Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 287
Filtrar
1.
Mol Plant Microbe Interact ; 37(4): 416-423, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38171485

RESUMO

Soybean cyst nematode (Heterodera glycines, soybean cyst nematode [SCN]) disease adversely affects the yield of soybean and leads to billions of dollars in losses every year. To control the disease, it is necessary to study the resistance genes of the plant and their mechanisms. Isoflavonoids are secondary metabolites of the phenylalanine pathway, and they are synthesized in soybean. They are essential in plant response to biotic and abiotic stresses. In this study, we reported that phenylalanine ammonia-lyase (PAL) genes GmPALs involved in isoflavonoid biosynthesis, can positively regulate soybean resistance to SCN. Our previous study demonstrated that the expression of GmPAL genes in the resistant cultivar Huipizhi (HPZ) heidou are strongly induced by SCN. PAL is the rate-limiting enzyme that catalyzes the first step of phenylpropanoid metabolism, and it responds to biotic or abiotic stresses. Here, we demonstrate that the resistance of soybeans against SCN is suppressed by PAL inhibitor l-α-(aminooxy)-ß-phenylpropionic acid (L-AOPP) treatment. Overexpression of eight GmPAL genes caused diapause of nematodes in transgenic roots. In a petiole-feeding bioassay, we identified that two isoflavones, daidzein and genistein, could enhance resistance against SCN and suppress nematode development. This study thus reveals GmPAL-mediated resistance against SCN, information that has good application potential. The role of isoflavones in soybean resistance provides new information for the control of SCN. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Resistência à Doença , Regulação da Expressão Gênica de Plantas , Glycine max , Isoflavonas , Fenilalanina Amônia-Liase , Doenças das Plantas , Tylenchoidea , Glycine max/genética , Glycine max/parasitologia , Tylenchoidea/fisiologia , Doenças das Plantas/parasitologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Animais , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/metabolismo , Resistência à Doença/genética , Isoflavonas/farmacologia , Isoflavonas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas
2.
BMC Plant Biol ; 24(1): 364, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38702592

RESUMO

BACKGROUND: This study aimed to investigate the alterations in biochemical and physiological responses of oat plants exposed to antimony (Sb) contamination in soil. Specifically, we evaluated the effectiveness of an arbuscular mycorrhizal fungus (AMF) and olive mill waste (OMW) in mitigating the effects of Sb contamination. The soil was treated with a commercial strain of AMF (Rhizophagus irregularis) and OMW (4% w/w) under two different levels of Sb (0 and 1500 mg kg-1 soil). RESULTS: The combined treatment (OMW + AMF) enhanced the photosynthetic rate (+ 40%) and chlorophyll a (+ 91%) and chlorophyll b (+ 50%) content under Sb condition, which in turn induced more biomass production (+ 67-78%) compared to the contaminated control plants. More photosynthesis in OMW + AMF-treated plants gives a route for phenylalanine amino acid synthesis (+ 69%), which is used as a precursor for the biosynthesis of secondary metabolites, including flavonoids (+ 110%), polyphenols (+ 26%), and anthocyanins (+ 63%) compared to control plants. More activation of phenylalanine ammonia-lyase (+ 38%) and chalcone synthase (+ 26%) enzymes in OMW + AMF-treated plants under Sb stress indicated the activation of phenylpropanoid pathways in antioxidant metabolites biosynthesis. There was also improved shifting of antioxidant enzyme activities in the ASC/GSH and catalytic pathways in plants in response to OMW + AMF and Sb contamination, remarkably reducing oxidative damage markers. CONCLUSIONS: While individual applications of OMW and AMF also demonstrated some degree of plant tolerance induction, the combined presence of AMF with OMW supplementation significantly enhanced plant biomass production and adaptability to oxidative stress induced by soil Sb contamination.


Assuntos
Antimônio , Micorrizas , Olea , Poluentes do Solo , Micorrizas/fisiologia , Olea/microbiologia , Poluentes do Solo/metabolismo , Antimônio/metabolismo , Adaptação Fisiológica , Resíduos Industriais , Fotossíntese/efeitos dos fármacos , Biodegradação Ambiental , Biomassa
3.
BMC Plant Biol ; 24(1): 557, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877427

RESUMO

In the course of their life, plants face a multitude of environmental anomaly that affects their growth and production. In recent decades, lead (Pb) gained an increasing attention as it is among the most significant contaminants in the environment. Therefore, in this study the effects of Pb concentrations (0, 50 and 100 ppm) on Vicia faba plants and attempts to alleviate this stress using chitosan (Chs; 0 and 0.1%) were performed. The results validated that with increasing Pb concentrations, a decline in growth, pigments and protein contents was observed. In the same time, a significant upsurge in the stress markers, both malondialdehyde (MDA) and H2O2, was observed under Pb stress. Nonetheless, foliar spraying with Chs improves the faba bean growth, pigment fractions, protein, carbohydrates, reduces MDA and H2O2 contents and decreases Pb concentrations under Pb stress. Pb mitigation effects by Chs are probably related with the activity of antioxidant enzymes, phenylalanine ammonia lyase (PAL) and proline. The application of Chs enhanced the activities of peroxidase, catalase and PAL by 25.77, 17.71 and 20.07%, respectively at 100 ppm Pb compared to their control. Plant genomic material exhibits significant molecular polymorphism, with an average polymorphism of 91.66% across all primers. To assess the genetic distance created among treatments, the dendrogram was constructed and the results of the similarity index ranged from 0.75 to 0.95, indicating genetic divergence. Our research offers a thorough comprehension of the role of Chs in lessening the oxidative stress, which will encourage the use of Chs in agricultural plant protection.


Assuntos
Quitosana , Chumbo , Estresse Oxidativo , Vicia faba , Vicia faba/efeitos dos fármacos , Vicia faba/genética , Vicia faba/metabolismo , Chumbo/metabolismo , Chumbo/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Quitosana/farmacologia , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Antioxidantes/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fenilalanina Amônia-Liase/metabolismo , Fenilalanina Amônia-Liase/genética
4.
Mol Genet Metab ; 142(1): 108151, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522180

RESUMO

OBJECTIVE: The aim of this study is to present a series of case studies on the real-life use of pegvaliase in Italy in managing patients affected by phenylketonuria (PKU) and provide practical insight and support to healthcare professionals currently approaching and facing this novel enzyme substitution therapy. METHODS: A panel of 11 PKU experts from seven leading Italian treatment centers attended online virtual meetings with the aim of reviewing their clinical and practical experiences with pegvaliase based on occurred cases. In selecting the cases, specific consideration was given to the nationwide representation of the centers involved and to the number of patients with PKU managed. Cases were thoroughly reviewed, with comprehensive discussions enabling the identification of key take-home messages regarding pegvaliase therapy. RESULTS: The panel discussed 18 cases, 11 males and 7 females (age range 17-43 years). At the last follow-up (up to 111 weeks after pegvaliase initiation), 11 out of 18 patients (61%) reached Phe levels below 600 µmol/l. Outcomes varied significantly across cases. All cases underscore the potential of pegvaliase in reducing Phe levels, enhancing the quality of life, and promoting social skills and independence. Additionally, the cases highlight the challenges associated with pegvaliase therapy, including managing adverse events and ensuring patient motivation and adherence. CONCLUSION: This is the first report about the Italian experience of managing patients affected by PKU with pegvaliase. Given the limited real-world data on the use of pegvaliase in PKU management, this case series offers valuable insights into the practical implementation and management of pegvaliase therapy in this Country. Continued research and data collection will be crucial to confirm and progress with this treatment. Despite potential challenges, pegvaliase therapy represents a substantial promise in managing PKU in Italy. Patient education, personalized treatment approaches, and careful monitoring are important to ensure optimal patient outcomes.


Assuntos
Fenilalanina Amônia-Liase , Fenilalanina , Fenilcetonúrias , Humanos , Fenilcetonúrias/tratamento farmacológico , Masculino , Feminino , Adolescente , Adulto , Adulto Jovem , Itália , Fenilalanina Amônia-Liase/uso terapêutico , Fenilalanina Amônia-Liase/efeitos adversos , Terapia de Reposição de Enzimas , Proteínas Recombinantes/uso terapêutico , Proteínas Recombinantes/administração & dosagem , Qualidade de Vida , Resultado do Tratamento
5.
Microb Cell Fact ; 23(1): 57, 2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38369470

RESUMO

BACKGROUND: Phenylpropanoids are a large group of plant secondary metabolites with various biological functions, derived from aromatic amino acids. Cyanobacteria are promising host organisms for sustainable production of plant phenylpropanoids. We have previously engineered Synechocystis sp. PCC 6803 to produce trans-cinnamic acid (tCA) and p-coumaric acid (pCou), the first intermediates of phenylpropanoid pathway, by overexpression of phenylalanine- and tyrosine ammonia lyases. In this study, we aimed to enhance the production of the target compounds tCA and pCou in Synechocystis. RESULTS: We eliminated the 4-hydroxyphenylpyruvate dioxygenase (HPPD) activity, which is a competing pathway consuming tyrosine and, possibly, phenylalanine for tocopherol synthesis. Moreover, several genes of the terminal steps of the shikimate pathway were overexpressed alone or in operons, such as aromatic transaminases, feedback insensitive cyclohexadienyl dehydrogenase (TyrC) from Zymomonas mobilis and the chorismate mutase (CM) domain of the fused chorismate mutase/prephenate dehydratase enzyme from Escherichia coli. The obtained engineered strains demonstrated nearly 1.5 times enhanced tCA and pCou production when HPPD was knocked out compared to the parental production strains, accumulating 138 ± 3.5 mg L-1 of tCA and 72.3 ± 10.3 mg L-1 of pCou after seven days of photoautotrophic growth. However, there was no further improvement when any of the pathway genes were overexpressed. Finally, we used previously obtained AtPRM8 and TsPRM8 Synechocystis strains with deregulated shikimate pathway as a background for the overexpression of synthetic constructs with ppd knockout. CONCLUSIONS: HPPD elimination enhances the tCA and pCou productivity to a similar extent. The use of PRM8 based strains as a background for overexpression of synthetic constructs, however, did not promote tCA and pCou titers, which indicates a tight regulation of the terminal steps of phenylalanine and tyrosine synthesis. This work contributes to establishing cyanobacteria as hosts for phenylpropanoid production.


Assuntos
Synechocystis , Synechocystis/genética , Synechocystis/metabolismo , Engenharia Metabólica , Ácido Chiquímico/metabolismo , Tirosina/metabolismo , Fenilalanina/metabolismo , Corismato Mutase/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
6.
J Appl Microbiol ; 135(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38906846

RESUMO

AIM: This study aimed to overproduce industrially relevant and safe bio-compound trans-cinnamic acid (tCA) from Photorhabdus luminescens with deletion strategies and homologous expression strategies that had not been applied before for tCA production. METHODS AND RESULTS: The overproduction of the industrially relevant compound tCA was successfully performed in P. luminescens by deleting stlB (TTO1ΔstlB) encoding a cinnamic acid CoA ligase in the isopropylstilbene pathway and the hcaE insertion (knockout) mutation (hcaE::cat) in the phenylpropionate catabolic pathway, responsible for tCA degradation. A double mutant of both stlB deletion and hcaE insertion mutation (TTO1DM ΔstlB-hcaE::cat) was also generated. These deletion strategies and the phenylalanine ammonium lyase-producing (PI-PAL from Photorhabdus luminescens) plasmid, pBAD30C, carrying stlA (homologous expression mutants) are utilized together in the same strain using different media, a variety of cultivation conditions, and efficient anion exchange resin (Amberlite IRA402) for enhanced tCA synthesis. At the end of the 120-h shake flask cultivation, the maximum tCA production was recorded as 1281 mg l-1 in the TTO1pBAD30C mutant cultivated in TB medium, with the IRA402 resin keeping 793 mg l-1 and the remaining 488 mg l-1 found in the supernatant. CONCLUSION: TCA production was successfully achieved with homologous expression, coupled with deletion and insertion strategies. 1281 mg l-1is the highest tCA concentration that achieved by bacterial tCA production in flask cultivation, according to our knowledge.


Assuntos
Cinamatos , Photorhabdus , Photorhabdus/genética , Photorhabdus/metabolismo , Cinamatos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Deleção de Genes , Plasmídeos/genética
7.
Biochem Genet ; 62(1): 413-435, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37358673

RESUMO

The phenylalanine ammonia lyase (PAL) catalyses the first step of phenylpropanoid metabolic pathway which leads to the biosynthesis of a diverse group of secondary metabolites. Orchids serve as a rich source of metabolites and the availability of genome or transcriptome for selected orchid species provides an opportunity to analyse the PAL genes in orchids. In the present study, 21 PAL genes were characterized using bioinformatics tools in nine orchid species (Apostasia shenzhenica, Cypripedium formosanum, Dendrobium catenatum, Phalaenopsis aphrodite, Phalaenopsis bellina, Phalaenopsis equestris, Phalaenopsis lueddemanniana, Phalaenopsis modesta and Phalaenopsis schilleriana). Multiple sequence alignment confirmed the presence of PAL-specific conserved domains (N-terminal, MIO, core, shielding and C-terminal domain). All these proteins were predicted to be hydrophobic in nature and to have cytoplasmic localisation. Structural modelling depicted the presence of alpha helices, extended strands, beta turns and random coils in their structure. Ala-Ser-Gly triad known for substrate binding and catalysis of MIO-domain was found to be completely conserved in all the proteins. Phylogenetic study showed that the PALs of pteridophytes, gymnosperms and angiosperms clustered together in separate clades. Expression profiling showed tissue-specific expression for all the 21 PAL genes in the various reproductive and vegetative tissues which suggested their diverse role in growth and development. This study provides insights to the molecular characterization of PAL genes which may help in developing biotechnological strategies to enhance the synthesis of phenylpropanoids in orchids and other heterologous systems for pharmaceutical applications.


Assuntos
Fenilalanina Amônia-Liase , Transcriptoma , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/química , Fenilalanina Amônia-Liase/metabolismo , Metabolismo Secundário , Filogenia , Alinhamento de Sequência
8.
Int J Mol Sci ; 25(9)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38732270

RESUMO

The majority of the world's natural rubber comes from the rubber tree (Hevea brasiliensis). As a key enzyme for synthesizing phenylpropanoid compounds, phenylalanine ammonia-lyase (PAL) has a critical role in plant satisfactory growth and environmental adaptation. To clarify the characteristics of rubber tree PAL family genes, a genome-wide characterization of rubber tree PALs was conducted in this study. Eight PAL genes (HbPAL1-HbPAL8), which spread over chromosomes 3, 7, 8, 10, 12, 13, 14, 16, and 18, were found to be present in the genome of H. brasiliensis. Phylogenetic analysis classified HbPALs into groups I and II, and the group I HbPALs (HbPAL1-HbPAL6) displayed similar conserved motif compositions and gene architectures. Tissue expression patterns of HbPALs quantified by quantitative real-time PCR (qPCR) proved that distinct HbPALs exhibited varying tissue expression patterns. The HbPAL promoters contained a plethora of cis-acting elements that responded to hormones and stress, and the qPCR analysis demonstrated that abiotic stressors like cold, drought, salt, and H2O2-induced oxidative stress, as well as hormones like salicylic acid, abscisic acid, ethylene, and methyl jasmonate, controlled the expression of HbPALs. The majority of HbPALs were also regulated by powdery mildew, anthracnose, and Corynespora leaf fall disease infection. In addition, HbPAL1, HbPAL4, and HbPAL7 were significantly up-regulated in the bark of tapping panel dryness rubber trees relative to that of healthy trees. Our results provide a thorough comprehension of the characteristics of HbPAL genes and set the groundwork for further investigation of the biological functions of HbPALs in rubber trees.


Assuntos
Regulação da Expressão Gênica de Plantas , Hevea , Família Multigênica , Fenilalanina Amônia-Liase , Proteínas de Plantas , Perfilação da Expressão Gênica , Genoma de Planta , Hevea/genética , Hevea/enzimologia , Hevea/metabolismo , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/metabolismo , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Estresse Fisiológico/genética
9.
BMC Genomics ; 24(1): 178, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37020178

RESUMO

BACKGROUND: Fusarium crown rot (FCR) is a chronic disease of cereals worldwide. Compared with tetraploid wheat, hexaploid wheat is more resistant to FCR infection. The underlying reasons for the differences are still not clear. In this study, we compared FCR responses of 10 synthetic hexaploid wheats (SHWs) and their tetraploid and diploid parents. We then performed transcriptome analysis to uncover the molecular mechanism of FCR on these SHWs and their parents. RESULTS: We observed higher levels of FCR resistance in the SHWs compared with their tetraploid parents. The transcriptome analysis suggested that multiple defense pathways responsive to FCR infection were upregulated in the SHWs. Notably, phenylalanine ammonia lyase (PAL) genes, involved in lignin and salicylic acid (SA) biosynthesis, exhibited a higher level of expression to FCR infection in the SHWs. Physiological and biochemical analysis validated that PAL activity and SA and lignin contents of the stem bases were higher in SHWs than in their tetraploid parents. CONCLUSION: Overall, these findings imply that improved FCR resistance in SHWs compared with their tetraploid parents is probably related to higher levels of response on PAL-mediated lignin and SA biosynthesis pathways.


Assuntos
Fusarium , Fusarium/fisiologia , Tetraploidia , Lignina , Poaceae , Genótipo , Doenças das Plantas/genética , Resistência à Doença/genética
10.
BMC Plant Biol ; 23(1): 612, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38041062

RESUMO

BACKGROUND: The enzyme phenylalanine ammonia lyase (PAL) controls the transition from primary to secondary metabolism by converting L-phenylalanine (L-Phe) to cinnamic acid. However, the function of PAL in pear plants (Pyrus bretschneideri) has not yet been fully elucidated. RESULTS: We identified three PAL genes (PbPAL1, PbPAL2 and PbPAL3) from the pear genome by exploring pear genome databases. The evolutionary tree revealed that three PbPALs were classified into one group. We expressed PbPAL1 and PbPAL2 recombinant proteins, and the purified PbPAL1 and PbPAL2 proteins showed strict substrate specificity for L-Phe, no activity toward L-Tyr in vitro, and modest changes in kinetics and enzyme characteristics. Furthermore, overexpression of PbAL1 and PbPAL1-RNAi, respectively, and resulted in significant changes in stone cell and lignin contents in pear fruits. The results of yeast one-hybrid (Y1H) assays that PbWLIM1 could bind to the conserved PAL box in the PbPAL promoter and regulate the transcription level of PbPAL2. CONCLUSIONS: Our findings not only showed PbPAL's potential role in lignin biosynthesis but also laid the foundation for future studies on the regulation of lignin synthesis and stone cell development in pear fruit utilizing molecular biology approaches.


Assuntos
Pyrus , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/metabolismo , Proteínas de Plantas/metabolismo , Lignina/metabolismo , Filogenia , Regulação da Expressão Gênica de Plantas
11.
Mol Genet Metab ; 140(3): 107697, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37717412

RESUMO

Phenylketonuria (PKU) is an inborn error of metabolism caused by deficiency of phenylalanine hydroxylase, resulting in high blood phenylalanine (Phe) concentrations with potential for impaired neurocognition. Pegvaliase, a pegylated recombinant phenylalanine ammonia lyase that metabolizes Phe, is approved for use in adults with PKU and high blood Phe despite prior management. In the Phase 3 PRISM studies conducted in the United States, pegvaliase induction/titration/maintenance dosing led to clinically meaningful and statistically significant blood Phe reductions versus placebo, with a manageable safety profile. Here we report the primary endpoint, change in blood Phe levels from baseline to Week 52, and 2-year interim efficacy and safety results (to Week 144; data cut-off March 31, 2022) of an ongoing, open-label study in a Japanese PKU population (JapicCTI-194,642). Participants were 12 adults with PKU from Japan aged 18-70 years with blood Phe levels >600 µmol/L. In Part 1, participants received subcutaneous 2.5 mg pegvaliase once weekly for 4 weeks (induction), followed by titration up to 20 mg/day, then dose adjustment to a maximum 40 mg/day to achieve blood Phe efficacy (≤360 µmol/L); this maintenance dose was continued to Week 52. In Part 2, participants continued pegvaliase with dose adjustments up to a maximum 60 mg/day for up to 168 weeks. Among 11 participants evaluable for efficacy, mean (standard deviation) blood Phe concentration decreased from 1025.9 (172.7) µmol/L at baseline to 448.3 (458.8) µmol/L at Week 52 (mean 57.5% decrease). Up to Week 104, all 11 (100%) efficacy-evaluable participants achieved blood Phe levels ≤600 µmol/L, 9 (81.8%) achieved ≤360 µmol/L, and 8 (72.7%) achieved ≤120 µmol/L. All 12 participants reported ≥1 adverse event (AE), most commonly injection site erythema and injection site swelling (n = 10, 83.3% each). The pegvaliase exposure-adjusted AE rate was 23.5 per person-years overall, 41.2 per person-years during induction/titration, and 13.5 per person-years during maintenance. All participants developed pegvaliase-induced antibody responses. There were no AEs leading to discontinuation, no deaths, and no anaphylaxis events. Although interim, these results support the use of pegvaliase in Japanese adults with PKU with elevated blood Phe levels and are consistent with results from the Phase 3 PRISM studies.


Assuntos
Fenilalanina Amônia-Liase , Fenilcetonúrias , Adulto , Humanos , População do Leste Asiático , Fenilalanina , Fenilalanina Amônia-Liase/uso terapêutico , Fenilcetonúrias/tratamento farmacológico , Proteínas Recombinantes/uso terapêutico , Adolescente , Adulto Jovem , Pessoa de Meia-Idade , Idoso
12.
Proc Natl Acad Sci U S A ; 117(1): 271-277, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31848246

RESUMO

Brown planthopper (BPH) is one of the most destructive insects affecting rice (Oryza sativa L.) production. Phenylalanine ammonia-lyase (PAL) is a key enzyme involved in plant defense against pathogens, but the role of PAL in insect resistance is still poorly understood. Here we show that expression of the majority of PALs in rice is significantly induced by BPH feeding. Knockdown of OsPALs significantly reduces BPH resistance, whereas overexpression of OsPAL8 in a susceptible rice cultivar significantly enhances its BPH resistance. We found that OsPALs mediate resistance to BPH by regulating the biosynthesis and accumulation of salicylic acid and lignin. Furthermore, we show that expression of OsPAL6 and OsPAL8 in response to BPH attack is directly up-regulated by OsMYB30, an R2R3 MYB transcription factor. Taken together, our results demonstrate that the phenylpropanoid pathway plays an important role in BPH resistance response, and provide valuable targets for genetic improvement of BPH resistance in rice.


Assuntos
Hemípteros/efeitos dos fármacos , Oryza/enzimologia , Oryza/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Fenilalanina Amônia-Liase/farmacologia , Doenças das Plantas/imunologia , Fatores de Transcrição/metabolismo , Animais , DNA de Plantas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Genes de Plantas , Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Parasita/fisiologia , Lignina/metabolismo , Oryza/genética , Oryza/imunologia , Fenilalanina Amônia-Liase/genética , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Ácido Salicílico/metabolismo
13.
J Labelled Comp Radiopharm ; 66(11): 362-368, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37530220

RESUMO

Halogenated, labeled with deuterium, tritium or doubly labeled with deuterium and tritium in the 3S position of the side chain isotopomers of L-phenylalanine and phenylpyruvic acid were synthesized. Isotopomers of halogenated L-phenylalanine were obtained by addition of ammonia from isotopically enriched buffer solution to the halogenated derivative of (E)-cinnamic acid catalyzed by phenylalanine ammonia lyase. Isotopomers of halogenated phenylpyruvic acid were obtained enzymatically by conversion of the appropriate isotopomer of halogenated L-phenylalanine in the presence of phenylalanine dehydrogenase. As a source of deuterium was used deuterated water, as a source of tritium was used a solution of highly diluted tritiated water. The labeling takes place in good yields and with high deuterium atom% abundance.


Assuntos
Halogênios , Fenilalanina , Ácidos Fenilpirúvicos , Deutério/química , Halogênios/síntese química , Halogênios/química , Hidrogênio , Trítio/química , Ácidos Fenilpirúvicos/síntese química , Ácidos Fenilpirúvicos/química
14.
Molecules ; 28(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37446700

RESUMO

This paper presents the effects of irrigating barley plants with different type of water solutions saturated with gaseous ozone generated from atmospheric air. The study investigated the effects of the applied types of water on the modulation of the biosynthesis of selected bioactive compounds (content of total polyphenols, small molecule antioxidants, vitamin C) in the produced plant material. A number of transformations of reactive oxygen species (ROS) and nitrogen compounds have also been postulated; these are observed during the saturation of water with gaseous O3 and 30 min after the end of the process. It was shown that after the process of water saturation with gaseous O3, the gas later is converted to compounds with high oxidative potential and good stability; these, in turn, lead to the oxidation of oxidates generated from atmospheric nitrogen into nitrates, which exhibit fertilising properties. Thirty minutes after the process of H2O saturation with gaseous O3 was completed, the tests showed the highest concentrations of nitrates and the relatively high oxidative potential of the solution originating from H2O2 with a low concentration of the dissolved O3. This solution exhibited the highest activity modulating the biosynthesis of polyphenols, small molecule antioxidants and vitamin C in young barley plants. The resulting differences were significant, and they were reflected by 15% higher total polyphenol content, 35% higher antioxidative potential and 57% greater content of vitamin C compared to the control specimens (plants treated with fresh H2O).


Assuntos
Hordeum , Ozônio , Antioxidantes/farmacologia , Água , Peróxido de Hidrogênio , Nitratos , Ácido Ascórbico , Ozônio/farmacologia , Polifenóis , Plantas
15.
J Sci Food Agric ; 103(4): 2023-2036, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36229866

RESUMO

BACKGROUND: The chemical composition, phenylalanine ammonia-lyase (PAL), polyphenol oxidase (PPO) and peroxidase (POD) activity of the three main Portuguese elderberry cultivars were determined for the first time through five stages of maturation, in different harvesting years, to gain a deeper understanding of the effect of climatic conditions and enzymatic activity involved in the synthesis and degradation of phenolic compounds on the final quality of elderberries. RESULTS: Simple sugar and anthocyanin content increased with maturation but total acidity and flavonoids content decreased, and cinnamic acids did not show a clear trend. Climatic conditions seem to have a decisive influence on the elderberry maturation, namely the total number of hot (>30 °C) days. The PAL, PPO, and POD activity can explain the differences observed in elderberry phenolic content. CONCLUSION: These results highlighted the influence of climatic conditions in each harvesting season on elderberry development and quality. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Sambucus , Sambucus/química , Sambucus/metabolismo , Açúcares/análise , Fenóis/análise , Antioxidantes/análise , Frutas/química
16.
Physiol Mol Biol Plants ; 29(5): 679-693, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37363424

RESUMO

CIM-Saumya is an improved, methyl chavicol rich variety of Ocimum basilicum (Family-Lamiaceae), developed by Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants. This plant possesses analgesic, anti-ulcerogenic, anti-inflammatory, anti-oxidant, cardiac stimulant, Central Nervous System depressant, hepatoprotective and immunomodulator activities due to the presence of various phytoconstituents. Among them rosmarinic acid, caffeic acid and ferulic acid are the three major phenolic compounds responsible for its therapeutic utility. These compounds are produced in very low amounts in the in vivo plants. Therefore, the present study has been conducted for establishment of cell suspensions, optimization of inoculums size, growth kinetics and screening of elicitor and precursors for the accumulation of cell biomass and the production of the three important phenolic compounds in cell suspension of O. basilicum (CIM-Saumya). Leaf derived friable callus was used for establishing the cell suspension in liquid Murashige and Skoog's medium fortified with 1 g/L casein hydrolysate + 2.26 µM 2,4-dichlorophenoxyacetic acid + 0.465 µM kinetin + 2.68 µM naphthalene acetic acid. The growth kinetic analysis pattern of cell suspension revealed the maximum biomass increments (% BI = 486.7) and production of RA 8.086 mg/g dry weight was found in 30th day harvested cells. Whereas, the other two phenolic compounds i.e. ferulic acid (0.0125 mg/g dry weight) and caffeic acid (0.38 mg/g dry weight) was recorded highest on 25th day of growth cycle. In the present study, one biotic elicitor i.e. yeast extract and three precursors [peptone, tryptone and lactalbumin hydrolysate] were tested, among them, lactalbumin hydrolysate (100 mg/L; added at 16th day) treated cells recorded highest estimated phenolic compounds yield (251.5 mg/L; 6.81 fold compared to the control) and biomass increments i.e. % BI = 1207 with 1.85 fold compared to the control. The highest rosmarinic acid content i.e. 25.47 mg/g DW (4.4 fold compared to the control) and 24.42 mg/g dry weight (4.1 folds compared to the control) was noticed in 30th day harvested cells treated with yeast extract (1 g/L on 0 day) and lactalbumin hydrolysate (100 mg/L added on 16th day), respectively. While caffeic acid content (0.91 mg/g dry weight) showed 2.9 folds higher compared to the control in cells treated with peptone 200 mg/L added on 16th day of culture cycle. All the treated cells showed enhanced phenylalanine ammonia-lyase enzyme activity with highest specific activity in lactalbumin hydrolysate followed by tryptone, peptone, and yeast extract. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01316-6.

17.
Plant J ; 107(3): 698-712, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33974322

RESUMO

The pathogen cereal cyst nematode (CCN) is deleterious to Triticeae crops and is a threat to the global crop yield. Accession no. 1 of Aegilops variabilis, a relative of Triticum aestivum (bread wheat), is highly resistant to CCN. Our previous study demonstrated that the expression of the phenylalanine ammonia lyase (PAL) gene AevPAL1 in Ae. variabilis is strongly induced by CCN. PAL, the first enzyme of phenylpropanoid metabolism, is involved in abiotic and biotic stress responses. However, its role in plant-CCN interaction remains unknown. In the present study, we proved that AevPAL1 helps to confer CCN resistance through affecting the synthesis of salicylic acid (SA) and downstream secondary metabolites. The silencing of AevPAL1 increased the incidence of CCN infection in roots and decreased the accumulation of SA and phenylalanine (Phe)-derived specialized metabolites. The exogenous pre-application of SA also improved CCN resistance. Additionally, the functions of PAL in phenylpropanoid metabolism correlated with tryptophan decarboxylase (TDC) functioning in tryptophan metabolism pathways. The silencing of either AevPAL1 or AevTDC1 exhibited a concomitant reduction in the expression of both genes and the contents of metabolites downstream of PAL and TDC. These results suggested that AevPAL1, possibly in coordination with AevTDC1, positively contributes to CCN resistance by altering the downstream secondary metabolites and SA content in Ae. variabilis. Moreover, AevPAL1 overexpression significantly enhanced CCN resistance in bread wheat and did not exhibit significant negative effects on yield-related traits, suggesting that AevPAL1 is valuable for the genetic improvement of CCN resistance in bread wheat.


Assuntos
Nematoides/fisiologia , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Triticum/metabolismo , Triticum/parasitologia , Animais , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Proteínas de Plantas/genética
18.
BMC Plant Biol ; 22(1): 559, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36460955

RESUMO

BACKGROUND: A potential solution for recycling and reusing the massively produced sewage water (SW) is to irrigate certain plants instead of highly cost recycling treatment. Although the extensive and irrational application of SW may cause environmental pollution thus, continual monitoring of the redox status of the receiver plant and the feedback on its growth under application becomes an emergent instance. The impact of SW, along with well water (WW) irrigation of medicinal plant, Datura innoxia, was monitored by some physio-biochemical indices. RESULTS: The SW application amplified the growth, yield, minerals uptake, and quality of D. innoxia plants compared to the WW irrigated plants. The total chlorophyll, carotenoid, non-enzymatic antioxidants, viz. anthocyanin, flavonoids, phenolic compounds, and total alkaloids increased by 85, 38, 81, 50, 19, and 37%, respectively, above WW irrigated plants. The experiment terminated in enhanced leaf content of N, P, and K by 43, 118, and 48%, respectively. Moreover, stimulation of carbon and nitrogen metabolites in terms of proteins, soluble sugars, nitrate reductase (NR) activity, and nitric oxide (NO) content showed significant earliness in flowering time. The SW application improved not only Datura plants' quality but also soil quality. After four weeks of irrigation, the WW irrigated plants encountered nutrient deficiency-induced stress evidenced by the high level of proline, H2O2, and MDA as well as high enzyme capabilities. Application of SW for irrigation of D. innoxia plant showed the improvement of secondary metabolites regulating enzyme phenylalanine ammonia-lyase (PAL), restored proline content, and cell redox status reflecting high optimal condition for efficient cellular metabolism and performance along the experiment duration. CONCLUSIONS: These evidences approved the benefits of practicing SW to improve the yield and quality of D. innoxia and the feasibility of generalization on multipurpose plants grown in poor soil.


Assuntos
Datura , Areia , Solo , Esgotos , Peróxido de Hidrogênio , Água , Prolina
19.
Chembiochem ; 23(10): e202200062, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35352477

RESUMO

p-Coumaric acid (p-CA) is a key precursor for the biosynthesis of flavonoids. Tyrosine ammonia lyases (TALs) specifically catalyze the synthesis of p-CA from l-tyrosine, which is a convenient enzymatic pathway. To explore novel and highly active TALs, a phylogenetic tree-building approach was conducted including 875 putative TALs and 46 putative phenylalanine/tyrosine ammonia lyases (PTALs). Among them, 5 TALs and 3 PTALs were successfully characterized and found to exhibit the proposed enzymatic activity. The TAL from Chryseobacterium luteum sp. nov (TALclu ) has the highest affinity (Km =0.019 mm) and conversion efficiency (kcat /Km= 1631 s-1 ⋅ mm-1 ) towards l-tyrosine. The reaction conditions for two purified enzymes and their E. coli recombinant cells were optimized and p-CA yields of 2.03 g/L after 8 hours by TALclu and 2.35 g/L after 24 h by TAL from Rivularia sp. PCC 7116 (TALrpc ) in whole cells were achieved. These TALs are thus candidates for the construction of whole-cell systems to produce the flavonoid precursor p-CA.


Assuntos
Amônia-Liases , Escherichia coli , Amônia-Liases/genética , Ácidos Cumáricos , Escherichia coli/metabolismo , Fenilalanina Amônia-Liase , Filogenia , Tirosina/metabolismo
20.
Planta ; 257(1): 13, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522558

RESUMO

MAIN CONCLUSION: Screening for resistance in 40 potato genotypes to Rhizoctonia solani AG-3PT-stem-canker, antioxidant enzymes activity as well as total phenol compounds were documented. Rhizoctonia solani AG-3PT-stem-canker is one of the most devastating diseases that leads to severe economic losses in potatoes, Solanum tuberosum globally. Crop management and eugenic practices, especially the use of resistance can be effective in reducing the disease incidence. However, the information about potato-R. Solani interaction is still limited. This study explored screening for resistance in forty potato genotypes to R. solani, analyzing biomass growth parameters (BGPs), as well as antioxidant enzymes activity of which peroxidase/peroxide-reductases (POXs), superoxide dismutase (SOD), polyphenol oxidase (PPO), catalase (CAT), phenylalanine ammonia-lyase (PAL), ß-1,3-glucanase (GLU) and total phenol compounds (TPCs) were taken into account. In addition, we analyzed up-regulation of two gene markers (PR-1 and Osmotin), using reverse transcription quantitative PCR (RT-qPCR). For which, the resistant 'Savalan', partially resistant 'Agria', partially susceptible 'Sagita' and susceptible 'Pashandi' were selected to explore the trails in their roots and leaves over the time courses of 1, 2 and 3-weeks post inoculation (wpi) following inoculation. Cluster analysis divided potatoes into four distinct groups, based on disease severity scales (0-100%) significance. The BGPs, shoot and root length, fresh and dry weight, and root volume were also significantly higher in infected potatoes compared to non-inoculated controls. Antioxidant enzymes activity also indicated the highest increased levels for POX (fourfold at 3wpi), CAT (1.5-fold at 3wpi), SOD (6.8-fold at 1wpi), and PAL (2.7-fold at 3wpi) in the resistant genotype, 'Savalan', whereas the highest activity was recorded in TPC (twofold at 1 wpi), PPO (threefold at 3wpi), and GLU (2.3-fold at 1wpi) in partially resistant genotypes. Although the defense-related enzymatic activities were sharply elevated in the resistant and partially resistant genotypes following inoculation, no significant correlations were between the activity trends of the related enzymes. The two related gene markers also showed comprehensive transcriptional responses up to 3.4-fold, predominantly in resistant genotypes. Surprisingly, the PR-1 gene marker, basically resistant to Wilting agent Verticillium dahlia was overexpressed in resistant 'Savalan' and 'Agria' against R. solani AG3-PT. Similar results were obtained on Osmotin gene marker resistant to late-blight P. infestans, and early-blight Alternaria solani that similarly modulates immunity against R. solani. Furthermore, there was a significant correlation between resistance, enzyme activity, and gene expression in the aforesaid cultivars. Studying the physiological metabolic pathways of antioxidant enzymes activity appears to be an important direction in research to elucidate resistance to R. solani in potatoes.


Assuntos
Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Resistência à Doença/genética , Antioxidantes , Doenças das Plantas , Rhizoctonia/fisiologia , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/metabolismo , Catecol Oxidase/metabolismo , Superóxido Dismutase , Fenóis , Mecanismos de Defesa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA