Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Annu Rev Immunol ; 36: 695-715, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29490163

RESUMO

The unique class of heavy chain-only antibodies, present in Camelidae, can be shrunk to just the variable region of the heavy chain to yield VHHs, also called nanobodies. About one-tenth the size of their full-size counterparts, nanobodies can serve in applications similar to those for conventional antibodies, but they come with a number of signature advantages that find increasing application in biology. They not only function as crystallization chaperones but also can be expressed inside cells as such, or fused to other proteins to perturb the function of their targets, for example, by enforcing their localization or degradation. Their small size also affords advantages when applied in vivo, for example, in imaging applications. Here we review such applications, with particular emphasis on those areas where conventional antibodies would face a more challenging environment.


Assuntos
Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/imunologia , Animais , Formação de Anticorpos , Técnicas de Visualização da Superfície Celular , Engenharia Genética , Humanos , Cadeias Pesadas de Imunoglobulinas/biossíntese , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Anticorpos de Domínio Único/biossíntese , Anticorpos de Domínio Único/uso terapêutico , Relação Estrutura-Atividade
2.
Cell ; 167(1): 171-186.e15, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27641501

RESUMO

While acute myeloid leukemia (AML) comprises many disparate genetic subtypes, one shared hallmark is the arrest of leukemic myeloblasts at an immature and self-renewing stage of development. Therapies that overcome differentiation arrest represent a powerful treatment strategy. We leveraged the observation that the majority of AML, despite their genetically heterogeneity, share in the expression of HoxA9, a gene normally downregulated during myeloid differentiation. Using a conditional HoxA9 model system, we performed a high-throughput phenotypic screen and defined compounds that overcame differentiation blockade. Target identification led to the unanticipated discovery that inhibition of the enzyme dihydroorotate dehydrogenase (DHODH) enables myeloid differentiation in human and mouse AML models. In vivo, DHODH inhibitors reduced leukemic cell burden, decreased levels of leukemia-initiating cells, and improved survival. These data demonstrate the role of DHODH as a metabolic regulator of differentiation and point to its inhibition as a strategy for overcoming differentiation blockade in AML.


Assuntos
Antineoplásicos/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Terapia de Alvo Molecular , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Animais , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Diferenciação Celular , Di-Hidro-Orotato Desidrogenase , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Ensaios de Triagem em Larga Escala , Proteínas de Homeodomínio/genética , Humanos , Leucemia Mieloide Aguda/genética , Camundongos , Células Mieloides/patologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Pirimidinas/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/isolamento & purificação , Bibliotecas de Moléculas Pequenas/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Mol Pain ; 19: 17448069221148351, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36526437

RESUMO

Sensory neuron hyperexcitability is a critical driver of pathological pain and can result from axon damage, inflammation, or neuronal stress. G-protein coupled receptor signaling can induce pain amplification by modulating the activation of Trp-family ionotropic receptors and voltage-gated ion channels. Here, we sought to use calcium imaging to identify novel inhibitors of the intracellular pathways that mediate sensory neuron sensitization and lead to hyperexcitability. We identified a novel stimulus cocktail, consisting of the SSTR2 agonist L-054,264 and the S1PR3 agonist CYM5541, that elicits calcium responses in mouse primary sensory neurons in vitro as well as pain and thermal hypersensitivity in mice in vivo. We screened a library of 906 bioactive compounds and identified 24 hits that reduced calcium flux elicited by L-054,264/CYM5541. Among these hits, silymarin, a natural product derived from milk thistle, strongly reduced activation by the stimulation cocktail, as well as by a distinct inflammatory cocktail containing bradykinin and prostaglandin E2. Silymarin had no effect on sensory neuron excitability at baseline, but reduced calcium flux via Orai channels and downstream mediators of phospholipase C signaling. In vivo, silymarin pretreatment blocked development of adjuvant-mediated thermal hypersensitivity, indicating potential use as an anti-inflammatory analgesic.


Assuntos
Nociceptores , Silimarina , Camundongos , Animais , Nociceptores/metabolismo , Cálcio/metabolismo , Silimarina/metabolismo , Silimarina/farmacologia , Dor/metabolismo , Células Receptoras Sensoriais/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Gânglios Espinais/metabolismo
4.
Mol Syst Biol ; 17(5): e10267, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34031985

RESUMO

Novel invertebrate-killing compounds are required in agriculture and medicine to overcome resistance to existing treatments. Because insecticides and anthelmintics are discovered in phenotypic screens, a crucial step in the discovery process is determining the mode of action of hits. Visible whole-organism symptoms are combined with molecular and physiological data to determine mode of action. However, manual symptomology is laborious and requires symptoms that are strong enough to see by eye. Here, we use high-throughput imaging and quantitative phenotyping to measure Caenorhabditis elegans behavioral responses to compounds and train a classifier that predicts mode of action with an accuracy of 88% for a set of ten common modes of action. We also classify compounds within each mode of action to discover substructure that is not captured in broad mode-of-action labels. High-throughput imaging and automated phenotyping could therefore accelerate mode-of-action discovery in invertebrate-targeting compound development and help to refine mode-of-action categories.


Assuntos
Anti-Helmínticos/farmacologia , Caenorhabditis elegans/fisiologia , Inseticidas/farmacologia , Biologia de Sistemas/métodos , Animais , Anti-Helmínticos/química , Anti-Helmínticos/classificação , Automação , Comportamento Animal/efeitos dos fármacos , Caenorhabditis elegans/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Ensaios de Triagem em Larga Escala , Inseticidas/química , Inseticidas/classificação , Estrutura Molecular , Fenótipo
5.
Bioorg Med Chem ; 65: 116782, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35512484

RESUMO

Achieving pharmacological control over cardiomyocyte proliferation represents a prime goal in therapeutic cardiovascular research. Here, we identify a novel chemical tool compound for the expansion of human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes. The forkhead box O (FOXO) inhibitor AS1842856 was identified as a significant hit from an unbiased proliferation screen in early, immature hiPSC- cardiomyocytes (eCMs). The mitogenic effects of AS1842856 turned out to be robust, dose-dependent, sustained, and reversible. eCM numbers increased >30-fold as induced by AS1842856 over three passages. Phenotypically as well as by marker gene expression, the compound interestingly appeared to counteract cellular maturation both in immature hiPSC-CMs as well as in more advanced ones. Thus, FOXO inhibitor AS1842856 presents a novel proliferation inducer for the chemically defined, xeno-free expansion of hiPSC-derived CMs, while its de-differentiation effect might as well bear potential in regenerative medicine.


Assuntos
Células-Tronco Pluripotentes Induzidas , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Matriz Extracelular , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos
6.
Neurobiol Dis ; 160: 105515, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34571136

RESUMO

Brain inclusions mainly composed of misfolded and aggregated TAR DNA binding protein 43 (TDP-43), are characteristic hallmarks of amyotrophic lateral sclerosis (ALS). Irrespective of the role played by the inclusions, their reduction represents an important therapeutic pathway that is worth exploring. Their removal can either lead to the recovery of TDP-43 function by removing the self-templating conformers that sequester the protein in the inclusions, and/or eliminate any potential intrinsic toxicity of the aggregates. The search for curative therapies has been hampered by the lack of ALS models for use in high-throughput screening. We adapted, optimised, and extensively characterised our previous ALS cellular model for such use. The model demonstrated efficient aggregation of endogenous TDP-43, and concomitant loss of its splicing regulation function. We provided a proof-of-principle for its eventual use in high-throughput screening using compounds of the tricyclic family and showed that recovery of TDP-43 function can be achieved by the enhanced removal of TDP-43 aggregates by these compounds. We observed that the degradation of the aggregates occurs independent of the autophagy pathway beyond autophagosome-lysosome fusion, but requires a functional proteasome pathway. The in vivo translational effect of the cellular model was tested with two of these compounds in a Drosophila model expressing a construct analogous to the cellular model, where thioridazine significantly improved the locomotive defect. Our findings have important implications as thioridazine cleared TDP-43 aggregates and recovered TDP-43 functionality. This study also highlights the importance of a two-stage, in vitro and in vivo model system to cross-check the search for small molecules that can clear TDP-43 aggregates in TDP-43 proteinopathies.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Proteínas de Ligação a DNA/metabolismo , Antagonistas de Dopamina/uso terapêutico , Proteínas de Drosophila/metabolismo , Agregação Patológica de Proteínas/tratamento farmacológico , Tioridazina/uso terapêutico , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Autofagia/efeitos dos fármacos , Linhagem Celular , Modelos Animais de Doenças , Antagonistas de Dopamina/farmacologia , Drosophila , Humanos , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Tioridazina/farmacologia
7.
Molecules ; 26(21)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34771052

RESUMO

Acute myeloid leukemia (AML) is the most aggressive type of blood cancer, and there is a continued need for new treatments that are well tolerated and improve long-term survival rates in patients. Induction of differentiation has emerged as a promising alternative to conventional cytotoxic chemotherapy, but known agents lack efficacy in genetically distinct patient populations. Previously, we established a phenotypic screen to identify small molecules that could stimulate differentiation in a range of AML cell lines. Utilising this strategy, a 1,5-dihydrobenzo[e][1,4]oxazepin-2(3H)-one hit compound was identified. Herein, we report the hit validation in vitro, structure-activity relationship (SAR) studies and the pharmacokinetic profiles for selected compounds.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Células Cultivadas , Técnicas de Química Sintética , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Leucemia Mieloide Aguda , Estrutura Molecular , Relação Estrutura-Atividade
8.
Molecules ; 26(14)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34299431

RESUMO

In the present study, we established a practical and cost-effective high throughput screening assay, which relies on the measurement of the motility of Caenorhabditis elegans by infrared light-interference. Using this assay, we screened 14,400 small molecules from the "HitFinder" library (Maybridge), achieving a hit rate of 0.3%. We identified small molecules that reproducibly inhibited the motility of C. elegans (young adults) and assessed dose relationships for a subset of compounds. Future work will critically evaluate the potential of some of these hits as candidates for subsequent optimisation or repurposing as nematocides or nematostats. This high throughput screening assay has the advantage over many previous assays in that it is cost- and time-effective to carry out and achieves a markedly higher throughput (~10,000 compounds per week); therefore, it is suited to the screening of libraries of tens to hundreds of thousands of compounds for subsequent evaluation and development. The present phenotypic whole-worm assay should be readily adaptable to a range of socioeconomically important parasitic nematodes of humans and animals, depending on their dimensions and motility characteristics in vitro, for the discovery of new anthelmintic candidates. This focus is particularly important, given the widespread problems associated with drug resistance in many parasitic worms of livestock animals globally.


Assuntos
Anti-Helmínticos/análise , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Animais , Anti-Helmínticos/isolamento & purificação , Anti-Helmínticos/farmacologia , Anti-Infecciosos/farmacologia , Antinematódeos/análise , Antinematódeos/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Resistência a Medicamentos/efeitos dos fármacos , Larva/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia
9.
Med Chem Res ; 30(5): 1166-1174, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34744409

RESUMO

Parkinson's disease (PD) is an age-associated neurodegenerative movement disorder that leads to loss of dopaminergic neurons and motor deficits. Approaches to neuroprotection and symptom management in PD include use of monoamine oxidase B (MAO-B) inhibitors. Many patients with PD also exhibit memory loss in the later stages of disease progression, which is treated with acetylcholine esterase (AChE) inhibitors. We sought to identify a dual-mechanism compound that would inhibit both MAO-B and AChE enzymes. Our screen identified a promising compound (7) with balanced MAO-B (IC50 of 16.83 µM) and AChE inhibition activity (AChE IC50 of 22.04 µM). Application of this compound 7 increased short-term associative memory and significantly prevented 6-hydroxy-dopamine toxicity in dopaminergic neurons in the Caenorhabditis elegans nematode. These findings present a platform for future development of dual-mechanism drugs to treat neurodegenerative diseases such as PD.

10.
BMC Microbiol ; 20(1): 262, 2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32838766

RESUMO

BACKGROUND: Glycosylphosphatidylinositol (GPI)-anchored glycoproteins have diverse intrinsic functions in yeasts, and they also have different uses in vitro. In this study, the functions of potential GPI proteins in Pichia pastoris were explored by gene knockout approaches. RESULTS: Through an extensive knockout of GPI proteins in P. pastoris, a single-gene deletion library was constructed for 45 predicted GPI proteins. The knockout of proteins may lead to the activation of a cellular response named the 'compensatory mechanism', which is characterized by changes in the content and relationship between cell wall polysaccharides and surface proteins. Among the 45 deletion strains, five showed obvious methanol tolerance, four owned high content of cell wall polysaccharides, and four had a high surface hydrophobicity. Some advantages of these strains as production hosts were revealed. Furthermore, the deletion strains with high surface hydrophobicity were used as hosts to display Candida antarctica lipase B (CALB). The strain gcw22Δ/CALB-GCW61 showed excellent fermentation characteristics, including a faster growth rate and higher hydrolytic activity. CONCLUSIONS: This GPI deletion library has some potential applications for production strains and offers a valuable resource for studying the precise functions of GPI proteins, especially their putative functions.


Assuntos
Proteínas Fúngicas/metabolismo , Proteínas Ligadas por GPI/genética , Técnicas de Inativação de Genes/métodos , Lipase/metabolismo , Pichia/crescimento & desenvolvimento , Fermentação , Proteínas Fúngicas/genética , Deleção de Genes , Biblioteca Gênica , Engenharia Genética , Hidrólise , Lipase/genética , Pichia/genética , Pichia/metabolismo
11.
Bioorg Med Chem ; 28(9): 115425, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32201192

RESUMO

Drug discovery requires the combination of medicinal chemistry and biology. In this article Chris Lipinski, the medicinal chemist, describes the chemical origins at Pfizer of Tolimidone1 the starting point for the repurposed MLR-1023 (Ochman et al., 2012). Andrew Reaume, the biologist, describes his motivation to develop a high quality (i.e. in vivo model) phenotypic screening platform as an ideal drug repositioning platform.


Assuntos
Ensaios de Triagem em Larga Escala , Hipoglicemiantes/farmacologia , Insulina/metabolismo , Pirimidinonas/farmacologia , Quinases da Família src/metabolismo , Descoberta de Drogas , Reposicionamento de Medicamentos , Humanos , Hipoglicemiantes/química , Fenótipo , Pirimidinonas/química
12.
J Infect Dis ; 219(7): 1095-1103, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30358879

RESUMO

Naegleria fowleri is the causative agent of primary amoebic meningoencephalitis (PAM), which is fatal in >97% of cases. In this study, we aimed to identify new, rapidly acting drugs to increase survival rates. We conducted phenotypic screens of libraries of Food and Drug Administration-approved compounds and the Medicines for Malaria Venture Pathogen Box and validated 14 hits (defined as a 50% inhibitory concentration of <1 µM). The hits were then prioritized by assessing the rate of action and efficacy in combination with current drugs used to treat PAM. Posaconazole was found to inhibit amoeba growth within the first 12 hours of exposure, which was faster than any currently used drug. In addition, posaconazole cured 33% of N. fowleri-infected mice at a dose of 20 mg/kg and, in combination with azithromycin, increased survival by an additional 20%. Fluconazole, which is currently used for PAM therapy, was ineffective in vitro and vivo. Our results suggest posaconazole could replace fluconazole in the treatment of PAM.


Assuntos
Antiprotozoários/farmacologia , Infecções Protozoárias do Sistema Nervoso Central/tratamento farmacológico , Descoberta de Drogas/métodos , Naegleria fowleri/efeitos dos fármacos , Triazóis/farmacologia , Anfotericina B/farmacologia , Anfotericina B/uso terapêutico , Animais , Antiprotozoários/uso terapêutico , Azitromicina/farmacologia , Azitromicina/uso terapêutico , Modelos Animais de Doenças , Combinação de Medicamentos , Sinergismo Farmacológico , Feminino , Fluconazol/farmacologia , Fluconazol/uso terapêutico , Humanos , Concentração Inibidora 50 , Camundongos , Fenótipo , Fatores de Tempo , Triazóis/uso terapêutico , Estados Unidos , United States Food and Drug Administration
13.
J Mol Cell Cardiol ; 127: 204-214, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30597148

RESUMO

Over 5 million people in the United States suffer from heart failure, due to the limited ability to regenerate functional cardiac tissue. One potential therapeutic strategy is to enhance proliferation of resident cardiomyocytes. However, phenotypic screening for therapeutic agents is challenged by the limited ability of conventional markers to discriminate between cardiomyocyte proliferation and endoreplication (e.g. polyploidy and multinucleation). Here, we developed a novel assay that combines automated live-cell microscopy and image processing algorithms to discriminate between proliferation and endoreplication by quantifying changes in the number of nuclei, changes in the number of cells, binucleation, and nuclear DNA content. We applied this assay to further prioritize hits from a primary screen for DNA synthesis, identifying 30 compounds that enhance proliferation of human induced pluripotent stem cell-derived cardiomyocytes. Among the most active compounds from the phenotypic screen are clinically approved L-type calcium channel blockers from multiple chemical classes whose activities were confirmed across different sources of human induced pluripotent stem cell-derived cardiomyocytes. Identification of compounds that stimulate human cardiomyocyte proliferation may provide new therapeutic strategies for heart failure.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Proliferação de Células , DNA/biossíntese , Humanos , Processamento de Imagem Assistida por Computador , Fenótipo , Ploidias
14.
Int J Mol Sci ; 20(10)2019 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-31117204

RESUMO

Kinase signaling plays an important role in acquired epilepsy, but only a small percentage of the total kinome has been investigated in this context. A major roadblock that prevents the systematic investigation of the contributions of kinase signaling networks is the slow speed of experiments designed to test the chronic effects of target inhibition in epilepsy models. We developed a novel in vitro screening platform based on microwire recordings from an organotypic hippocampal culture model of acquired epilepsy. This platform enables the direct, parallel determination of the effects of compounds on spontaneous epileptiform activity. The platform also enables repeated recordings from the same culture over two-week long experiments. We screened 45 kinase inhibitors and quantified their effects on seizure duration, the frequency of paroxysmal activity, and electrographic load. We identified several inhibitors with previously unknown antiepileptic properties. We also used kinase inhibition profile cross-referencing to identify kinases that are inhibited by seizure-suppressing compounds, but not by compounds that had no effect on seizures.


Assuntos
Anticonvulsivantes/uso terapêutico , Avaliação Pré-Clínica de Medicamentos/métodos , Epilepsia/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Técnicas de Cultura de Órgãos/métodos , Inibidores de Proteínas Quinases/uso terapêutico , Animais , Epilepsia/fisiopatologia , Hipocampo/fisiopatologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Ratos , Ratos Sprague-Dawley
15.
Bioorg Med Chem Lett ; 27(17): 3987-3991, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28778468

RESUMO

To develop agents for the treatment of infections caused by Mycobacterium tuberculosis, a novel phenotypic screen was undertaken that identified a series of 2-N-aryl thiazole-based inhibitors of intracellular Mycobacterium tuberculosis. Analogs were optimized to improve potency against an attenuated BSL2 H37Ra laboratory strain cultivated in human macrophage cells in vitro. The insertion of a carboxylic acid functionality resulted in compounds that retained potency and greatly improved microsomal stability. However, the strong potency trends we observed in the attenuated H37Ra strain were inconsistent with the potency observed for virulent strains in vitro and in vivo.


Assuntos
Antibacterianos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Tiazóis/farmacologia , Animais , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Camundongos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade , Tiazóis/síntese química , Tiazóis/química
16.
Bioorg Med Chem Lett ; 27(9): 2029-2037, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28320616

RESUMO

In this report we utilized zebrafish (Danio rerio) embryos in a phenotypical high-content screen (HCS) to identify novel leads in a cancer drug discovery program. We initially validated our HCS model using the flavin adenosine dinucleotide (FAD) containing endoplasmic reticulum (ER) enzyme, endoplasmic reticulum oxidoreductase (ERO1) inhibitor EN460. EN460 showed a dose response effect on the embryos with a dose of 10µM being significantly lethal during early embryonic development. The HCS campaign which employed a small library identified a promising lead compound, a naphthyl-benzoic acid derivative coined compound 1 which had significant dosage and temporally dependent effects on notochord and muscle development in zebrafish embryos. Screening a 369 kinase member panel we show that compound 1 is a PIM3 kinase inhibitor (IC50=4.078µM) and surprisingly a DAPK1 kinase agonist/activator (EC50=39.525µM). To our knowledge this is the first example of a small molecule activating DAPK1 kinase. We provide a putative model for increased phosphate transfer in the ATP binding domain when compound 1 is virtually docked with DAPK1. Our data indicate that observable phenotypical changes can be used in future zebrafish screens to identify compounds acting via similar molecular signaling pathways.


Assuntos
Descoberta de Drogas/métodos , Embrião não Mamífero/efeitos dos fármacos , Ativadores de Enzimas/química , Ativadores de Enzimas/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Peixe-Zebra/embriologia , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Ácido Benzoico/química , Ácido Benzoico/farmacologia , Proteínas Quinases Associadas com Morte Celular/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Embrião não Mamífero/enzimologia , Ativação Enzimática/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/metabolismo
17.
J Mol Cell Cardiol ; 72: 74-84, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24613264

RESUMO

Cardiac hypertrophy is controlled by a highly connected signaling network with many effectors of cardiac myocyte size. Quantification of the contribution of individual pathways to specific changes in shape and transcript abundance is needed to better understand hypertrophy signaling and to improve heart failure therapies. We stimulated cardiac myocytes with 15 hypertrophic agonists and quantitatively characterized differential regulation of 5 shape features using high-throughput microscopy and transcript levels of 12 genes using qPCR. Transcripts measured were associated with phenotypes including fibrosis, cell death, contractility, proliferation, angiogenesis, inflammation, and the fetal cardiac gene program. While hypertrophy pathways are highly connected, the agonist screen revealed distinct hypertrophy phenotypic signatures for the 15 receptor agonists. We then used k-means clustering of inputs and outputs to identify a network map linking input modules to output modules. Five modules were identified within inputs and outputs with many maladaptive outputs grouping together in one module: Bax, C/EBPß, Serca2a, TNFα, and CTGF. Subsequently, we identified mechanisms underlying two correlations revealed in the agonist screen: correlation between regulators of fibrosis and cell death signaling (CTGF and Bax mRNA) caused by AngII; and myocyte proliferation (CITED4 mRNA) and elongation caused by Nrg1. Follow-up experiments revealed positive regulation of Bax mRNA level by CTGF and an incoherent feedforward loop linking Nrg1, CITED4 and elongation. With this agonist screen, we identified the most influential inputs in the cardiac hypertrophy signaling network for a variety of features related to pathological and protective hypertrophy signaling and shared regulation among cardiac myocyte phenotypes.


Assuntos
Cardiomegalia/genética , Regulação da Expressão Gênica , Miócitos Cardíacos/metabolismo , RNA Mensageiro/genética , Angiotensina II/genética , Angiotensina II/metabolismo , Animais , Animais Recém-Nascidos , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Forma Celular/genética , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Perfilação da Expressão Gênica , Miócitos Cardíacos/patologia , Neuregulina-1/genética , Neuregulina-1/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
18.
Mov Disord ; 29(10): 1231-40, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25131316

RESUMO

No disease-modifying therapies are available for synucleinopathies, including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple systems atrophy (MSA). The lack of therapies has been impeded by a paucity of validated drug targets and problematic cell-based model systems. New approaches are therefore needed to identify genes and compounds that directly target the underlying cellular pathologies elicited by the pathological protein, α-synuclein (α-syn). This small, lipid-binding protein impinges on evolutionarily conserved processes such as vesicle trafficking and mitochondrial function. For decades, the genetically tractable, single-cell eukaryote, budding yeast, has been used to study nearly all aspects of cell biology. More recently, yeast has revealed key insights into the underlying cellular pathologies caused by α-syn. The robust cellular toxicity caused by α-syn expression facilitates unbiased high-throughput small-molecule screening. Critically, one must validate the discoveries made in yeast in disease-relevant neuronal models. Here, we describe two recent reports that together establish yeast-to-human discovery platforms for synucleinopathies. In this exemplar, genes and small molecules identified in yeast were validated in patient-derived neurons that present the same cellular phenotypes initially discovered in yeast. On validation, we returned to yeast, where unparalleled genetic approaches facilitated the elucidation of a small molecule's mode of action. This approach enabled the identification and neuronal validation of a previously unknown "druggable" node that interfaces with the underlying, precipitating pathologies caused by α-syn. Such platforms can provide sorely needed leads and fresh ideas for disease-modifying therapy for these devastating diseases.


Assuntos
Transtornos dos Movimentos/patologia , Neurônios/metabolismo , Pesquisa Translacional Biomédica , Leveduras , alfa-Sinucleína/metabolismo , Animais , Humanos , Transtornos dos Movimentos/genética , Leveduras/genética , Leveduras/metabolismo , alfa-Sinucleína/genética
19.
Chem Biol Drug Des ; 103(1): e14361, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37767622

RESUMO

Proliferating cell nuclear antigen (PCNA) is a homo-trimeric protein complex that clamps around DNA to tether DNA polymerases to the template during replication and serves as a hub for many other interacting proteins. It regulates DNA metabolic processes and other vital cellar functions through the binding of proteins having short linear motifs (SLiMs) like the PIP-box (PCNA-interacting protein-box) or the APIM (AlkB homolog 2 PCNA-interacting motif) in the hydrophobic pocket where SLiMs bind. However, overproducing TbPCNA or human PCNA (hPCNA) in the pathogenic protist Trypanosoma brucei triggers a dominant-negative phenotype of arrested proliferation. The mechanism for arresting T. brucei proliferation requires the overproduced PCNA orthologs to have functional intact SLiM-binding pocket. Sight-directed mutagenesis studies showed that T. brucei overproducing PCNA variants with disrupted SLiM-binding pockets grew normally. We hypothesized that chemically disrupting the SLiM-binding pocket would restore proliferation in T. brucei, overproducing PCNA orthologs. Testing this hypothesis is the proof-of-concept for a T. brucei-based PCNA screening assay. The assay design is to discover bioactive small molecules that restore proliferation in T. brucei strains that overproduce PCNA orthologs, likely by disrupting interactions in the SLiM-binding pocket. The pilot screen for this assay discovered two hit compounds that linked to predetermined PCNA targets. Compound #1, a known hPCNA inhibitor, had selective bioactivity to hPCNA overproduced in T. brucei, validating the assay. Compound #6 had promiscuous bioactivity for hPCNA and TbPCNA but is the first compound discovered with bioactivity for inhibiting TbPCNA.


Assuntos
Replicação do DNA , Trypanosoma brucei brucei , Humanos , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/química , Antígeno Nuclear de Célula em Proliferação/metabolismo , Trypanosoma brucei brucei/metabolismo , DNA/metabolismo , Mutagênese , Ligação Proteica
20.
Cancer Lett ; 599: 217108, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38986735

RESUMO

Cancer remains the leading cause of death worldwide with approved oncology drugs continuing to have heterogenous patient responses and accompanied adverse effects (AEs) that limits effectiveness. Here, we examined >100 FDA-approved oncology drugs in the context of stemness using a surrogate model of transformed human pluripotent cancer stem cells (CSCs) vs. healthy stem cells (hSCs) capable of distinguishing abnormal self-renewal and differentiation. Although a proportion of these drugs had no effects (inactive), a larger portion affected CSCs (active), and a unique subset preferentially affected CSCs over hSCs (selective). Single cell gene expression and protein profiling of each drug's FDA recognized target provided a molecular correlation of responses in CSCs vs. hSCs. Uniquely, drugs selective for CSCs demonstrated clinical efficacy, measured by overall survival, and reduced AEs. Our findings reveal that while unintentional, half of anticancer drugs are active against CSCs and associated with improved clinical outcomes. Based on these findings, we suggest ability to target CSC targeting should be included as a property of early onco-therapeutic development.


Assuntos
Antineoplásicos , Aprovação de Drogas , Células-Tronco Neoplásicas , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/metabolismo , Antineoplásicos/farmacologia , United States Food and Drug Administration , Estados Unidos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/genética , Linhagem Celular Tumoral , Diferenciação Celular/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA