Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int J Mol Sci ; 24(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36768728

RESUMO

Hyper-IgE Syndrome (HIES) is a heterogeneous group of primary immune-deficiency disorders characterized by elevated levels of IgE, eczema, and recurrent skin and lung infections. HIES that is autosomally dominant in the signal transducer and activator of transcription 3 (STAT3), and autosomal recessive mutations in phosphoglucomutase 3 (PGM3) have been reported in humans. An early diagnosis, based on clinical suspicion and immunological assessments, is challenging. Patients' metabolomics, proteomics, and cytokine profiles were compared to DOCK 8-deficient and atopic dermatitis patients. The PGM3 metabolomics profile identified significant dysregulation in hypotaurine, hypoxanthine, uridine, and ribothymidine. The eight proteins involved include bifunctional arginine demethylase and lysyl hydroxylase (JMJD1B), type 1 protein phosphatase inhibitor 4 (PPI 4), and platelet factor 4 which aligned with an increased level of the cytokine GCSF. Patients with STAT3 deficiency, on the other hand, showed significant dysregulation in eight metabolites, including an increase in protocatechuic acid, seven proteins including ceruloplasmin, and a plasma protease C1 inhibitor, in addition to cytokine VEGF being dysregulated. Using multi-omics profiling, we identified the dysregulation of endothelial growth factor (EGFR) and tumor necrosis factor (TNF) signaling pathways in PGM3 and STAT3 patients, respectively. Our findings may serve as a stepping stone for larger prospective HIES clinical cohorts to validate their future use as biomarkers.


Assuntos
Imunoglobulina E , Síndrome de Job , Humanos , Fosfoglucomutase/metabolismo , Fator de Transcrição STAT3/metabolismo , Multiômica , Estudos Prospectivos , Síndrome de Job/diagnóstico , Mutação , Citocinas/metabolismo
2.
Allergy ; 77(6): 1761-1771, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34653276

RESUMO

BACKGROUND: The specificities of IgE and IgG for allergen molecules in patients with inborn errors of immunity (IEI) have not been investigated in detail. OBJECTIVE: To study IgE and IgG antibody specificities in patients with defined hyper-IgE syndromes (HIES) using a comprehensive panel of allergen molecules. METHODS: We used chips containing micro-arrayed allergen molecules to analyze allergen-specific IgE and IgG levels in sera from two groups of HIES patients: Autosomal recessive mutations in phosphoglucomutase-3 (PGM3); Autosomal dominant negative mutations of STAT3 (STAT3); and age-matched subjects with allergic sensitizations. Assays with rat basophil leukemia cells transfected with human FcεRI were performed to study the biological relevance of IgE sensitizations. RESULTS: Median total IgE levels were significantly lower in the sensitized control group (212.9 kU/L) as compared to PGM3 (5042 kU/L) and STAT3 patients (2561 kU/L). However, PGM3 patients had significantly higher allergen-specific IgE levels and were sensitized to a larger number of allergen molecules as compared to STAT3 patients. Biological relevance of IgE sensitization was confirmed for PGM3 patients by basophil activation testing. PGM3 patients showed significantly lower cumulative allergen-specific IgG responses in particular to milk and egg allergens as compared to STAT3 patients and sensitized controls whereas total IgG levels were comparable to STAT3 patients and significantly higher than in controls. CONCLUSION: The analysis with multiple micro-arrayed allergen molecules reveals profound differences of allergen-specific IgE and IgG recognition in PGM3 and STAT3 patients which may be useful for classification of IEI and clinical characterization of patients.


Assuntos
Síndrome de Job , Alérgenos , Humanos , Imunoglobulina E , Imunoglobulina G/genética , Síndrome de Job/diagnóstico , Síndrome de Job/genética , Mutação
3.
J Clin Immunol ; 41(5): 958-966, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33534079

RESUMO

Phosphoglucomutase 3 (PGM3) deficiency is a rare congenital disorder of glycosylation. Most of patients with autosomal recessive hypomorphic mutations in PGM3 encoding for phosphoglucomutase 3 present with eczema, skin and lung infections, elevated serum IgE, as well as neurological and skeletal features. A few PGM3-deficient patients suffer from a more severe disease with nearly absent T cells and severe skeletal dysplasia. We performed targeted next-generation sequencing on two kindred to identify the underlying genetic etiology of a severe combined immunodeficiency with developmental defect. We report here two novel homozygous missense variants (p.Gly359Asp and p.Met423Thr) in PGM3 identified in three patients from two unrelated kindreds with severe combined immunodeficiency, neurological impairment, and skeletal dysplasia. Both variants segregated with the disease in the two families. They were predicted to be deleterious by in silico analysis. PGM3 enzymatic activity was found to be severely impaired in primary fibroblasts and Epstein-Barr virus immortalized B cells from the kindred carrying the p.Met423Thr variant. Our findings support the pathogenicity of these two novel variants in severe PGM3 deficiency.


Assuntos
Anormalidades Múltiplas/genética , Doenças do Desenvolvimento Ósseo/genética , Deformidades Congênitas dos Membros/genética , Doenças do Sistema Nervoso/genética , Fosfoglucomutase/genética , Imunodeficiência Combinada Severa/genética , Pré-Escolar , Face/anormalidades , Feminino , Humanos , Lactente , Recém-Nascido , Masculino
4.
BMC Pediatr ; 18(1): 285, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30157810

RESUMO

BACKGROUND: A novel immunodeficiency, frequently accompanied by high serum-IgE, and caused by mutations in the PGM3 gene was described in 2014. To date there are no unique phenotype characteristics for PGM3 deficiency. PGM3 encodes a carbohydrate-modifying enzyme, phosphoglucomutase 3. Null-mutations are quite likely lethal, and to date only missense mutations or small deletions have been reported. Such mutations frequently cause a combination of reduced enzyme activity and protein instability, complicating determination of the enzyme level needed for survival. Here we present the first patient with a homozygous splice-modifying mutation in the PGM3 gene. An A > G substitution at position c.871 + 3 (transcript NM_001199917) is causing a deletion of exon 7 in the majority of PGM3 transcripts. In addition, this case further increases the clinical phenotypes of immunodeficiency caused by PGM3 mutations. CASE PRESENTATION: We describe the symptoms of a 3-year-old girl who was severely growth retarded, had vascular malformations, extensive eczema, multiple food-allergies, and was prone to infections. Unlike the majority of reported PGM3 deficient patients she lacked skeletal dysplasia and had normal neurocognitive development. In addition to the high serum-IgE, she displayed altered T cell numbers with reduced naïve CD4+ and CD8+ T-cells, increased number of activated effector memory CD8+ T cells and aberrant T-cell functions. The patient was homozygous for a new hypomorphic, splice-modifying mutation in the PGM3 gene, causing severely reduced mRNA levels. In the patient's cells, we observed 5% intact mRNA and approximately 11% of the protein levels seen in healthy controls. Treatment with allogeneic hematopoietic stem cell therapy was planned, but unfortunately the clinical condition deteriorated with multi-organ failure, which led to her death at 3 years of age. CONCLUSIONS: There is still no specific phenotype identified that distinguishes immunodeficiency caused by PGM3 mutations from other forms of immunodeficiency. The patient described here yields new information on the phenotypic variability among these patients. In addition, since all the synthesized protein is wild-type, it is possible for the first time to estimate the enzyme activity in vivo. The results suggest that1/10 of the normal PGM3 level is sufficient for survival but that it is insufficient for accurate carbohydrate processing.


Assuntos
Síndromes de Imunodeficiência/genética , Mutação , Fosfoglucomutase/genética , Sítios de Splice de RNA/genética , Pré-Escolar , Evolução Fatal , Feminino , Homozigoto , Humanos , Fosfoglucomutase/metabolismo , RNA Mensageiro/metabolismo
5.
Glycoconj J ; 33(3): 447-56, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26687240

RESUMO

Glycans serve as important regulators of antibody activities and half-lives. IgE is the most heavily glycosylated antibody, but in comparison to other antibodies little is known about its glycan structure function relationships. We therefore describe the site specific IgE glycosylation from a patient with a novel hyper IgE syndrome linked to mutations in PGM3, which is an enzyme involved in synthesizing UDP-GlcNAc, a sugar donor widely required for glycosylation. A two-step method was developed to prepare two IgE samples from less than 1 mL of serum collected from a patient with PGM3 mutation and a patient with atopic dermatitis as a control subject. Then, a glycoproteomic strategy was used to study the site-specific glycosylation. No glycosylation was found at Asn264, whilst high mannose glycans were only detected at Asn275, tri-antennary glycans were exclusively observed at Asn99 and Asn252, and non-fucosylated complex glycans were detected at Asn99. The results showed similar glycosylation profiles between the two IgE samples. These observations, together with previous knowledge of IgE glycosylation, imply that IgE glycosylation is similarly regulated among healthy control, allergy and PGM3 related hyper IgE syndrome.


Assuntos
Imunoglobulina E/metabolismo , Síndrome de Job/metabolismo , Mutação , Fosfoglucomutase/metabolismo , Processamento de Proteína Pós-Traducional , Sítios de Ligação , Glicoproteínas/química , Glicoproteínas/metabolismo , Glicosilação , Humanos , Imunoglobulina E/química , Síndrome de Job/diagnóstico , Síndrome de Job/genética , Espectrometria de Massas/métodos , Técnicas de Diagnóstico Molecular/métodos , Fosfoglucomutase/química , Fosfoglucomutase/genética , Proteoma/química , Proteoma/metabolismo
6.
J Allergy Clin Immunol ; 133(5): 1400-9, 1409.e1-5, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24589341

RESUMO

BACKGROUND: Identifying genetic syndromes that lead to significant atopic disease can open new pathways for investigation and intervention in allergy. OBJECTIVE: We sought to define a genetic syndrome of severe atopy, increased serum IgE levels, immune deficiency, autoimmunity, and motor and neurocognitive impairment. METHODS: Eight patients from 2 families with similar syndromic features were studied. Thorough clinical evaluations, including brain magnetic resonance imaging and sensory evoked potentials, were performed. Peripheral lymphocyte flow cytometry, antibody responses, and T-cell cytokine production were measured. Whole-exome sequencing was performed to identify disease-causing mutations. Immunoblotting, quantitative RT-PCR, enzymatic assays, nucleotide sugar, and sugar phosphate analyses, along with matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry of glycans, were used to determine the molecular consequences of the mutations. RESULTS: Marked atopy and autoimmunity were associated with increased T(H)2 and T(H)17 cytokine production by CD4(+) T cells. Bacterial and viral infection susceptibility were noted along with T-cell lymphopenia, particularly of CD8(+) T cells, and reduced memory B-cell numbers. Apparent brain hypomyelination resulted in markedly delayed evoked potentials and likely contributed to neurologic abnormalities. Disease segregated with novel autosomal recessive mutations in a single gene, phosphoglucomutase 3 (PGM3). Although PGM3 protein expression was variably diminished, impaired function was demonstrated by decreased enzyme activity and reduced uridine diphosphate-N-acetyl-D-glucosamine, along with decreased O- and N-linked protein glycosylation in patients' cells. These results define a new congenital disorder of glycosylation. CONCLUSIONS: Autosomal recessive hypomorphic PGM3 mutations underlie a disorder of severe atopy, immune deficiency, autoimmunity, intellectual disability, and hypomyelination.


Assuntos
Doenças Autoimunes/genética , Transtornos Cognitivos/genética , Imunodeficiência de Variável Comum/genética , Doenças Genéticas Inatas/genética , Hipersensibilidade/genética , Mutação , Fosfoglucomutase/genética , Doenças Autoimunes/enzimologia , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Linfócitos B/enzimologia , Linfócitos B/imunologia , Linfócitos B/patologia , Linfócitos T CD8-Positivos/enzimologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Criança , Pré-Escolar , Transtornos Cognitivos/enzimologia , Transtornos Cognitivos/imunologia , Transtornos Cognitivos/patologia , Imunodeficiência de Variável Comum/enzimologia , Imunodeficiência de Variável Comum/imunologia , Imunodeficiência de Variável Comum/patologia , Família , Feminino , Doenças Genéticas Inatas/enzimologia , Doenças Genéticas Inatas/imunologia , Doenças Genéticas Inatas/patologia , Humanos , Hipersensibilidade/enzimologia , Hipersensibilidade/imunologia , Hipersensibilidade/patologia , Imunoglobulina E/genética , Imunoglobulina E/imunologia , Masculino , Linhagem , Fosfoglucomutase/imunologia , Fosfoglucomutase/metabolismo , Células Th17/enzimologia , Células Th17/imunologia , Células Th17/patologia , Células Th2/enzimologia , Células Th2/imunologia , Células Th2/patologia , Adulto Jovem
7.
J Allergy Clin Immunol ; 133(5): 1410-9, 1419.e1-13, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24698316

RESUMO

BACKGROUND: Recurrent bacterial and fungal infections, eczema, and increased serum IgE levels characterize patients with the hyper-IgE syndrome (HIES). Known genetic causes for HIES are mutations in signal transducer and activator of transcription 3 (STAT3) and dedicator of cytokinesis 8 (DOCK8), which are involved in signal transduction pathways. However, glycosylation defects have not been described in patients with HIES. One crucial enzyme in the glycosylation pathway is phosphoglucomutase 3 (PGM3), which catalyzes a key step in the synthesis of uridine diphosphate N-acetylglucosamine, which is required for the biosynthesis of N-glycans. OBJECTIVE: We sought to elucidate the genetic cause in patients with HIES who do not carry mutations in STAT3 or DOCK8. METHODS: After establishing a linkage interval by means of SNPchip genotyping and homozygosity mapping in 2 families with HIES from Tunisia, mutational analysis was performed with selector-based, high-throughput sequencing. Protein expression was analyzed by means of Western blotting, and glycosylation was profiled by using mass spectrometry. RESULTS: Mutational analysis of candidate genes in an 11.9-Mb linkage region on chromosome 6 shared by 2 multiplex families identified 2 homozygous mutations in PGM3 that segregated with disease status and followed recessive inheritance. The mutations predict amino acid changes in PGM3 (p.Glu340del and p.Leu83Ser). A third homozygous mutation (p.Asp502Tyr) and the p.Leu83Ser variant were identified in 2 other affected families, respectively. These hypomorphic mutations have an effect on the biosynthetic reactions involving uridine diphosphate N-acetylglucosamine. Glycomic analysis revealed an aberrant glycosylation pattern in leukocytes demonstrated by a reduced level of tri-antennary and tetra-antennary N-glycans. T-cell proliferation and differentiation were impaired in patients. Most patients had developmental delay, and many had psychomotor retardation. CONCLUSION: Impairment of PGM3 function leads to a novel primary (inborn) error of development and immunity because biallelic hypomorphic mutations are associated with impaired glycosylation and a hyper-IgE-like phenotype.


Assuntos
Cromossomos Humanos Par 6/genética , Doenças Genéticas Inatas/genética , Homozigoto , Imunidade/genética , Imunoglobulina E , Síndrome de Job/genética , Mutação de Sentido Incorreto , Fosfoglucomutase/genética , Adulto , Substituição de Aminoácidos , Proliferação de Células , Criança , Cromossomos Humanos Par 6/metabolismo , Feminino , Doenças Genéticas Inatas/enzimologia , Doenças Genéticas Inatas/imunologia , Ligação Genética , Glicosilação , Humanos , Lactente , Síndrome de Job/enzimologia , Síndrome de Job/imunologia , Masculino , Fosfoglucomutase/imunologia , Fosfoglucomutase/metabolismo , Linfócitos T/enzimologia , Linfócitos T/imunologia , Tunísia
8.
Immunol Allergy Clin North Am ; 39(1): 49-61, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30466772

RESUMO

Improvement in genetic testing has allowed specific delineation of several distinct clinical causes characterized by the hyperimmunoglobulin E (IgE) phenotype of eczema, recurrent infections, and elevated serum IgE. Mutations in STAT3, DOCK8, PGM3, ERBIN, IL6ST, and CARD11 cause clinical phenotypes that can present in this manner. This article focuses on loss of function STAT3 mutations causing autosomal-dominant hyper-IgE syndrome and dedicator of cytokinesis 8 deficiency, with discussion of other more recently described diseases.


Assuntos
Síndrome de Job/diagnóstico , Síndrome de Job/etiologia , Fenótipo , Animais , Biomarcadores , Terapia Combinada , Diagnóstico por Imagem , Suscetibilidade a Doenças , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Síndrome de Job/metabolismo , Síndrome de Job/terapia , Resultado do Tratamento
9.
Biosens Bioelectron ; 117: 613-619, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30005381

RESUMO

Multiplexed biosensors hold great promise for early diagnosis of diseases where the detection of multiple biomarkers is required. Hyper Immunoglobulin E syndromes (HIES) are rare primary immunodeficiency disorders associated with mutations either in the signal transducer and activator of transcription 3 (STAT3), dedicator of cytokinesis 8 DOCK8) or phosphoglucomutase 3 (PGM3) genes. Yet, the diagnosis of HIES is challenged by the complexity of the existing laboratory assays. Here, we report for the first time the development of a multiplexed electrochemical immunosensor for the simultaneous detection of DOCK8, STAT3 and PGM3 proteins. The immunosensor was constructed on carbon array electrodes that were first modified by electrodeposition of gold nanoparticles (AuNPs). The array electrodes were then used to immobilize specific antibodies for the three proteins after the functionalization of the electrodes with cysteamine/glutaraldehyde linkers. The simultaneous detection of the DOCK8, PGM3 and STAT3 proteins was successfully realized by the immunosensor with respective limits of detections of 3.1, 2.2 and 3.5 pg/ml. The immunosensor has shown good sensitivity as well as selectivity against other proteins such as cystic fibrosis transmembrane conductance regulator (CFTR) and Duchenne Muscular Dystrophy (DMD). Moreover, the immunosensor was successfully applied in human serum samples showing capability to distinguish the HIES from the control samples.


Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Análise Química do Sangue/instrumentação , Análise Química do Sangue/métodos , Síndrome de Job/diagnóstico , Ouro/química , Fatores de Troca do Nucleotídeo Guanina/sangue , Humanos , Síndrome de Job/sangue , Nanopartículas Metálicas/química , Fosfoglucomutase/sangue , Fator de Transcrição STAT3/sangue
10.
Gene ; 533(2): 508-14, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24080485

RESUMO

Metals are a threat to human health by increasing disease risk. Experimental data have linked altered miRNA expression with exposure to some metals. MiRNAs comprise a large family of non-coding single-stranded molecules that primarily function to negatively regulate gene expression post-transcriptionally. Although several human populations are exposed to low concentrations of As, Cd and Pb as a mixture, most toxicology research focuses on the individual effects that these metals exert. Thus, this study aims to evaluate global miRNA and mRNA expression changes induced by a metal mixture containing NaAsO2, CdCl2, Pb(C2H3O2)2·3H2O and to predict possible metal-associated disease development under these conditions. Our results show that this metal mixture results in a miRNA expression profile that may be responsible for the mRNA expression changes observed under experimental conditions in which coding proteins are involved in cellular processes, including cell death, growth and proliferation related to the metal-associated inflammatory response and cancer.


Assuntos
Expressão Gênica/efeitos dos fármacos , Metais/toxicidade , MicroRNAs/genética , RNA Mensageiro/genética , Animais , Arsenitos/toxicidade , Células 3T3 BALB , Cloreto de Cádmio/toxicidade , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Perfilação da Expressão Gênica , Saúde , Camundongos , Análise em Microsséries , Compostos Organometálicos/toxicidade , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Compostos de Sódio/toxicidade , Testes de Toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA