Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Int J Mol Sci ; 24(24)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38139140

RESUMO

Previously developed whole-cell vaccines against Bordetella pertussis, the causative agent of whooping cough, appeared to be too reactogenic due to their endotoxin content. Reduction in endotoxicity can generally be achieved through structural modifications in the lipid A moiety of lipopolysaccharides (LPS). In this study, we found that dephosphorylation of lipid A in B. pertussis through the heterologous production of the phosphatase LpxE from Francisella novicida did, unexpectedly, not affect Toll-like receptor 4 (TLR4)-stimulating activity. We then focused on the inner core of LPS, whose synthesis has so far not been studied in B. pertussis. The kdtA and kdkA genes, responsible for the incorporation of a single 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) residue in the inner core and its phosphorylation, respectively, appeared to be essential. However, the Kdo-bound phosphate could be replaced by a second Kdo after the heterologous production of Escherichia coli kdtA. This structural change in the inner core affected outer-core and lipid A structures and also bacterial physiology, as reflected in cell filamentation and a switch in virulence phase. Furthermore, the eptB gene responsible for the non-stoichiometric substitution of Kdo-bound phosphate with phosphoethanolamine was identified and inactivated. Interestingly, the constructed inner-core modifications affected TLR4-stimulating activity. Whereas endotoxicity studies generally focus on the lipid A moiety, our data demonstrate that structural changes in the inner core can also affect TLR4-stimulating activity.


Assuntos
Bordetella pertussis , Lipopolissacarídeos , Receptor 4 Toll-Like , Humanos , Bordetella pertussis/genética , Bordetella pertussis/metabolismo , Divisão Celular , Endotoxinas/metabolismo , Escherichia coli/metabolismo , Lipídeo A/metabolismo , Lipopolissacarídeos/genética , Lipopolissacarídeos/metabolismo , Mutação , Fosfatos/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Coqueluche
2.
Artigo em Inglês | MEDLINE | ID: mdl-33318020

RESUMO

We characterized a multidrug-resistant (MDR) Enterobacter spp. isolate highlighting the genetic aspects of the antimicrobial resistance genes. An Enterobacter spp. isolate (Ec61) was recovered in 2014 from a transtracheal aspirate sample from a patient admitted to a Brazilian tertiary hospital and submitted to further microbiological and genomic characterization. Ec61 was identified as Enterobacter hormaechei subsp. xiangfangensis strain ST451, showing an MDR profile and the presence of genes codifying the new ß-lactamase variants BKC-2 and ACT-84 and the mobile colistin resistance gene mcr-9.1.


Assuntos
Colistina , Enterobacter , Antibacterianos/farmacologia , Brasil , Colistina/farmacologia , Enterobacter/genética , Humanos , Plasmídeos , beta-Lactamases/genética
3.
Artigo em Inglês | MEDLINE | ID: mdl-29712662

RESUMO

Colistin is a crucial last-line drug used for the treatment of life-threatening infections caused by multidrug-resistant strains of the Gram-negative bacterium Acinetobacter baumannii However, colistin-resistant A. baumannii isolates can still be isolated following failed colistin therapy. Resistance is most often mediated by the addition of phosphoethanolamine (pEtN) to lipid A by PmrC, following missense mutations in the pmrCAB operon encoding PmrC and the two-component signal transduction system PmrA/PmrB. We recovered a pair of A. baumannii isolates from a single patient before (6009-1) and after (6009-2) failed colistin treatment. These strains displayed low and very high levels of colistin resistance (MICs, 8 to 16 µg/ml and 128 µg/ml), respectively. To understand how increased colistin resistance arose, we sequenced the genome of each isolate, which revealed that 6009-2 had an extra copy of the insertion sequence element ISAba125 within a gene encoding an H-NS family transcriptional regulator. To confirm the role of H-NS in colistin resistance, we generated an hns deletion mutant in 6009-1 and showed that colistin resistance increased upon the deletion of hns We also provided 6009-2 with an intact copy of hns and showed that the strain was no longer resistant to high concentrations of colistin. Transcriptomic analysis of the clinical isolates identified more than 150 genes as being differentially expressed in the colistin-resistant hns mutant 6009-2. Importantly, the expression of eptA, encoding a second lipid A-specific pEtN transferase but not pmrC, was increased in the hns mutant. This is the first time an H-NS family transcriptional regulator has been associated with a pEtN transferase and colistin resistance.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/metabolismo , Antibacterianos/farmacologia , Colistina/farmacologia , Acinetobacter baumannii/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana/genética , Etanolaminofosfotransferase/genética , Etanolaminofosfotransferase/metabolismo , Perfilação da Expressão Gênica , Testes de Sensibilidade Microbiana , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
Eur J Clin Microbiol Infect Dis ; 37(6): 1009-1019, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29524060

RESUMO

Acinetobacter baumannii is an opportunistic pathogen associated with nosocomial and community infections of great clinical relevance. Its ability to rapidly develop resistance to antimicrobials, especially carbapenems, has re-boosted the prescription and use of polymyxins. However, the emergence of strains resistant to these antimicrobials is becoming a critical issue in several regions of the world because very few of currently available antibiotics are effective in these cases. This review summarizes the most up-to-date knowledge about chromosomally encoded and plasmid-mediated polymyxins resistance in A. baumannii. Different mechanisms are employed by A. baumannii to overcome the antibacterial effects of polymyxins. Modification of the outer membrane through phosphoethanolamine addition, loss of lipopolysaccharide, symmetric rupture, metabolic changes affecting osmoprotective amino acids, and overexpression of efflux pumps are involved in this process. Several genetic elements modulate these mechanisms, but only three of them have been described so far in A. baumannii clinical isolates such as mutations in pmrCAB, lpxACD, and lpsB. Elucidation of genotypic profiles and resistance mechanisms are necessary for control and fight against resistance to polymyxins in A. baumannii, thereby protecting this class for future treatment.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Cromossomos Bacterianos , Farmacorresistência Bacteriana Múltipla/genética , Polimixinas/farmacologia , Saúde Pública , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/química , Acinetobacter baumannii/metabolismo , Animais , Antibacterianos/efeitos adversos , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Infecção Hospitalar/microbiologia , Etanolaminofosfotransferase/metabolismo , Humanos , Lipídeo A/genética , Lipídeo A/metabolismo , Lipopolissacarídeos/metabolismo , Camundongos , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Polimixinas/efeitos adversos , Polimixinas/uso terapêutico
5.
Infect Immun ; 85(11)2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28874446

RESUMO

The lipopolysaccharide (LPS) produced by the Gram-negative bacterial pathogen Pasteurella multocida has phosphoethanolamine (PEtn) residues attached to lipid A, 3-deoxy-d-manno-octulosonic acid (Kdo), heptose, and galactose. In this report, we show that PEtn is transferred to lipid A by the P. multocida EptA homologue, PetL, and is transferred to galactose by a novel PEtn transferase that is unique to P. multocida called PetG. Transcriptomic analyses indicated that petL expression was positively regulated by the global regulator Fis and negatively regulated by an Hfq-dependent small RNA. Importantly, we have identified a novel PEtn transferase called PetK that is responsible for PEtn addition to the single Kdo molecule (Kdo1), directly linked to lipid A in the P. multocida glycoform A LPS. In vitro assays showed that the presence of a functional petL and petK, and therefore the presence of PEtn on lipid A and Kdo1, was essential for resistance to the cationic, antimicrobial peptide cathelicidin-2. The importance of PEtn on Kdo1 and the identification of the transferase responsible for this addition have not previously been shown. Phylogenetic analysis revealed that PetK is the first representative of a new family of predicted PEtn transferases. The PetK family consists of uncharacterized proteins from a range of Gram-negative bacteria that produce LPS glycoforms with only one Kdo molecule, including pathogenic species within the genera Vibrio, Bordetella, and Haemophilus We predict that many of these bacteria will require the addition of PEtn to Kdo for maximum protection against host antimicrobial peptides.


Assuntos
Proteínas de Bactérias/genética , Proteínas Sanguíneas/toxicidade , Farmacorresistência Bacteriana/genética , Etanolaminofosfotransferase/genética , Regulação Bacteriana da Expressão Gênica , Pasteurella multocida/genética , Pasteurella multocida/patogenicidade , Precursores de Proteínas/toxicidade , Animais , Proteínas de Bactérias/metabolismo , Galinhas , Biologia Computacional , Etanolaminofosfotransferase/metabolismo , Etanolaminas/química , Etanolaminas/metabolismo , Fator Proteico para Inversão de Estimulação/genética , Fator Proteico para Inversão de Estimulação/metabolismo , Galactose/química , Galactose/metabolismo , Perfilação da Expressão Gênica , Heptoses/química , Heptoses/metabolismo , Isoenzimas , Lipídeo A/química , Lipídeo A/metabolismo , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Infecções por Pasteurella/microbiologia , Infecções por Pasteurella/patologia , Pasteurella multocida/classificação , Pasteurella multocida/efeitos dos fármacos , Filogenia , Açúcares Ácidos/química , Açúcares Ácidos/metabolismo , Transcriptoma
6.
J Appl Microbiol ; 121(5): 1444-1456, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27564119

RESUMO

AIMS: Investigate how Cronobacter sakazakii modify their lipid A structure to avoid recognition by the host immune cells. METHODS AND RESULTS: Lipid A modification was observed in C. sakazakii BAA894 grown at pH 5·0 but not pH 7·0. Overexpression of C. sakazakii gene ESA_RS09200 in Escherichia coli W3110 caused a phosphoethanolamine (PEA) modification of lipid A; when ESA_RS09200 was deleted in C. sakazakii BAA894, this lipid A modification disappeared. Lipid A modification was observed in BAA894 grown at pH 5·0 when the 1- phosphate residue of lipid A was removed, but disappeared when the 4'- phosphate residue of lipid A was removed. When ESA_RS16430, the orthologous gene of E. coli pmrA, was deleted in C. sakazakii BAA894, this PEA modification of lipid A was still observed, suggesting that this modification was not regulated by the PmrA-PmrB system. Compared to the wild-type BAA894, ESA_RS09200 deletion mutant showed decreased resistance to cationic antimicrobial peptides (CAMP), increased recognition by TLR4/MD2, decreased ability to invade and persist in mammalian cells. CONCLUSIONS: ESA_RS09200 in C. sakazakii BAA894 encodes a PEA transferase that specifically adds a PEA to the 4'-phosphate residue of lipid A, but not regulated by the PmrA-PmrB system. PEA modification of lipid A reduces recognition and killing by the host innate immune system. SIGNIFICANCE AND IMPACT OF THE STUDY: This study showed that modification of the lipid A moiety of C. sakazakii with PEA increased resistance to CAMP and recognition of the immune response although signalling of TLR4/MD2 cascade, suggesting that the organism could not successfully evade the host innate immune system without the transference of PEA to its lipid A moiety.


Assuntos
Cronobacter sakazakii/enzimologia , Etanolaminofosfotransferase/metabolismo , Lipídeo A/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/farmacologia , Células CACO-2 , Cronobacter sakazakii/efeitos dos fármacos , Cronobacter sakazakii/genética , Etanolaminofosfotransferase/genética , Etanolaminas/metabolismo , Humanos , Lipídeo A/química , Fosfatos/metabolismo
7.
Euro Surveill ; 21(27)2016 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-27416987

RESUMO

We identified a novel plasmid-mediated colistin-resistance gene in porcine and bovine colistin-resistant Escherichia coli that did not contain mcr-1. The gene, termed mcr-2, a 1,617 bp phosphoethanolamine transferase harboured on an IncX4 plasmid, has 76.7% nucleotide identity to mcr-1. Prevalence of mcr-2 in porcine colistin-resistant E. coli (11/53) in Belgium was higher than that of mcr-1 (7/53). These data call for an immediate introduction of mcr-2 screening in ongoing molecular epidemiological surveillance of colistin-resistant Gram-negative pathogens.


Assuntos
Proteínas de Bactérias/genética , Bovinos/microbiologia , Colistina/administração & dosagem , Farmacorresistência Bacteriana/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Suínos/microbiologia , Animais , Antibacterianos/administração & dosagem , Relação Dose-Resposta a Droga , Plasmídeos/genética
8.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 10): 2730-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25286856

RESUMO

The foodborne enteric pathogen Campylobacter jejuni decorates a variety of its cell-surface structures with phosphoethanolamine (pEtN). Modifying lipid A with pEtN promotes cationic antimicrobial peptide resistance, whereas post-translationally modifying the flagellar rod protein FlgG with pEtN promotes flagellar assembly and motility, which are processes that are important for intestinal colonization. EptC, the pEtN transferase required for all known pEtN cell-surface modifications in C. jejuni, is a predicted inner-membrane metalloenzyme with a five-helix N-terminal transmembrane domain followed by a soluble sulfatase-like catalytic domain in the periplasm. The atomic structure of the catalytic domain of EptC (cEptC) was crystallized and solved to a resolution of 2.40 Å. cEptC adopts the α/ß/α fold of the sulfatase protein family and harbors a zinc-binding site. A phosphorylated Thr266 residue was observed that was hypothesized to mimic a covalent pEtN-enzyme intermediate. The requirement for Thr266 as well as the nearby residues Asn308, Ser309, His358 and His440 was ascertained via in vivo activity assays on mutant strains. The results establish a basis for the design of pEtN transferase inhibitors.


Assuntos
Campylobacter jejuni/efeitos dos fármacos , Etanolaminofosfotransferase/química , Etanolaminofosfotransferase/metabolismo , Polimixinas/farmacologia , Antibacterianos/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sítios de Ligação , Campylobacter jejuni/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Farmacorresistência Bacteriana , Etanolaminofosfotransferase/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Conformação Proteica , Zinco/metabolismo
9.
Microbiol Mol Biol Rev ; : e0019323, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39382292

RESUMO

SUMMARYLipopolysaccharides (LPS) are an integral part of the outer membrane of Gram-negative bacteria and play essential structural and functional roles in maintaining membrane integrity as well as in stress response and virulence. LPS comprises a membrane-anchored lipid A group, a sugar-based core region, and an O-antigen formed by repeating oligosaccharide units. 3-Deoxy-D-manno-octulosonic acid-lipid A (Kdo2-lipid A) is the minimum LPS component required for bacterial survival. While LPS modifications are not essential, they play multifaceted roles in stress response and host-pathogen interactions. Gram-negative bacteria encode several distinct LPS-modifying phosphoethanolamine transferases (PET) that add phosphoethanolamine (pEtN) to lipid A or the core region of LPS. The pet genes differ in their genomic locations, regulation mechanisms, and modification targets of the encoded enzyme, consistent with their various roles in different growth niches and under varied stress conditions. The discovery of mobile colistin resistance genes, which represent lipid A-modifying pet genes that are encoded on mobile elements and associated with resistance to the last-resort antibiotic colistin, has led to substantial interest in PETs and pEtN-modified LPS over the last decade. Here, we will review the current knowledge of the functional diversity of pEtN-based LPS modifications, including possible roles in niche-specific fitness advantages and resistance to host-produced antimicrobial peptides, and discuss how the genetic and structural diversities of PETs may impact their function. An improved understanding of the PET group will further enhance our comprehension of the stress response and virulence of Gram-negative bacteria and help contextualize host-pathogen interactions.

10.
Microbiol Res ; 288: 127879, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39182419

RESUMO

The emergence of plasmid-encoded colistin resistance mechanisms, MCR-1, a phosphoethanolamine transferase, rendered colistin ineffective as last resort antibiotic against severe infections caused by clinical Gram-negative bacterial pathogens. Through screening FDA-approved drug library, we identified two structurally similar compounds, namely cetylpyridinium chloride (CET) and domiphen bromide (DOM), which potentiated colistin activity in both colistin-resistant and susceptible Enterobacterales. These compounds were found to insert their long carbon chain to a hydrophobic pocket of bacterial phosphoethanolamine transferases including MCR-1, competitively blocking the binding of lipid A tail for substrate recognition and modification, resulting in the increase of bacterial sensitivity to colistin. In addition, these compounds were also found to dissipate bacterial membrane potential leading to the increase of bacterial sensitivity to colistin. Importantly, combinational use of DOM with colistin exhibited remarkable protection of test animals against infections by colistin-resistant bacteria in both mouse thigh infection and sepsis models. For mice infected by colistin-susceptible bacteria, the combinational use of DOM and colistin enable us to use lower dose of colistin to for efficient treatment. These properties render DOM excellent adjuvant candidates that help transform colistin into a highly potent antimicrobial agent for treatment of colistin-resistant Gram-negative bacterial infections and allowed us to use of a much lower dosage of colistin to reduce its toxicity against colistin-susceptible bacterial infection such as carbapenem-resistant Enterobacterales.


Assuntos
Antibacterianos , Cetilpiridínio , Colistina , Etanolaminofosfotransferase , Animais , Feminino , Camundongos , Antibacterianos/farmacologia , Cetilpiridínio/farmacologia , Colistina/farmacologia , Modelos Animais de Doenças , Reposicionamento de Medicamentos , Farmacorresistência Bacteriana/efeitos dos fármacos , Enterobacteriaceae/efeitos dos fármacos , Infecções por Enterobacteriaceae/tratamento farmacológico , Infecções por Enterobacteriaceae/microbiologia , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Etanolaminofosfotransferase/metabolismo , Etanolaminofosfotransferase/antagonistas & inibidores , Etanolaminofosfotransferase/genética , Testes de Sensibilidade Microbiana
11.
J Glob Antimicrob Resist ; 33: 101-108, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36906175

RESUMO

OBJECTIVES: Colistin-resistant Gram-negative pathogens have become a serious worldwide medical problem. This study was designed to reveal the effects of an intrinsic phosphoethanolamine transferase from Acinetobacter modestus on Enterobacterales. METHODS: A strain of colistin-resistant A. modestus was isolated from a sample of nasal secretions taken in 2019 from a hospitalised pet cat in Japan. The whole genome was sequenced by next generation sequencing, and transformants of Escherichia coli, Klebsiella pneumoniae, and Enterobacter cloacae harbouring the phosphoethanolamine transferase-encoding gene from A. modestus were constructed. Lipid A modification in E. coli transformants was analysed using electrospray ionization mass spectrometry. RESULTS: Sequencing of the entire genome revealed that the isolate harboured a phosphoethanolamine transferase-encoding gene, eptA_AM, on its chromosome. Transformants of E. coli, K. pneumoniae, and E. cloacae harbouring both the promoter and eptA_AM gene from A. modestus had 32-fold, 8-fold, and 4-fold higher minimum inhibitory concentrations (MICs) for colistin, respectively, than transformants harbouring a control vector. The genetic environment surrounding eptA_AM in A. modestus was similar to that surrounding eptA_AM in Acinetobacter junii and Acinetobacter venetianus. Electrospray ionization mass spectrometry analysis revealed that EptA_AM modified lipid A in Enterobacterales. CONCLUSION: This is the first report to describe the isolation of an A. modestus strain in Japan and show that its intrinsic phosphoethanolamine transferase, EptA_AM, contributes to colistin resistance in Enterobacterales and A. modestus.


Assuntos
Colistina , Escherichia coli , Animais , Gatos , Colistina/farmacologia , Escherichia coli/genética , Lipídeo A/farmacologia , Etanolaminofosfotransferase/genética , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Klebsiella pneumoniae
12.
Front Cell Infect Microbiol ; 13: 1060519, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37360531

RESUMO

Mobilized colistin resistance genes (mcr) may confer resistance to the last-resort antimicrobial colistin and can often be transmitted horizontally. mcr encode phosphoethanolamine transferases (PET), which are closely related to chromosomally encoded, intrinsic lipid modification PET (i-PET; e.g., EptA, EptB, CptA). To gain insight into the evolution of mcr within the context of i-PET, we identified 69,814 MCR-like proteins present across 256 bacterial genera (obtained by querying known MCR family representatives against the National Center for Biotechnology Information [NCBI] non-redundant protein database via protein BLAST). We subsequently identified 125 putative novel mcr-like genes, which were located on the same contig as (i) ≥1 plasmid replicon and (ii) ≥1 additional antimicrobial resistance gene (obtained by querying the PlasmidFinder database and NCBI's National Database of Antibiotic Resistant Organisms, respectively, via nucleotide BLAST). At 80% amino acid identity, these putative novel MCR-like proteins formed 13 clusters, five of which represented putative novel MCR families. Sequence similarity and a maximum likelihood phylogeny of mcr, putative novel mcr-like, and ipet genes indicated that sequence similarity was insufficient to discriminate mcr from ipet genes. A mixed-effect model of evolution (MEME) indicated that site- and branch-specific positive selection played a role in the evolution of alleles within the mcr-2 and mcr-9 families. MEME suggested that positive selection played a role in the diversification of several residues in structurally important regions, including (i) a bridging region that connects the membrane-bound and catalytic periplasmic domains, and (ii) a periplasmic loop juxtaposing the substrate entry tunnel. Moreover, eptA and mcr were localized within different genomic contexts. Canonical eptA genes were typically chromosomally encoded in an operon with a two-component regulatory system or adjacent to a TetR-type regulator. Conversely, mcr were represented by single-gene operons or adjacent to pap2 and dgkA, which encode a PAP2 family lipid A phosphatase and diacylglycerol kinase, respectively. Our data suggest that eptA can give rise to "colistin resistance genes" through various mechanisms, including mobilization, selection, and diversification of genomic context and regulatory pathways. These mechanisms likely altered gene expression levels and enzyme activity, allowing bona fide eptA to evolve to function in colistin resistance.


Assuntos
Colistina , Proteínas de Escherichia coli , Humanos , Colistina/farmacologia , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Plasmídeos/genética , Transferases/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Testes de Sensibilidade Microbiana
13.
Antibiotics (Basel) ; 12(3)2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36978383

RESUMO

Acinetobacter baumannii is recognized as a clinically significant pathogen causing a wide spectrum of nosocomial infections. Colistin was considered a last-resort antibiotic for the treatment of infections caused by multidrug-resistant A. baumannii. Since the reintroduction of colistin, a number of mechanisms of colistin resistance in A. baumannii have been reported, including complete loss of LPS by inactivation of the biosynthetic pathway, modifications of target LPS driven by the addition of phosphoethanolamine (PEtN) moieties to lipid A mediated by the chromosomal pmrCAB operon and eptA gene-encoded enzymes or plasmid-encoded mcr genes and efflux of colistin from the cell. In addition to resistance to colistin, widespread heteroresistance is another feature of A. baumannii that leads to colistin treatment failure. This review aims to present a critical assessment of relevant published (>50 experimental papers) up-to-date knowledge on the molecular mechanisms of colistin resistance in A. baumannii with a detailed review of implicated mutations and the global distribution of colistin-resistant strains.

14.
J Med Microbiol ; 72(9)2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37706679

RESUMO

Background. The spread of Enterobacteriaceae coproducing carbapenemases, 16S rRNA methylase and mobile colistin resistance proteins (MCRs) has become a serious public health problem worldwide. This study describes two clinical isolates of Klebsiella pneumoniae coharbouring bla IMP-1, armA and mcr-10.Methods. Two clinical isolates of K. pneumoniae resistant to carbapenems and aminoglycosides were obtained from two patients at a hospital in Myanmar. Their minimum inhibitory concentrations (MICs) were determined by broth microdilution methods. The whole-genome sequences were determined by MiSeq and MinION methods. Drug-resistant factors and their genomic environments were determined.Results. The two K. pneumoniae isolates showed MICs of ≥4 and ≥1024 µg ml-1 for carbapenems and aminoglycosides, respectively. Two K. pneumonaie harbouring mcr-10 were susceptible to colistin, with MICs of ≤0.015 µg ml-1 using cation-adjusted Mueller-Hinton broth, but those for colistin were significantly higher (0.5 and 4 µg ml-1) using brain heart infusion medium. Whole-genome analysis revealed that these isolates coharboured bla NDM-1, armA and mcr-10. These two isolates showed low MICs of 0.25 µg ml-1 for colistin. Genome analysis revealed that both bla NDM-1 and armA were located on IncFIIs plasmids of similar size (81 kb). The mcr-10 was located on IncM2 plasmids of sizes 220 or 313 kb in each isolate. These two isolates did not possess a qseBC gene encoding a two-component system, which is thought to regulate the expression of mcr genes.Conclusion. This is the first report of isolates of K. pneumoniae coharbouring bla NDM-1, armA and mcr-10 obtained in Myanmar.


Assuntos
Colistina , Klebsiella pneumoniae , Humanos , Klebsiella pneumoniae/genética , Mianmar , Colistina/farmacologia , RNA Ribossômico 16S , Antibacterianos/farmacologia , Aminoglicosídeos , Carbapenêmicos
15.
Antibiotics (Basel) ; 12(2)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36830112

RESUMO

Pseudomonas aeruginosa has the genetic potential to acquire colistin resistance through the modification of lipopolysaccharide by the addition of 4-amino-4-deoxy-L-arabinose (L-Ara4N) or phosphoethanolamine (PEtN), mediated by the arn operon or the eptA gene, respectively. However, in vitro evolution experiments and genetic analysis of clinical isolates indicate that lipopolysaccharide modification with L-Ara4N is invariably preferred over PEtN addition as the colistin resistance mechanism in this bacterium. Since little is known about eptA regulation in P. aeruginosa, we generated luminescent derivatives of the reference strain P. aeruginosa PAO1 to monitor arn and eptA promoter activity. We performed transposon mutagenesis assays to compare the likelihood of acquiring mutations leading to arn or eptA induction and to identify eptA regulators. The analysis revealed that eptA was slightly induced under certain stress conditions, such as arginine or biotin depletion and accumulation of the signal molecule diadenosine tetraphosphate, but the induction did not confer colistin resistance. Moreover, we demonstrated that spontaneous mutations leading to colistin resistance invariably triggered arn rather than eptA expression, and that eptA was not induced in resistant mutants upon colistin exposure. Overall, these results suggest that the contribution of eptA to colistin resistance in P. aeruginosa may be limited by regulatory restraints.

16.
Curr Drug Targets ; 22(17): 1964-1985, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33858311

RESUMO

Bacterial resistance has become a major global concern, affecting about 500, 000 individuals in 22 countries. Thus, it is clear that Gram-negative bacteria have been receiving more attention in this scenario. These bacteria perform several resistance mechanisms, such as modifying lipid A from lipopolysaccharides as a product of the mcr-1 gene expression. This gene was initially identified in animals; however, it quickly spread to humans, spreading to 70 countries. Mcr-1 gene attributes resistance to polymyxin B and colistin, which are drugs established as the last alternative to combat Enterobacteriaceae bacteria. Notwithstanding the prevalence and lack of antibiotic therapies for such bacteria, this article aimed to compile information about natural compounds against the resistance attributed by this gene, including the activity of isolated colistin or its associations with other antibiotics. Among the studies that evaluated colistin's synergistic action with other compounds, azidothymidine and isoalantholactone stood out. On the other hand, the paenipeptin 1 analog showed satisfactory activities when associated with other antibiotics. Besides, it is worth mentioning that molecular docking results between ostole and eugenol toward phosphoethanolamine transferase MCR-1 revealed that these compounds could interact with critical amino acid residues for the catalytic action of this enzyme. Based on this, natural agents' role is evident against infections caused by mcr-1-positive bacteria, directly contributing to the development of new effective pharmacotherapies.


Assuntos
Produtos Biológicos , Colistina , Animais , Antibacterianos/farmacologia , Bactérias , Produtos Biológicos/farmacologia , Colistina/química , Colistina/farmacologia , Farmacorresistência Bacteriana , Humanos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Plasmídeos
17.
Microorganisms ; 9(6)2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34198665

RESUMO

Acinetobacter baumannii, a Gram-negative bacterium, is an important nosocomial pathogen. Colistin-resistant A. baumannii is becoming a new concern, since colistin is one of the last-line antibiotics for infections by carbapenem-resistant A. baumannii. From 452 carbapenem-resistant isolates collected in a teaching hospital in Taipei, Taiwan, we identified seven that were resistant to colistin. Carbapenem resistance in these isolates is attributed to the presence of carbapenemase gene blaOXA-23 in their genomes. Colistin resistance is presumably conferred by mutations in the sensor kinase domain of PmrB found in these isolates, which are known to result in modification of colistin target lipid A via the PmrB-PmrA-PmrC signal transduction pathway. Overexpression of pmrC, eptA, and naxD was observed in all seven isolates. Colistin resistance mediated by pmrB mutations has never been reported in Taiwan. One of the seven isolates contained three mutations in lpxD and exhibited an altered lipopolysaccharide profile, which may contribute to its colistin resistance. No significant difference in growth rates was observed between the isolates and the reference strain, suggesting no fitness cost of colistin resistance. Biofilm formation abilities of the isolates were lower than that of the reference. Interestingly, one of the isolates was heteroresistant to colistin. Four of the isolates were significantly more virulent to wax moth larvae than the reference.

18.
IUCrJ ; 8(Pt 5): 732-746, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34584735

RESUMO

Many pathogenic gram-negative bacteria have developed mechanisms to increase resistance to cationic antimicrobial peptides by modifying the lipid A moiety. One modification is the addition of phospho-ethano-lamine to lipid A by the enzyme phospho-ethano-lamine transferase (EptA). Previously we reported the structure of EptA from Neisseria, revealing a two-domain architecture consisting of a periplasmic facing soluble domain and a transmembrane domain, linked together by a bridging helix. Here, the conformational flexibility of EptA in different detergent environments is probed by solution scattering and intrinsic fluorescence-quenching studies. The solution scattering studies reveal the enzyme in a more compact state with the two domains positioned close together in an n-do-decyl-ß-d-maltoside micelle environment and an open extended structure in an n-do-decyl-phospho-choline micelle environment. Intrinsic fluorescence quenching studies localize the domain movements to the bridging helix. These results provide important insights into substrate binding and the molecular mechanism of endotoxin modification by EptA.

19.
Microorganisms ; 9(7)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34361895

RESUMO

Genome sequence comparisons to infer likely gene functions require accurate ortholog assignments. In Pseudomonas spp., the sensor-regulator ColS-ColR two-component regulatory system responds to zinc and other metals to control certain membrane-related functions, including lipid A remodeling. In Xanthomonas spp., three different two-component regulatory systems, RaxH-RaxR, VgrS-VgrR, and DetS-DetR, have been denoted as ColS-ColR in several different genome annotations and publications. To clarify these assignments, we compared the sensor periplasmic domain sequences and found that those from Pseudomonas ColS and Xanthomonas RaxH share a similar size as well as the location of a Glu-X-X-Glu metal ion-binding motif. Furthermore, we determined that three genes adjacent to raxRH are predicted to encode enzymes that remodel the lipid A component of lipopolysaccharide. The modifications catalyzed by lipid A phosphoethanolamine transferase (EptA) and lipid A 1-phosphatase (LpxE) previously were detected in lipid A from multiple Xanthomonas spp. The third gene encodes a predicted lipid A glycosyl transferase (ArnT). Together, these results indicate that the Xanthomonas RaxH-RaxR system is orthologous to the Pseudomonas ColS-ColR system that regulates lipid A remodeling. To avoid future confusion, we recommend that the terms ColS and ColR no longer be applied to Xanthomonas spp., and that the Vgr, Rax, and Det designations be used instead.

20.
Front Microbiol ; 9: 1922, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30186254

RESUMO

Bacteria cause disease by two general mechanisms: the action of their toxins on host cells and induction of a pro-inflammatory response that can lead to a deleterious cytokine/chemokine response (e.g., the so-called cytokine storm) often seen in bacteremia/septicemia. These major mechanisms may overlap due to the action of surface structures that can have direct and indirect actions on phagocytic or non-phagocytic cells. In this respect, the lipid A (endotoxin) component of lipopolysaccharide (LPS) possessed by Gram-negative bacteria has been the subject of literally thousands of studies over the past century that clearly identified it as a key virulence factor in endotoxic shock. In addition to its capacity to modulate inflammatory responses, endotoxin can also modulate bacterial susceptibility to host antimicrobials, such as the host defense peptides termed cationic antimicrobial peptides. This review concentrates on the phosphoethanolamine (PEA) decoration of lipid A in the pathogenic species of the genus Neisseria [N. gonorrhoeae and N. meningitidis]. PEA decoration of lipid A is mediated by the enzyme EptA (formerly termed LptA) and promotes resistance to innate defense systems, induces the pro-inflammatory response and can influence the in vivo fitness of bacteria during infection. These important biological properties have driven efforts dealing with the biochemistry and structural biology of EptA that will facilitate the development of potential inhibitors that block PEA addition to lipid A.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA