Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 333
Filtrar
1.
Annu Rev Biochem ; 90: 349-373, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-33781075

RESUMO

Codon-dependent translation underlies genetics and phylogenetic inferences, but its origins pose two challenges. Prevailing narratives cannot account for the fact that aminoacyl-tRNA synthetases (aaRSs), which translate the genetic code, must collectively enforce the rules used to assemble themselves. Nor can they explain how specific assignments arose from rudimentary differentiation between ancestral aaRSs and corresponding transfer RNAs (tRNAs). Experimental deconstruction of the two aaRS superfamilies created new experimental tools with which to analyze the emergence of the code. Amino acid and tRNA substrate recognition are linked to phase transfer free energies of amino acids and arise largely from aaRS class-specific differences in secondary structure. Sensitivity to protein folding rules endowed ancestral aaRS-tRNA pairs with the feedback necessary to rapidly compare alternative genetic codes and coding sequences. These and other experimental data suggest that the aaRS bidirectional genetic ancestry stabilized the differentiation and interdependence required to initiate and elaborate the genetic coding table.


Assuntos
Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Evolução Molecular , Código Genético , Seleção Genética , Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/química , Catálise , Genótipo , Fenótipo , Filogenia , Biossíntese de Proteínas , Dobramento de Proteína , Estrutura Secundária de Proteína , RNA de Transferência/genética , Termodinâmica
2.
J Neurosci ; 43(40): 6760-6778, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37607820

RESUMO

Unconscious acquisition of sequence structure from experienced events can lead to explicit awareness of the pattern through extended practice. Although the implicit-to-explicit transition has been extensively studied in humans using the serial reaction time (SRT) task, the subtle neural activity supporting this transition remains unclear. Here, we investigated whether frequency-specific neural signal transfer contributes to this transition. A total of 208 participants (107 females) learned a sequence pattern through a multisession SRT task, allowing us to observe the transitions. Session-by-session measures of participants' awareness for sequence knowledge were conducted during the SRT task to identify the session when the transition occurred. By analyzing time course RT data using switchpoint modeling, we identified an increase in learning benefit specifically at the transition session. Electroencephalogram (EEG)/magnetoencephalogram (MEG) recordings revealed increased theta power in parietal (precuneus) regions one session before the transition (pretransition) and a prefrontal (superior frontal gyrus; SFG) one at the transition session. Phase transfer entropy (PTE) analysis confirmed that directional theta transfer from precuneus → SFG occurred at the pretransition session and its strength positively predicted learning improvement at the subsequent transition session. Furthermore, repetitive transcranial magnetic stimulation (TMS) modulated precuneus theta power and altered transfer strength from precuneus to SFG, resulting in changes in both transition rate and learning benefit at that specific point of transition. Our brain-stimulation evidence supports a role for parietal → prefrontal theta signal transfer in igniting conscious awareness of implicitly acquired knowledge.SIGNIFICANCE STATEMENT There exists a pervasive phenomenon wherein individuals unconsciously acquire sequence patterns from their environment, gradually becoming aware of the underlying regularities through repeated practice. While previous studies have established the robustness of this implicit-to-explicit transition in humans, the refined neural mechanisms facilitating conscious access to implicit knowledge remain poorly understood. Here, we demonstrate that prefrontal activity, known to be crucial for conscious awareness, is triggered by neural signal transfer originating from the posterior brain region, specifically the precuneus. By employing brain stimulation techniques, we establish a causal link between neural signal transfer and the occurrence of awareness. Our findings unveil a mechanism by which implicit knowledge becomes consciously accessible in human cognition.


Assuntos
Conscientização , Aprendizagem , Feminino , Humanos , Conscientização/fisiologia , Aprendizagem/fisiologia , Córtex Pré-Frontal/fisiologia , Tempo de Reação/fisiologia , Eletroencefalografia
3.
Neuroimage ; : 120841, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39244077

RESUMO

Working memory in attention deficit hyperactivity disorder (ADHD) is closely related to cortical functional network connectivity (CFNC), such as abnormal connections between the frontal, temporal, occipital cortices and with other brain regions. Low-intensity transcranial ultrasound stimulation (TUS) has the advantages of non-invasiveness, high spatial resolution, and high penetration depth and can improve ADHD memory behavior. However, how it modulates CFNC in ADHD and the CFNC mechanism that improves working memory behavior in ADHD remain unclear. In this study, we observed working memory impairment in ADHD rats, establishing a corresponding relationship between changes in CFNCs and the behavioral state during the working memory task. Specifically, we noted abnormalities in the information transmission and processing capabilities of CFNC in ADHD rats while performing working memory tasks. These abnormalities manifested in the network integration ability of specific areas, as well as the information flow and functional differentiation of CFNC. Furthermore, our findings indicate that TUS effectively enhances the working memory ability of ADHD rats by modulating information transmission, processing, and integration capabilities, along with adjusting the information flow and functional differentiation of CFNC. Additionally, we explain the CFNC mechanism through which TUS improves working memory in ADHD. In summary, these findings suggest that CFNCs are important in working memory behaviors in ADHD.

4.
Chemistry ; 30(9): e202303559, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38088217

RESUMO

In this study, we have developed a novel catalyst synthesized by phosphotungstic acid and a gemini quaternary ammonium cation salt. This quaternary ammonium salt not only reduces the interfacial tension between olefins and hydrogen peroxide but also forms a notably stable structure with phosphotungstic acid. Dodecene was successfully epoxidized to epoxy dodecane with a selectivity of 82.9 %. The impact of initial conditions was systematically investigated such as molar ratio, temperature, reaction time, and catalyst dosage on the catalytic performance. Characterization of the catalyst morphology was performed by SEM, TEM and SAXS. Raman spectra, FT-IR and XPS spectra were employed to perform the catalyst transformation during the epoxidation reaction. This catalytic mechanism study could provide the industrial application in the epoxidation of long-chain olefins.

5.
Chemistry ; : e202402985, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225624

RESUMO

We report on the synthesis of amphiphobic fluorinated surface-active ionic liquid (FSAIL) epoxidation catalysts, which show reversible temperature-controlled solubility in water. The solubility of FSAILs containing the catalytically active perrhenate- and tungstate anions was studied in both the aqueous and the substrate phase, showing a significant solubility decrease in both media compared to their non-fluorinated congeners. It was shown that both the epoxide product and the catalyst additive phenylphosphonic acid (PPA) are efficient in transferring the FSAIL catalyst into the organic phase, rendering the reaction homogeneous. The FSAILs were used as catalysts for the epoxidation of olefins using aqueous H2O2 as oxidant, showing an exceptionally high catalytic activity at mild conditions. Catalyst recycling was demonstrated over ten consecutive runs by phase separation and subsequent product distillation.

6.
Chemistry ; : e202402488, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39120485

RESUMO

We report an H-bond donor controlled diastereoselective switchable intramolecular aza-Henry reaction of ketimines derived from α-ketoesters and 2-(2-nitroethyl)anilines, allowing facile access to chiral tetrahydroquinolines bearing an aza-quaternary carbon stereocenter, which are privileged scaffold for medicinal researches. While newly developed cinchona alkaloid derived phosphoramide-bearing quaternary ammonium salt C2 selectively give cis-adducts in up to 20:1 dr and 99% ee, the corresponding urea-bearing analogue C8 preferentially give trans-adducts in up to 20:1 dr and 99% ee.

7.
Anal Biochem ; 695: 115635, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39098372

RESUMO

In this paper, we introduced a novel phase-transfer strategy tailored for the efficient batch detection of ascorbic acid in vitamin C tablets. This method entailed the reaction between ascorbic acid and an excess of potassium permanganate. Subsequent reaction of the residual potassium permanganate with sodium oxalate in an acidic medium led to the generation of carbon dioxide. The quantification of the produced carbon dioxide was achieved using headspace GC, enabling the indirect measurement of ascorbic acid. The obtained findings revealed that the headspace method exhibited satisfied precision with a relative standard deviation of less than 2.11 % and high sensitivity with a limit of quantitation of 0.27 µmol. These results firmly establish the reliability of this innovative approach for determining ascorbic acid. In addition, the highly automated feature of headspace method significantly enhances the efficiency of batch sample detection and reduces the errors caused by human operation. Thus, the adoption of the transformed phase strategy has demonstrated its effectiveness in assessing ascorbic acid, especially for large-scale sample analysis in industrial applications, owing to its efficiency, precision, and sensitivity.

8.
Macromol Rapid Commun ; 45(13): e2300747, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38652855

RESUMO

High sulfur content polymeric materials, known for their intriguing properties such as high refractive indices and high electrochemical capacities, have garnered significant interest in recent years for their applications in optics, antifouling surfaces, triboelectrics, and electrochemistry. Despite the high interest, most high sulfur-content polymers reported to date are either bulk materials or thin films, and there is a general lack of research into sulfur-rich polymer colloids. Water-dispersed, sulfur-rich particles are anticipated to broaden the range of applications for sulfur-containing materials. In this study, the preparation and size control parameters are presented of an aqueous dispersion of sulfur-rich polymers with the sulfur content of dispersed particles exceeding 75 wt%. Employing polymeric stabilizers with varying hydrophilic-lipophilic balance (HLB), along with changing the rank of inorganic polysulfides, allow for the control of particle size in the range of 360 nm - 1.8 µm. The sulfur-rich colloid demonstrates antioxidant properties in water, demonstrating the potential for the use of sulfur-rich polymeric materials readily removable, heterogeneous radical scavengers.


Assuntos
Antioxidantes , Coloides , Tamanho da Partícula , Polimerização , Polímeros , Enxofre , Coloides/química , Polímeros/química , Polímeros/síntese química , Enxofre/química , Antioxidantes/química , Propriedades de Superfície , Água/química , Interações Hidrofóbicas e Hidrofílicas
9.
Molecules ; 29(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38999020

RESUMO

The selective oxidation of toluene to yield value-added oxygenates, such as benzyl alcohol, benzaldehyde, and benzoic acid, via dioxygen presents a chlorine-free approach under benign conditions. Metal-free catalytic processes are preferred to avoid metal ion contamination. In this study, we employed N-hydroxyphthalimide (NHPI) as a catalyst for the aerobic oxidation of toluene to its oxygenated derivatives. The choice of solvent exerted a significant impact on the catalytic activity and selectivity of the catalyst NHPI at reaction temperatures exceeding 70 °C. Notably, hexafluoroisopropanol substantially enhanced the selective production of benzaldehyde. Furthermore, we identified didecyl dimethyl ammonium bromide, featuring two symmetrical long hydrophobic chains, as a potent enhancer of NHPI for the solvent-free aerobic oxidation of toluene. This effect is ascribed to its unique symmetrical structure, extraction capabilities, and resistance to thermal and acid/base conditions. Based on the product distribution and control experiments, we proposed a plausible reaction mechanism. These findings may inform the industrial synthesis of oxygenated derivatives from toluene.

10.
Molecules ; 29(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276627

RESUMO

In this paper, the green synthesis of isoeugenol methyl ether (IEME) from eugenol by O-methylation and isomerization is completed using a one-step green process. In the methylation reaction, dimethyl carbonate (DMC) was used as a green chemistry reagent instead of the traditional harmful methylation reagents, in accordance with the current concept of green chemistry. The phase transfer catalyst (PTC) polyethylene glycol 800 (PEG-800) was introduced into the isomerization reaction to break the barrier of difficult contact between solid and liquid phases and drastically reduce the reaction conditions by shortening the reaction time and reducing the alkalinity of the reaction system. The catalytic systems for the one-step green synthesis of IEME were screened, and it was shown that the catalytic system "K2CO3 + PEG-800" was the most effective. The effects of reaction temperature, n(DMC):n(eugenol) ratio, n(PEG-800):n(eugenol) ratio, and n(K2CO3):n(eugenol) ratio on eugenol conversion, IEME yield, and IEME selectivity were investigated. The results showed that the best reaction was achieved at a reaction temperature of 140 °C, a reaction time of 3 h, a DMC drip rate of 0.09 mL/min, and n(eugenol):n(DMC):n(K2CO3):n(PEG-800) = 1:3:0.09:0.08. As a result of the conversion of 93.1% of eugenol to IEME, a yield of 86.1% IEME as well as 91.6% IEME selectivity were obtained.

11.
Molecules ; 29(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38792187

RESUMO

Based on the fact that 2-aminospiropyrazolinium compounds and structurally related azoniaspiro compounds belong, in a broad sense, to the class of ionic liquids, we have reviewed them and studied their practical applications. To search for possible uses of a new 2-aminospiropyrazolinium compounds, it is necessary to undertake a comparison with the related class of azoniaspiro compounds based on available information. The structures of the well-studied class of azoniaspiro compounds and the related but little-studied class of 2-aminospiropyrazolinium have rigid frameworks, limited conformational freedom, and a salt nature. These properties give them the ability to organize the nearby molecular space and enable the structure-forming ability of azoniaspiro compounds in the synthesis of zeolites, as well as the ability to act as phase-transfer catalysts and have selective biological effects. Additionally, these characteristics enable their ability to act as electrolytes and serve as materials for anion exchange membranes in fuel cells and water electrolyzers. Thus, the well-studied properties of azoniaspiro compounds as phase-transfer catalysts, structure-directing agents, electrolytes, and materials for membranes in power sources would encourage the study of the similar properties of 2-aminospiropyrazolinium compounds, which we have studied in relation to in vitro antitubercular, antidiabetic, and antimicrobial activities.

12.
Angew Chem Int Ed Engl ; : e202410247, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39031668

RESUMO

Functionalization of quantum dots (QDs) and quantum rods (QRs) with ligands is essential for their further practical application across various domains. Dehydration-assisted functionalization (DAF) is a versatile method applicable to a wide range of hydrophilic ligands with an affinity to the surface of QDs and QRs. This approach facilitates rapid one-pot ligand exchange and dense modification by efficiently transferring these ligands onto the surface of QDs and QRs. This study demonstrates the efficacy of DAF in preparing chiral QRs, engineering the surface charge of QDs, utilizing QR aggregates, and conjugating dense DNA onto cadmium-free InP/ZnS QDs. DAF therefore offers a versatile solution for hydrophilic ligand functionalization of QDs and QRs applicable to diverse applications.

13.
Angew Chem Int Ed Engl ; : e202409854, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38950149

RESUMO

An organophosphorus -catalyzed method for the direct electrophilic cyanation of C(sp2)-H nucleophiles with sodium cyanate (NaOCN) is reported. The catalytic deoxyfunctionalization of the OCN- anion is enabled by the use of a small-ring phosphacyclic (phosphetane) catalyst in combination with a terminal hydrosilane O-atom acceptor and a malonate-derived bromenium donor. In situ spectroscopy under single-turnover conditions demonstrate that insoluble inorganic cyanate anion is activated by bromide displacement on a bromophosphonium catalytic intermediate to give a reactive N-bound isocyanatophosphonium ion, which delivers electrophilic "CN+" equivalents to nucleophilic (hetero)arenes and alkenes with loss of a phosphine oxide. These results demonstrate the feasibility of deoxyfunctionalization of insoluble inorganic salts by PIII/PV=O catalyzed phase transfer activation.

14.
Angew Chem Int Ed Engl ; : e202408820, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058627

RESUMO

A general phase-transfer catalyst (PTC) mediated enantioselective alkylation of N-acylsulfenamides is reported. Essential to achieving high selectivity was the use of the triethylacetyl sulfenamide protecting group along with aqueous KOH as the base under biphasic aqueous conditions to enable the reaction to be performed at -40 °C. With these key parameters, enantiomeric ratios up to 97.5:2.5 at the newly generated chiral sulfur center were achieved with an inexpensive cinchona alkaloid derived PTC. Broad scope and excellent functional group compatibility was observed for a variety of S-(hetero)aryl and branched and unbranched S-alkyl sulfenamides. Moreover, to achieve high selectivity for the opposite enantiomer, a pseudoenantiomeric catalyst was designed and synthesized from inexpensive cinchonidine. Given that sulfoximines are a bioactive pharmacophore of ever-increasing interest, selected product sulfilimines were oxidized to the corresponding sulfoximines with subsequent reductive cleavage affording the free-NH sulfoximines in high yields. The utility of the disclosed method was further demonstrated by the efficient asymmetric synthesis of atuveciclib, a phase I clinical candidate for which only chiral HPLC separation had previously been reported for isolation of the desired (R)-sulfoximine stereoisomer.

15.
Angew Chem Int Ed Engl ; 63(12): e202317995, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38191987

RESUMO

Exploiting emissive hydrophobic nanoclusters for hydrophilic applications remains a challenge because of photoluminescence (PL) quenching during phase transfer. In addition, the mechanism underlying PL quenching remains unclear. In this study, the PL-quenching mechanism was examined by analyzing the atomically precise structures and optical properties of a surface-engineered Ag29 nanocluster with an all-around-carboxyl-functionalized surface. Specifically, phase-transfer-triggered PL quenching was justified as molecular decoupling, which directed an unfixed cluster surface and weakened the radiative transition. Furthermore, emission recovery of the quenched nanoclusters was accomplished by using a supramolecular recoupling approach through the glutathione-addition-induced aggregation of cluster molecules, wherein the restriction of intracluster motion and intercluster rotation strengthened the radiative transition of the clusters. The results of this work offer a new perspective on structure-emission correlations for atomically precise nanoclusters and hopefully provide insight into the fabrication of highly emissive cluster-based nanomaterials for downstream hydrophilic applications.

16.
Angew Chem Int Ed Engl ; 63(17): e202319206, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38389503

RESUMO

A biphasic anodic oxidation method for aromatic halogenation process was developed, where aqueous metal salts were directly used as halogen source. Ammonium salts serve as both electrolytes and phase transfer catalysis to facilitate anion transport and oxidative transformation. This design allows for chlorination or nitration of multiple types of arenes using NaCl or KNO2.

17.
J Neurosci Res ; 101(1): 20-33, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36148534

RESUMO

Sleep state transitions are closely related to insomnia, drowsiness, and sleep maintenance. However, how the cortical network varies during such a transition process remains unclear. Changes in the cortical interaction during the short-term process of sleep stage transitions were investigated. In all, 40 healthy young participants underwent overnight polysomnography. The phase transfer entropy of six frequency bands was obtained from 16 electroencephalography channels to assess the strength and direction of information flow between the cortical regions. Differences in the cortical network between the first and the last 10 s in a 40-s transition period across wakefulness, N1, N2, N3, and rapid eye movement were, respectively, studied. Various frequency bands exhibited different patterns during the sleep stage transitions. It was found that the mutual transitions between the sleep stages were not necessarily the opposite. More significant changes were observed in the sleep deepening process than in the process of sleep awakening. During sleep stage transitions, changes in the inflow and outflow strength of various cortical regions led to regional differences, but for the entire sleep progress, such an imbalance did not intensify, and a dynamic balance was instead observed. The detailed findings of variations in cortical interactions during sleep stage transition promote understanding of sleep mechanism, sleep process, and sleep function. Additionally, it is expected to provide helpful clues for sleep improvement, like reducing the time required to fall asleep and maintaining sleep depth.


Assuntos
Encéfalo , Sono , Humanos , Vigília , Fases do Sono , Eletroencefalografia
18.
Chemistry ; 29(53): e202301866, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37332072

RESUMO

Site-specifically deuterated organocatalysts were prepared and found to show improved reactivity over the non-deuterated analogs. Two privileged C2 -symmetric chiral binaphthyl-modified tetraalkylammonium salts were selected for this study. The stability of these phase-transfer catalysts was generally improved by site-specific deuteration, though the degree of improvement was structure dependent. In particular, a large secondary kinetic isotope effect was observed for the tetradeuterated phase-transfer catalyst. The performance of these deuterated catalysts in the asymmetric catalytic alkylation of amino acid derivatives was better than that of non-deuterated analogs at low catalyst loadings. The results suggest that catalyst deuteration is a promising strategy for enhancing the stability and performance of organocatalysts.

19.
Chemistry ; 29(63): e202302188, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37566451

RESUMO

This work reports the effect of Pd(II) as chemical effector on an acylhydrazone-based dynamic covalent library (DCL) in biphasic systems (water/chloroform). The constituents of the DCL are self-built and distributed in the two phases, two of them are lipophilic enough to play the role of a carrier agent that may transfer Pd(II) from the aqueous phase to the organic phase. Upon addition of Pd(II), the DCL of components exhibits a strong amplification of the constituent that is the most adapted to stabilize Pd(II) in chloroform as well as its agonist in water. This evolution is driven by the combination of the interaction of the DCL with Pd(II) and the presence of the two phases. This study paves the way to a novel approach for liquid/liquid extraction and metal recovery by means of adaptive extractant species generated in situ by a DCL.

20.
Chemistry ; 29(2): e202202953, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36161384

RESUMO

The linking of phosphoric acids via covalent or mechanical bonds has proven to be a successful strategy for the design of novel organocatalysts. Here, we present the first systematic investigation of singly-linked and macrocyclic bisphosphoric acids, including their synthesis and their application in phase-transfer and Brønsted acid catalysis. We found that the novel bisphosphoric acids show dramatically increased enantioselectivities in comparison to their monophosphoric acid analogues. However, the nature, length and number of linkers has a profound influence on the enantioselectivities. In the asymmetric dearomative fluorination via phase-transfer catalysis, bisphosphoric acids with a single, rigid bisalkyne-linker give the best results with moderate to good enantiomeric excesses. In contrast, bisphosphoric acids with flexible linkers give excellent enantioselectivities in the transfer-hydrogenation of quinolines via cooperative Brønsted acid catalysis. In the latter case, sufficiently long linkers are needed for high stereoselectivities, as found experimentally and supported by DFT calculations.


Assuntos
Ácidos Fosfóricos , Ácidos Fosfóricos/química , Hidrogenação , Catálise , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA