemical properties of metal oxide have a strong correlation with the crystalline structures. In this work, the effect of calcination temperature on the phase evolution and electrochemical properties of Sm2 O3 was systematically evaluated. The results demonstrate that the sample calcinated at 700 °C (SM-700) is composed of a pure cubic phase while it begins to convert into a monoclinic phase at a temperature above 800 °C and fully converts into a monoclinic phase at 1100 °C. Moreover, the evolution process causes atomic redistribution, and more oxygen vacancies are formed in cubic phase Sm2 O3 , contributing to the improved ionic conductivity. The ionic conductivity of 0.138â S cm-1 and maximum power density of 895â mW cm-2 at 520 °C are achieved using SM-700 as electrolyte for protonic ceramic fuel cell (PCFC). The cubic structure remains stable in the durability testing process and the SM-700 based fuel cell delivers enhanced stability of 140â mW cm-2 for 100â h. This research develops a calcination evolution process to improve the ionic conductivity and fuel cell performance of the Sm2 O3 electrolyte for stable PCFC.
RESUMO
High entropy alloys (HEAs) of the type CrCuFeNiTi-Alx were processed through mechanical alloying. The aluminum concentration was varied in the alloy, to determine its effect on the HEAs' microstructure, phase formation, and chemical behavior. X-ray diffraction studies performed on the pressureless sintered samples revealed the presence of structures composed of face centered cubic (FCC) and body centered cubic (BCC) solid-solution phases. Since the valences of the elements that form the alloy are different, a nearly stoichiometric compound was obtained, increasing the final entropy of the alloy. The aluminum was partly responsible for this situation, which also favored transforming part of the FCC phase into BCC phase on the sintered bodies. X-ray diffraction also indicated the formation of different compounds with the alloy's metals. Bulk samples exhibited microstructures with different phases. The presence of these phases and the results of the chemical analyses revealed the formation of alloying elements that, in turn, formed a solid solution and, consequently, had a high entropy. From the corrosion tests, it could be concluded that the samples with a lower aluminum content were the most resistant to corrosion.
RESUMO
Tin chalcogenides are regarded as promising anode materials for potassium ion batteries (PIBs) due to their considerable specific capacity. However, the severe volume effect, limited electronic conductivity, and the shuttle effect of the potassiation product restrict the application prospect. Herein, based on the metal evaporation reaction, a facile structural engineering strategy for yolk-shell SnSe encapsulated in carbon shell (SnSe@C) is proposed. The internal void can accommodate the volume change of the SnSe core and the carbon shell can enhance the electronic conductivity. Combining qualitative and quantitative electrochemical analyses, the distinguished electrochemical performance of SnSe@C anode is attributed to the contribution of enhanced capacitive behavior. Additionally, first-principles calculations elucidate that the heteroatomic doped carbon exhibits a preferable affinity toward potassium ions and the potassiation product K2 Se, boosting the rate performance and capacity retention consequently. Furthermore, the phase evolution of SnSe@C electrode during the potassiation/depotassiation process is clarified by in situ X-ray diffraction characterization, and the crystal transition from the SnSe Pnma(62) to Cmcm(63) point group is discovered unpredictably. This work demonstrates a pragmatic avenue to tailor the SnSe@C anode via a facile structural engineering strategy and chemical regulation, providing substantial clarification for the phase evolution mechanism of SnSe-based anode for PIBs.
RESUMO
Owing to low-temperature deposition conditions and high deposition rate, cold spray offers unique advantages in manufacturing a wide variety of metallic and composite coatings including metal matrix composites produced from physically blended powders. One of the challenges of producing composite coatings using cold spray is the deviation of coatings composition from the blended feedstock powder composition. This is of utmost importance as it affects the composition and phase evolution of intermetallic forming coatings during post spray heat treatment. In this work, cold spray of composite Ni-Ti coatings and formation of intermetallics from post spray heat treatment were investigated as a first step to examine the potential of producing equiatomic bulk Ni-Ti by cold spray. Three different physically blended Ni and Ti powders mixtures were sprayed on titanium substrates to address the coating composition variation from the blended feedstock powder and study its influence on phase evolution during post spray heat treatment. High-density and well-dispersed composite coatings were achieved for each case. EDS analysis revealed as-sprayed coatings with 10.5, 35.9 and 56.9 at.% Ni (and with balanced Ti ratios) from the three powder mixtures. Annealing treatments were conducted at 400, 500 and 900 °C for 1 and 2 h and comparative studies of the intermetallic compound formations were carried out. Microstructural investigation showed that all three equilibrium intermetallics phases of binary Ni-Ti phase diagram (Ni3Ti, Ti2Ni and NiTi) formed in the two Ni-rich composite coatings with NiTi phase being maximum in the coating with the closest composition to equiatomic ratio while only Ti2Ni phase formed in the Ti-rich coating after annealing. Thermal etching analysis of coatings showed that NiTi phase forms with a gradient microstructure from Ti splats boundary toward the center of splats, which is attributed to the grain refinement of CS samples at splat boundary and intermetallic nucleation mechanism.
RESUMO
The in situ tracking of the pyrolysis of a binary molecular cluster [Zn7 (µ3 -CH3 O)6 (L)6 ][ZnLCl2 ]2 is presented with one brucite disk and two mononuclear fragments (L=mmimp: 2-methoxy-6-((methylimino)-methyl)phenolate) to porous carbon using TG-MS from 30 to 900 °C. Following up the spilled gas product during the decomposed reaction of zinc cluster along the temperature rising, and in conjunction with XRD, SEM, BET and other materials characterization, where three key steps were observed: 1)â cleavage of the bulky external ligand; 2)â reduction of ZnO and 3)â volatilization of Zn. The real-time-dependent phase-sequential evolution of the remaining products and the processing of pore forming template transformation are proposed simultaneously. The porous carbon structure featuring a uniform nano-sized pore distribution synthesized at 900 °C with the highest surface area of 1644â m2 g-1 and pore volume of 0.926â cm3 g-1 exhibits the best known capacitance of 662â F g-1 at 0.5â A g-1 .
RESUMO
Inâ situ evolution of electrocatalysts is of paramount importance in defining catalytic reactions. Catalysts for aprotic electrochemistry such as lithium-sulfur (Li-S) batteries are the cornerstone to enhance intrinsically sluggish reaction kinetics but the true active phases are often controversial. Herein, we reveal the electrochemical phase evolution of metal-based pre-catalysts (Co4 N) in working Li-S batteries that renders highly active electrocatalysts (CoSx ). Electrochemical cycling induces the transformation from single-crystalline Co4 N to polycrystalline CoSx that are rich in active sites. This transformation propels all-phase polysulfide-involving reactions. Consequently, Co4 N enables stable operation of high-rate (10â C, 16.7â mA cm-2 ) and electrolyte-starved (4.7â µL mgS -1 ) Li-S batteries. The general concept of electrochemically induced sulfurization is verified by thermodynamic energetics for most of low-valence metal compounds.
RESUMO
Cobalt oxides as efficient oxygen evolution reaction (OER) electrocatalysts have received much attention because of their rich reserves and cheap cost. There are two common cobalt oxides, Co3 O4 (spinel phase, stable but poor intrinsic activity) and CoO (rocksalt phase, active but easily be oxidatized). Constructing Co3 O4 /CoO heterophase can inherit both characteristic features of each component and form a heterophase interface facilitating charge transfer, which is believed to be an effective strategy in designing excellent electrocatalysts. Herein, an atomic arrangement engineering strategy is applied to improve electrocatalytic activity of Co3 O4 for the OER. With the presence of oxygen vacancies, cobalt atoms at tetrahedral sites in Co3 O4 can more easily diffuse into interstitial octahedral sites to form CoO phase structure as revealed by periodic density functional theory computations. The Co3 O4 /CoO spinel/rocksalt heterophase can be in situ fabricated at the atomic scale in plane. The overpotential to reach 10 mA cm-2 of Co3 O4 /CoO is 1.532 V, which is 92 mV smaller than that of Co3 O4 . Theoretical calculations confirm that the excellent electrochemical activity is corresponding to a decline in average p-state energy of adsorbed-O on the Co3 O4 /CoO heterophase interface. The reaction Gibbs energy barrier has been significantly decreased with the construction of the heterophase interface.
RESUMO
Quaternary high-entropy ceramic (HEC) composite was synthesized from HfC, Mo2C, TaC, and TiC in pulsed current processing. A high-entropy solid solution that contained all principal elements along with a minor amount of a Ta-rich phase was observed in the microstructure. The high entropy phase and Ta-rich phase displayed a face-centered cubic (FCC) crystal structure with similar lattice parameters, suggesting that TaC acted as a solvent carbide during phase evolution. The addition of B4C to the quaternary carbide system induced the formation of two high-entropy solid solutions with different elemental compositions. With the increase in the number of principal elements, on the addition of B4C, the crystal structure of the HEC phase transformed from FCC to a hexagonal structure. The study on the effect of starting particle sizes on the phase composition and properties of the HEC composites showed that reducing the size of solute carbide components HfC, Mo2C, and TiC could effectively promote the interdiffusion process, resulting in a higher fraction of a hexagonal structured HEC phase in the material. On the other hand, tuning the particle size of solvent carbide, TaC, showed a negligible effect on the composition of the final product. However, reducing the TaC size from -325 mesh down to <1 µm resulted in an improvement of the nanohardness of the HEC composite from 21 GPa to 23 GPa. These findings suggested the possibility of forming a high-entropy ceramic phase despite the vast difference in the precursor crystal structures, provided a clearer understanding of the phase transformation process which could be applied for the designing of HEC materials.
RESUMO
KF-YbF3 system materials have been synthesized by a hydrothermal method without any surfactant or template. By controlling the reactant ratios of KF:Yb(3+), the hydrothermal temperature and the pH of the prepared solutions, the final products can evolve among the orthorhombic phase of YbF3, the cubic phase of KYb3F10 and the cubic phase of KYbF4. The X-ray diffraction (XRD) patterns of the samples prove the phase evolution of the final products. The morphologies of the samples were characterized using field emission scanning electron microscopy (FE-SEM) images and the evolution of the morphology is consistent with that of the crystalline phases. The optical properties of Tb(3+) in the samples were characterized by PL excitation and emission spectra, as well as luminescent decay curves.
Assuntos
Fluoretos/química , Substâncias Luminescentes/química , Térbio/química , Itérbio/química , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura , Temperatura , Difração de Raios XRESUMO
Multicomponent nanowires (NWs) are of great interest for integrated nanoscale optoelectronic devices owing to their widely tunable band gaps. In this study, we synthesize a series of (GaP)(1-x)(ZnS)(x) (0 ≤ x ≤ 1) pseudobinary alloy NWs using the vapor transport method. Compositional tuning results in the phase evolution from the zinc blende (ZB) (x < 0.4) to the wurtzite (WZ) phase (x > 0.7). A coexistence of ZB and WZ phases (x = 0.4-0.7) is also observed. In the intermediate phase coexistence range, a core-shell structure is produced with a composition of x = 0.4 and 0.7 for the core and shell, respectively. The band gap (2.4-3.7 eV) increases nonlinearly with increasing x, showing a significant bowing phenomenon. The phase evolution leads to enhanced photoluminescence emission. Strikingly, the photoluminescence spectrum shows a blue-shift (70 meV for x = 0.9) with increasing excitation power, and a wavelength-dependent decay time. Based on the photoluminescence data, we propose a type-II pseudobinary heterojunction band structure for the single-crystalline WZ phase ZnS-rich NWs. The slight incorporation of GaP into the ZnS induces a higher photocurrent and excellent photocurrent stability, which opens up a new strategy for enhancing the performance of photodetectors.
RESUMO
The Cd-free Cu2 ZnSnS4 (CZTS) solar cell is an ideal candidate for producing low-cost clean energy through green materials owing to its inherent environmental friendliness and earth abundance. Nevertheless, sulfide CZTS has long suffered from severe open-circuit voltage (VOC ) deficits, limiting the full exploitation of performance potential and further progress. Here, an effective strategy is proposed to alleviate the nonradiative VOC loss by manipulating the phase evolution during the critical kesterite phase formation stage. With a Ge cap layer on the precursor, premature CZTS grain formation is suppressed at low temperatures, leading to fewer nucleation centers at the initial crystallization stage. Consequently, the CZTS grain formation and crystallization are deferred to high temperatures, resulting in enhanced grain interior quality and less unfavorable grain boundaries in the final film. As a result, a champion efficiency of 10.7% for Cd-free CZTS solar cells with remarkably high VOC beyond 800 mV (63.2% Schockley-Queisser limit) is realized, indicating that nonradiative recombination is effectively inhibited. This strategy may advance other compound semiconductors seeking high-quality crystallization.
RESUMO
Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching, adjusting dielectric/magnetic resonance and promoting electromagnetic (EM) wave absorption, but still exist a significant challenging in regulating local phase evolution. Herein, accordion-shaped Co/Co3O4@N-doped carbon nanosheets (Co/Co3O4@NC) with gradient magnetic heterointerfaces have been fabricated via the cooperative high-temperature carbonization and low-temperature oxidation process. The results indicate that the surface epitaxial growth of crystal Co3O4 domains on local Co nanoparticles realizes the adjustment of magnetic-heteroatomic components, which are beneficial for optimizing impedance matching and interfacial polarization. Moreover, gradient magnetic heterointerfaces simultaneously realize magnetic coupling, and long-range magnetic diffraction. Specifically, the synthesized Co/Co3O4@NC absorbents display the strong electromagnetic wave attenuation capability of - 53.5 dB at a thickness of 3.0 mm with an effective absorption bandwidth of 5.36 GHz, both are superior to those of single magnetic domains embedded in carbon matrix. This design concept provides us an inspiration in optimizing interfacial polarization, regulating magnetic coupling and promoting electromagnetic wave absorption.
RESUMO
Despite its high theoretical capacities, Sn4P3 anodes in alkali-ion batteries (AIBs) have been plagued by electrode damage and capacity decay during cycling, mainly rooted in the huge volume changes and irreversible phase segregation. However, few reports endeavor to ascertain whether these causes bear relevance to phase evolution upon cycling. Moreover, the phase evolution mechanism for alkali-ion intercalation remains imprecise. Herein, the structural transformations and detailed mechanisms upon various alkali-ion intercalation processes are systematically revealed, utilizing both experimental techniques and theoretical simulations. The results reveal that the energy storage of Sn4P3 occurs in a two-stage process, starting from an insertion process, followed by a transition process. As the cycle proceeds, the final delithiated/desodiated/depotassiated components gradually trap alkali ions (Li+, Na+, and K+), which is attributed to the incomplete electrochemical transition and difficulty in Sn4P3 regeneration due to the kinetic limitations in removing M (M = Li, Na, and K). Furthermore, Sn4P3 anode obeys the "shrinking core mechanism" in potassium-ion batteries (KIBs), wherein a minor fraction of Sn4P3 in the outer layer of the particles is initially involved in the potassiation/depotassiation processes, followed by a gradual participation of the inner parts until the entire particle is involved. It is worth mentioning that K-Sn alloys are not found to exist during the transition process of KIBs; instead, K-Sn-P phases are found, which makes it differ from that in lithium-ion batteries (LIBs) and sodium-ion batteries (NIBs). These findings are expected to deepen the understanding of the reaction mechanism of Sn4P3 and enlighten the material designs for improved performance.
RESUMO
This study involves the characterization and analysis of a Chinese red clay obtained from Hunan province to determine its suitability for manufacturing ceramic products. X-ray fluorescence analysis showed the clay has high silica (63.25 weight percent) and alumina (21.38 weight percent) content along with iron oxide, alkalis, and calcium acting as fluxes. X-ray diffraction (XRD) confirmed the presence of quartz, kaolinite, illite, and hematite as the major mineralogical phases. Scanning electron microscopy revealed loosely stacked, plate-shaped kaolinite particles exhibiting pseudohexagonal morphology. Particle size distribution shows a d50 of 12.7 µm and specific surface area is 21.3 m2/g. Differential thermal analysis-thermogravimetric analysis showed mass losses between 450-600°C and 950-1050°C corresponding to dehydroxylation and formation of a liquid phase, respectively. Dilatometry traced the onset of viscous flow sintering around 1000°C. Test bars produced from the clay were fired at 800°C, 900°C, 950°C, 1000°C, and 1050°C. The firing shrinkage increased from 2.5% at 800°C to 12.8% at 1050°C. Strength improved from 11.2 megapascals at 800°C to 42.3 megapascals at 1050°C due to densification and mullite formation. Hematite content caused the color to change from orange-red at 950°C to dark red at 1050°C. XRD analysis of fired specimens confirmed the presence of hematite and newly formed mullite and cristobalite phases. The results indicate the suitability of the clay for manufacturing bricks, roof tiles, and wall tiles using appropriate firing temperatures and cycles.
RESUMO
The fast charging/discharging performance of lithium-ion batteries is closely related to the properties of electrode materials, especially the phase evolution and Li+ diffusion kinetics. The phase evolution and intrinsic properties of an electrode material under different C-rates can be investigated by applying operando X-ray diffraction (XRD). In this study, a transmission X-ray diffractometer is used in operando monitoring the behaviors of NCM811/Graphite pouch cells during charging/discharging at low rate (0.1C) and high rate (2.5C), especially the structure changes, phase evolution, and relaxation of graphite anode. The variations in XRD patterns, as well as and the inconsistency between the state of charge (SOC) of full cells and the SOC of electrodes, are explained based on genetic algorithm and shrinking annuli model. Furthermore, from the perspectives of monitoring and identification of electrode state, structural design of materials and electrodes, and optimization of charging/discharging protocols, practical suggestions for understanding the state and improving the performance of electrodes are proposed.
RESUMO
Alumina-supported PtSn is an industrialized catalyst for propane dehydrogenation. During the catalyst impregnation, the acidic impregnation solution with chloroplatinic acid as a precursor inevitably leads to the partial dissolution of the surface of amphoteric alumina support and finally varies catalytic performance. Herein, the structure evolution of the active phase, induced by an impregnated acidic solution, was studied with special care. According to the diffused double layer theory, we proposed a model of microgels during impregnation. The microgels formed in the solution with suitable acidity on the surface of the catalysts evolved into a structure of Al2O3-coated oxidized Pt by reprecipitation during drying and calcination. The covered Pt species could be exposed by Ar+ sputtering or migrate to the surface during reduction to serve as active sites for propane dehydrogenation. Noticeably, the surface Sn0 species was generated when the pH of the impregnated solution was around 0.56, which is solid proof for the unique active phase with the PtSn alloy present on SnOx species existing on the surface of the Sn-Al2O3 support. The synthesized catalyst exhibited high propylene selectivity (99.4%) and superior stability (kd = 0.002 h-1). This study provides new insight for the precise preparation of Pt/Sn-Al2O3 catalysts.
RESUMO
The decontamination ability of sulfidated zero-valent iron (S-ZVI) can be enhanced by the effective assembly of iron sulfides (FeSx) on neglected heterogeneous surfaces by liquid-phase precipitation. However, S-ZVI preparation with the usual pickling is detrimental to orderly interfacial assembly and leads to an imbalance between electron transfer optimization and electron storage. In this work, S-ZVI was prepared in solutions containing trace divalent cation, and it removed Cr(VI) up to 323.25 times higher than ZVI. This result is achieved by surface sites protonation of divalent cations regulating the phase evolution on the ZVI surface and inducing FeSx chemical assembly. Regulation of divalent cation and S(-II) content further promotes FeSx targeted assembly and reduces electron storage consumption as much as possible. The barrier for FeSx assembly is found to lie at the ZVI interface rather than in the deposition between FeSx. Chemical assembly at heterogeneous interfaces is a prerequisite for the ordered assembly of FeSx. In addition, S-ZVI prepared in simulated groundwater showed extensive preparation pH and universality for remediation scenarios. These findings provide new insights into the development of in-situ sulfidation mechanisms with particular implications for S-ZVI applied to soil and groundwater remediation by the regulation of heterogeneous interfacial assembly.