Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(24): e2400711121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38833476

RESUMO

Understanding how microbial lipidomes adapt to environmental and nutrient stress is crucial for comprehending microbial survival and functionality. Certain anaerobic bacteria can synthesize glycerolipids with ether/ester bonds, yet the complexities of their lipidome remodeling under varying physicochemical and nutritional conditions remain largely unexplored. In this study, we thoroughly examined the lipidome adaptations of Desulfatibacillum alkenivorans strain PF2803T, a mesophilic anaerobic sulfate-reducing bacterium known for its high proportions of alkylglycerol ether lipids in its membrane, under various cultivation conditions including temperature, pH, salinity, and ammonium and phosphorous concentrations. Employing an extensive analytical and computational lipidomic methodology, we identified an assemblage of nearly 400 distinct lipids, including a range of glycerol ether/ester lipids with various polar head groups. Information theory-based analysis revealed that temperature fluctuations and phosphate scarcity profoundly influenced the lipidome's composition, leading to an enhanced diversity and specificity of novel lipids. Notably, phosphorous limitation led to the biosynthesis of novel glucuronosylglycerols and sulfur-containing aminolipids, termed butyramide cysteine glycerols, featuring various ether/ester bonds. This suggests a novel adaptive strategy for anaerobic heterotrophs to thrive under phosphorus-depleted conditions, characterized by a diverse array of nitrogen- and sulfur-containing polar head groups, moving beyond a reliance on conventional nonphospholipid types.


Assuntos
Lipidômica , Nitrogênio , Fósforo , Enxofre , Fósforo/metabolismo , Enxofre/metabolismo , Nitrogênio/metabolismo , Adaptação Fisiológica , Sulfatos/metabolismo , Bactérias Anaeróbias/metabolismo , Anaerobiose
2.
Proc Natl Acad Sci U S A ; 121(20): e2312892121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38713622

RESUMO

Marine picocyanobacteria of the genera Prochlorococcus and Synechococcus, the two most abundant phototrophs on Earth, thrive in oligotrophic oceanic regions. While it is well known that specific lineages are exquisitely adapted to prevailing in situ light and temperature regimes, much less is known of the molecular machinery required to facilitate occupancy of these low-nutrient environments. Here, we describe a hitherto unknown alkaline phosphatase, Psip1, that has a substantially higher affinity for phosphomonoesters than other well-known phosphatases like PhoA, PhoX, or PhoD and is restricted to clade III Synechococcus and a subset of high light I-adapted Prochlorococcus strains, suggesting niche specificity. We demonstrate that Psip1 has undergone convergent evolution with PhoX, requiring both iron and calcium for activity and likely possessing identical key residues around the active site, despite generally very low sequence homology. Interrogation of metagenomes and transcriptomes from TARA oceans and an Atlantic Meridional transect shows that psip1 is abundant and highly expressed in picocyanobacterial populations from the Mediterranean Sea and north Atlantic gyre, regions well recognized to be phosphorus (P)-deplete. Together, this identifies psip1 as an important oligotrophy-specific gene for P recycling in these organisms. Furthermore, psip1 is not restricted to picocyanobacteria and is abundant and highly transcribed in some α-proteobacteria and eukaryotic algae, suggesting that such a high-affinity phosphatase is important across the microbial taxonomic world to occupy low-P environments.


Assuntos
Fosfatase Alcalina , Prochlorococcus , Fosfatase Alcalina/metabolismo , Fosfatase Alcalina/genética , Prochlorococcus/genética , Prochlorococcus/metabolismo , Fósforo/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Synechococcus/genética , Synechococcus/metabolismo , Filogenia , Água do Mar/microbiologia
3.
Proc Natl Acad Sci U S A ; 119(36): e2203057119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36037375

RESUMO

Phosphorus (P) is a key nutrient limiting bacterial growth and primary production in the oceans. Unsurprisingly, marine microbes have evolved sophisticated strategies to adapt to P limitation, one of which involves the remodeling of membrane lipids by replacing phospholipids with non-P-containing surrogate lipids. This strategy is adopted by both cosmopolitan marine phytoplankton and heterotrophic bacteria and serves to reduce the cellular P quota. However, little, if anything, is known of the biological consequences of lipid remodeling. Here, using the marine bacterium Phaeobacter sp. MED193 and the ciliate Uronema marinum as a model, we sought to assess the effect of remodeling on bacteria-protist interactions. We discovered an important trade-off between either escape from ingestion or resistance to digestion. Thus, Phaeobacter grown under P-replete conditions was readily ingested by Uronema, but not easily digested, supporting only limited predator growth. In contrast, following membrane lipid remodeling in response to P depletion, Phaeobacter was less likely to be captured by Uronema, thanks to the reduced expression of mannosylated glycoconjugates. However, once ingested, membrane-remodeled cells were unable to prevent phagosome acidification, became more susceptible to digestion, and, as such, allowed rapid growth of the ciliate predator. This trade-off between adapting to a P-limited environment and susceptibility to protist grazing suggests the more efficient removal of low-P prey that potentially has important implications for the functioning of the marine microbial food web in terms of trophic energy transfer and nutrient export efficiency.


Assuntos
Cadeia Alimentar , Modelos Biológicos , Fósforo , Organismos Aquáticos , Cilióforos/fisiologia , Lipídeos de Membrana/metabolismo , Fosfolipídeos/metabolismo , Fósforo/metabolismo , Fitoplâncton/metabolismo , Rhodobacteraceae/fisiologia
4.
Glob Chang Biol ; 30(1): e17104, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273555

RESUMO

Globally pervasive increases in atmospheric CO2 and nitrogen (N) deposition could have substantial effects on plant communities, either directly or mediated by their interactions with soil nutrient limitation. While the direct consequences of N enrichment on plant communities are well documented, potential interactions with rising CO2 and globally widespread phosphorus (P) limitation remain poorly understood. We investigated the consequences of simultaneous elevated CO2 (eCO2 ) and N and P additions on grassland biodiversity, community and functional composition in P-limited grasslands. We exposed soil-turf monoliths from limestone and acidic grasslands that have received >25 years of N additions (3.5 and 14 g m-2 year-1 ) and 11 (limestone) or 25 (acidic) years of P additions (3.5 g m-2 year-1 ) to eCO2 (600 ppm) for 3 years. Across both grasslands, eCO2 , N and P additions significantly changed community composition. Limestone communities were more responsive to eCO2 and saw significant functional shifts resulting from eCO2 -nutrient interactions. Here, legume cover tripled in response to combined eCO2 and P additions, and combined eCO2 and N treatments shifted functional dominance from grasses to sedges. We suggest that eCO2 may disproportionately benefit P acquisition by sedges by subsidising the carbon cost of locally intense root exudation at the expense of co-occurring grasses. In contrast, the functional composition of the acidic grassland was insensitive to eCO2 and its interactions with nutrient additions. Greater diversity of P-acquisition strategies in the limestone grassland, combined with a more functionally even and diverse community, may contribute to the stronger responses compared to the acidic grassland. Our work suggests we may see large changes in the composition and biodiversity of P-limited grasslands in response to eCO2 and its interactions with nutrient loading, particularly where these contain a high diversity of P-acquisition strategies or developmentally young soils with sufficient bioavailable mineral P.


Assuntos
Dióxido de Carbono , Pradaria , Dióxido de Carbono/análise , Fósforo , Plantas , Poaceae , Nitrogênio , Solo/química , Carbonato de Cálcio
5.
Plant Cell Physiol ; 64(4): 433-447, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-36565060

RESUMO

Coral bleaching is primarily caused by high sea surface temperatures, and nutrient enrichment of reefs is associated with lower resilience to thermal stress and ecological degradation. Excess inorganic nitrogen relative to phosphate has been proposed to sensitize corals to thermal bleaching. We assessed the physiological and proteomic responses of cultures of the dinoflagellate coral symbiont Symbiodinium microadriaticum to elevated temperature under low-nutrient, high-nutrient and phosphate-limited conditions. Elevated temperature induced reductions of many chloroplast proteins, particularly the light-harvesting complexes, and simultaneously increased the abundance of many chaperone proteins. Proteomes were similar when the N:P ratio was near the Redfield ratio, regardless of absolute N and P concentrations, but were strongly affected by phosphate limitation. Very high N:P inhibited Symbiodinium cell division while increasing the abundance of chloroplast proteins. The proteome response to phosphate limitation was greater than that to elevated temperature, as measured by the number of differentially abundant proteins. Increased physiological sensitivity to high temperatures under high nutrients or imbalanced N:P ratios was not apparent; however, oxidative stress response proteins were enriched among proteins responding to thermal stress under imbalanced N:P ratios. These data provide a detailed catalog of the effects of high temperatures and nutrients on a coral symbiont proteome.


Assuntos
Antozoários , Dinoflagellida , Animais , Recifes de Corais , Proteoma/metabolismo , Proteômica , Antozoários/metabolismo , Fosfatos/metabolismo , Dinoflagellida/metabolismo , Nutrientes , Simbiose
6.
New Phytol ; 238(3): 1033-1044, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36751890

RESUMO

Understanding how plants adapt to spatially heterogeneous phosphorus (P) supply is important to elucidate the effect of environmental changes on ecosystem productivity. Plant P supply is concurrently controlled by plant internal conservation and external acquisition. However, it is unclear how climate, soil, and microbes influence the contributions and interactions of the internal and external pathways for plant P supply. Here, we measured P and nitrogen (N) resorption efficiency, litter and soil acid phosphatase (AP) catalytic parameters (Vmax(s) and Km ), and soil physicochemical properties at four sites spanning from cold temperate to tropical forests. We found that the relative P limitation to plants was generally higher in tropical forests than temperate forests, but varied greatly among species and within sites. In P-impoverished habitats, plants resorbed more P than N during litterfall to maintain their N : P stoichiometric balance. In addition, once ecosystems shifted from N-limited to P-limited, litter- and soil-specific AP catalytic efficiency (Vmax(s) /Km ) increased rapidly, thereby enhancing organic P mineralization. Our findings suggested that ecosystems develop a coupled aboveground-belowground strategy to maintain P supply and N : P stoichiometric balance under P-limitation. We also highlighted that N cycle moderates P cycles and together shape plant P acquisition in forest ecosystems.


Assuntos
Ecossistema , Fósforo , Fósforo/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Florestas , Plantas/metabolismo , Solo/química , Fosfatase Ácida/metabolismo , Nitrogênio/metabolismo , Folhas de Planta/metabolismo
7.
J Exp Bot ; 74(6): 2083-2111, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36629302

RESUMO

Phosphorus (P) limitation in the majority of world soils is a major constraint for plant growth and crop productivity. RNA sequencing was used to discover novel P-responsive gene transcripts (PRGTs) in leaves and roots of Arabidopsis. Hisat StringTie and the Cufflinks TopHat transcript assembler were used to analyze reads and identify 1074 PRGTs with a >5-fold altered abundance during P limitation. Interestingly, 60% of these transcripts were not previously reported. Among the novel PRGTs, 106 were from unannotated genes, and some were among the most P-responsive, including At2g36727 which encodes a novel miRNA. Annotated novel PRGTs encode transcription factors, miRNAs, small signaling peptides, long non-coding RNAs, defense-related proteins, and transporters, along with proteins involved in many biological processes. We identified several genes that undergo alternative splicing during P limitation, including a novel miR399-resistant splice variant of PHOSPHATE2 (PHO2.2). Several novel P-responsive genes were regulated by PHOSPHATE STARVATION RESPONSE1 (PHR1), PHR1-LIKE 1 (PHL1), and PHO2. We discovered that P-limited plants show increased resistance to pathogens and drought stress mediated by PHR1-PHL1. Identification of novel P-responsive transcripts and the discovery of the influence of P limitation on biotic and abiotic stress adds a significant component to our understanding of plant P signaling.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fósforo/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fosfatos/metabolismo , Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
8.
Appl Microbiol Biotechnol ; 107(11): 3509-3522, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37133798

RESUMO

For a sustainable economy, biodegradable biopolymers polyhydroxyalkanoates (PHA) are desirable substitutes to petroleum-based plastics that contaminate our environment. Medium-chain-length (MCL) PHA bioplastics are particularly interesting due to their thermoplastic properties. To hamper the high cost associated to PHA production, the use of bacterial mixed cultures cultivated in open systems and using cheap resources is a promising strategy. Here, we studied the operating conditions favouring direct MCL accumulation by activated sludge, using oleic acid as a model substrate and phosphorus limitation in fed-batch bioreactors. Our results confirm the presence of PHA-accumulating organisms (PHAAO) in activated sludge able to accumulate MCL from oleic acid. A positive correlation between phosphorus (P) limitation and PHA accumulation was demonstrated, allowing up to 26% PHA/total biomass accumulation, and highlighted its negative impact on the MCL/PHA fraction in the polymer. Diversity analysis through 16S rRNA amplicon sequencing revealed a differential selection of PHAAO according to the P-limitation level. A differential behaviour for the orders Pseudomonadales and Burkholderiales at increasing P-limitation levels was revealed, with a higher abundance of the latter at high levels of P-limitation. The PHA accumulation observed in activated sludge open new perspectives for MCL-PHA production system based on P-limitation strategy applied to mixed microbial communities. KEY POINTS: • Direct accumulation of MCL-PHA in activated sludge was demonstrated. • MCL-PHA content is negatively correlated with P-limitation. • Burkholderiales members discriminate the highest P-limitation levels.


Assuntos
Poli-Hidroxialcanoatos , Esgotos/microbiologia , Fósforo , Ácido Oleico , RNA Ribossômico 16S/genética , Biopolímeros , Reatores Biológicos/microbiologia
9.
J Environ Manage ; 335: 117456, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36822044

RESUMO

To enhance the nitrogen removal capacity, scrap iron filings and Si-Al porous clay mineral material (PCMW) was used to improve a subsurface wastewater infiltration system (SWIS). The results showed TN and NH4+-N removal efficiencies of improved SWIS were 20.72% and 5.49% higher than those of the control SWIS, respectively. Based on the response of the removal performance, microbial community and function analysis of 16s rRNA amplicon sequencing results, the amending soil matrix substantially enriched the nitrogen removal bacteria (Rhizobiales_Incertae_Sedis and Gemmatimonadaceae), and significantly improved the activities of key enzymes (Hao, NasAB, NarGHI, NirK, NorBC, NirA and NirBD), particularly at co-occurrence zone of nitrification and denitrification (70-130 cm depth). The amending soil matrix not only extended the growth space of microbes, but also provided additional electrons and carbon sources for denitrifying bacteria by regulating the structure and function of the microbial community. In addition, amending soil matrix could enhance phosphate metabolism genes and phosphate solubilizing microbes in the denitrification zone by increasing the phosphorus source, thus strengthening nitrogen metabolism. Nitrospiraceae, Rhizobiales_Incertae_Sedis and Gemmatimonadaceae related to nitrogen removal and Bacillaceae with phosphate-solubilizing ability could be used as microbial indicators of nitrogen removal in SWISs. The reciprocal action of environmental on microbial characteristics exhibited microbial functional were related to DO, Fe2+, TOC, TP, TN, NH4+-N and NO3--N. Those could be used as physicochemical and biological indicators for application and monitoring of SWIS. In conclusion, this study provided a low-cost and efficient enhancement approach for the application of SWIS in decentralized domestic sewage treatment, and furnished theoretical support for subsequent applications.


Assuntos
Desnitrificação , Águas Residuárias , Fósforo , Nitrogênio/química , RNA Ribossômico 16S , Nitrificação , Bactérias/metabolismo , Fosfatos , Solo , Reatores Biológicos , Esgotos , Eliminação de Resíduos Líquidos
10.
J Environ Manage ; 337: 117737, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36933538

RESUMO

Eutrophication management is one of the greatest environmental challenges for lacustrine systems worldwide. The empirically predicted models between algal chlorophyll (CHL-a) and total phosphorus (TP) provide a basis for managing eutrophication in lakes and reservoirs, but other environmental factors influencing the empirical relations must be considered. Here, we tested the impacts of morphological and chemical variables, as well as the effect of the Asian monsoon, on the functional response of CHL-a to TP using two-year data of 293 agricultural reservoirs. This study was based on the approaches of empirical models (linear and sigmoidal), CHL-a:TP ratio, and trophic state index deviation (TSID). Algal CHL-a exhibited a strong log-linear relation with TP on the basis of 2-year average data (R2 = 0.69, p < 0.001), whereas it had a more sigmoidal relation in terms of monsoon-seasonal averages (R2 = 0.52, p < 0.001). The linear segment of the CHL-a-TP relation aligned with the gradient of TP (10 mg/L < TP < 100 mg/L) from mesotrophic to eutrophic conditions. The transfer efficiency of TP to CHL-a based on the 2-year mean CHL-a:TP was high (0.6 <) across all assessed agricultural systems. CHL-a:TP showed insignificant correlations with reservoir morphological variations, but it decreased (<0.5) in eutrophic and hypereutrophic systems during the monsoon season (July-August). Because TP and total suspended solids (TSS) have become increasingly abundant, light conditions become insufficient for algal growth during and after the monsoon season. Light-limited conditions become more prevalent in hypereutrophic systems with shallow depth and high dynamic sediment ratio (DSR) because of the intense rainfall inputs and wind-induced sediment resuspension of the post-monsoon season. TSID reflected the degree of phosphorus limitation and the reduction in underwater light corresponding to changes in reservoir water chemistry (ionic content, TSS, and TN:TP ratio), trophic state gradient, and morphological metrics (mainly mean depth and DSR). Our findings suggest that monsoon-induced changes in water chemistry and light attenuation, which are also associated with anthropogenic pollutant runoffs and reservoir morphology, are critical factors that influence the functional response of algal CHL-a to TP in temperate reservoirs. Modeling and assessing eutrophication should therefore take into account monsoon seasonality along with individual morphological features further.


Assuntos
Clorofila , Monitoramento Ambiental , Clorofila/análise , Abastecimento de Água , Lagos , Água , Eutrofização , Fósforo/análise , China , Nitrogênio/análise
11.
Ecol Lett ; 25(12): 2776-2792, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36223425

RESUMO

Primary consumers in aquatic ecosystems are frequently limited by the quality of their food, often expressed as phytoplankton elemental and biochemical composition. However, the effects of these food quality indicators vary across studies, and we lack an integrated understanding of how elemental (e.g. nitrogen, phosphorus) and biochemical (e.g. fatty acid, sterol) limitations interactively influence aquatic food webs. Here, we present the results of a meta-analysis using >100 experimental studies, confirming that limitation by N, P, fatty acids, and sterols all have significant negative effects on zooplankton performance. However, effects varied by grazer response (growth vs. reproduction), specific manipulation, and across taxa. While P limitation had greater effects on zooplankton growth than fatty acids overall, P and fatty acid limitation had equal effects on reproduction. Furthermore, we show that: nutrient co-limitation in zooplankton is strong; effects of essential fatty acid limitation depend on P availability; indirect effects induced by P limitation exceed direct effects of mineral P limitation; and effects of nutrient amendments using laboratory phytoplankton isolates exceed those using natural field communities. Our meta-analysis reconciles contrasting views about the role of various food quality indicators, and their interactions, for zooplankton performance, and provides a mechanistic understanding of trophic transfer in aquatic environments.


Assuntos
Ecossistema , Zooplâncton , Animais , Zooplâncton/fisiologia , Fitoplâncton/fisiologia , Nutrientes , Ácidos Graxos
12.
Proc Natl Acad Sci U S A ; 116(26): 12720-12728, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31182581

RESUMO

The supply of nutrients is a fundamental regulator of ocean productivity and carbon sequestration. Nutrient sources, sinks, residence times, and elemental ratios vary over broad scales, including those resulting from climate-driven changes in upper water column stratification, advection, and the deposition of atmospheric dust. These changes can alter the proximate elemental control of ecosystem productivity with cascading ecological effects and impacts on carbon sequestration. Here, we report multidecadal observations revealing that the ecosystem in the eastern region of the North Pacific Subtropical Gyre (NPSG) oscillates on subdecadal scales between inorganic phosphorus (P i ) sufficiency and limitation, when P i concentration in surface waters decreases below 50-60 nmol⋅kg-1 In situ observations and model simulations suggest that sea-level pressure changes over the northwest Pacific may induce basin-scale variations in the atmospheric transport and deposition of Asian dust-associated iron (Fe), causing the eastern portion of the NPSG ecosystem to shift between states of Fe and P i limitation. Our results highlight the critical need to include both atmospheric and ocean circulation variability when modeling the response of open ocean pelagic ecosystems under future climate change scenarios.


Assuntos
Ecossistema , Ferro/química , Fósforo/química , Organismos Aquáticos/crescimento & desenvolvimento , Organismos Aquáticos/metabolismo , Ciclo do Carbono , Ferro/metabolismo , Deficiências de Ferro , Microbiota , Oceano Pacífico , Periodicidade , Fósforo/deficiência , Fósforo/metabolismo , Clima Tropical
13.
J Environ Manage ; 324: 116346, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36166863

RESUMO

Phosphorus (P) limitation is a widespread problem of primary production in dryland submitted to persistent nitrogen (N) deposition. The legume alfalfa (Medicago sativa L.), which can fix N2, might potentially strengthen P limitation in dryland ecosystems and is widely distributed as forage. However, there is still unclear how alfalfa grassland mobilizes the soil P to meet its demand. In this experiment, alfalfa introduction was used for long-term revegetation to evaluate the P uptake of plants from deep soil and assess the P limitation induced by N deposition compared with fallow. Our results showed that alfalfa introduction increased the soil P storage significantly at 0-2.4 m soil depth (+0.74 Mg ha-1), whereas it decreased at 2.4-4.8 m soil depth (-0.21 Mg ha-1) after 15-year establishment. Alfalfa establishment increased soil organic P concentration (180.9 mg kg-1 vs. 67.2 mg kg-1) and its relative contribution to total P (19.64% vs. 8.08%) at 0-4.8 m. Alfalfa establishment also increased the concentration and proportion of labile and intermediate P fractions at 0-4.8 m (9.12 mg kg-1 vs. 6.87 mg kg-1, 1.12% vs. 0.98%; 16.06 mg kg-1 vs. 8.39 mg kg-1, 1.69% vs. 1.17%). Alfalfa introduction decreased the concentrated HCl-Pi (250.66 mg kg-1 vs. 229.32 mg kg-1, 36.81% vs. 28.91%) in 2.4-4.8 m soil depth. These results indicated that the deep root system of alfalfa grassland could promote the P mobilization from deep to shallow soil. The concentrated HCl-Pi may be the main potential P source of alfalfa from 2.4-4.8 m to 0-2.4 m of soil depth, and long-term establishment of alfalfa can alleviate P limitation caused by N deposition in carbonate soil. Our results suggested that species with deep roots (such as alfalfa) could be selected as an economical way to mitigate nitrogen deposition in drylands.


Assuntos
Medicago sativa , Solo , Nitrogênio/análise , Fósforo , Ecossistema , Carbonatos
14.
Ecol Lett ; 24(7): 1420-1431, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33894021

RESUMO

Phosphorus limitation on terrestrial plant growth is being incorporated into Earth system models. The global pattern of terrestrial phosphorus limitation, however, remains unstudied. Here, we examined the global-scale latitudinal pattern of terrestrial phosphorus limitation by analysing a total of 1068 observations of aboveground plant production response to phosphorus additions at 351 forest, grassland or tundra sites that are distributed globally. The observed phosphorus-addition effect varied greatly (either positive or negative), depending significantly upon fertilisation regime and production measure, but did not change significantly with latitude. In contrast, phosphorus-addition effect standardised by fertilisation regime and production measure was consistently positive and decreased significantly with latitude. Latitudinal gradient in the standardised phosphorus-addition effect was explained by several mechanisms involving substrate age, climate, vegetation type, edaphic properties and biochemical machinery. This study suggests that latitudinal pattern of terrestrial phosphorus limitation is jointly shaped by macro-scale driving forces and the fundamental structure of life.


Assuntos
Nitrogênio , Fósforo , Clima , Ecossistema , Florestas , Desenvolvimento Vegetal
15.
New Phytol ; 231(5): 1700-1707, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34110018

RESUMO

The resilience of forests is compromised by human-induced environmental influences pushing them towards tipping points and resulting in major shifts in ecosystem state that might be difficult to reverse, are difficult to predict and manage, and can have vast ecological, economic and social consequences. The literature on tipping points has grown rapidly, but almost exclusively based on aquatic and aboveground systems. So far little effort has been made to make links to soil systems, where change is not as drastically apparent, timescales may differ and recovery may be slower. Predicting belowground ecosystem state transitions and recovery, and their impacts on aboveground systems, remains a major scientific, practical and policy challenge. Recently observed major changes in aboveground tree condition across European forests are probably causally linked to ectomycorrhizal (EM) fungal changes belowground. Based on recent breakthroughs in data collection and analysis, we apply tipping point theory to forests, including their belowground component, focusing on EM fungi; link environmental thresholds for EM fungi with nutrient imbalances in forest trees; explore the role of phenotypic plasticity in EM fungal adaptation to, and recovery from, environmental change; and propose major positive feedback mechanisms to understand, address and predict forest ecosystem tipping points.


Assuntos
Ecossistema , Micorrizas , Florestas , Humanos , Solo , Árvores
16.
Ecol Lett ; 23(2): 336-347, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31802606

RESUMO

The traditional view holds that biological nitrogen (N) fixation often peaks in early- or mid-successional ecosystems and declines throughout succession based on the hypothesis that soil N richness and/or phosphorus (P) depletion become disadvantageous to N fixers. This view, however, fails to support the observation that N fixers can remain active in many old-growth forests despite the presence of N-rich and/or P-limiting soils. Here, we found unexpected increases in N fixation rates in the soil, forest floor, and moss throughout three successional forests and along six age-gradient forests in southern China. We further found that the variation in N fixation was controlled by substrate carbon(C) : N and C : (N : P) stoichiometry rather than by substrate N or P. Our findings highlight the utility of ecological stoichiometry in illuminating the mechanisms that couple forest succession and N cycling.


Assuntos
Ecossistema , Fixação de Nitrogênio , China , Florestas , Nitrogênio , Fósforo , Solo , Árvores
17.
Biol Chem ; 401(12): 1495-1501, 2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-32845857

RESUMO

Phosphorus (P) is a crucial element and diatoms, unicellular phototrophic organisms, evolved efficient strategies to handle limiting phosphorus concentrations in the oceans. In the last decade, several groups investigated the model diatom Phaeodactylum tricornutum concerning phosphate homeostasis mechanisms. Here, we summarize the actual status of knowledge by linking the available data sets, thereby indicating experimental limits but also future research directions.


Assuntos
Diatomáceas/química , Diatomáceas/metabolismo , Fósforo/metabolismo , Aclimatação , Modelos Biológicos , Fósforo/química , Estresse Fisiológico
18.
Appl Environ Microbiol ; 86(3)2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31757826

RESUMO

Diatoms are important phytoplankton and contribute greatly to the primary productivity of marine ecosystems. Despite the ecological significance of diatoms and the importance of programmed cell death (PCD) in the fluctuation of diatom populations, little is known about the molecular mechanisms of PCD triggered by different nutrient stresses. Here we describe the physiological, morphological, biochemical, and molecular changes in response to low levels of nutrients in the ubiquitous diatom Skeletonema marinoi The levels of gene expression involved in oxidation resistance and PCD strongly increased upon nitrogen (N) or phosphorus (P) starvation. The enzymatic activity of caspase 3-like protein also increased. Differences in mRNA levels and protein activities were observed between the low-N and low-P treatments, suggesting that PCD could have a differential response to different nutrient stresses. When cultures were replete with N or P, the growth inhibition stopped. Meanwhile, the enzymatic activity of caspase 3-like protein and the number of cells with damaged membranes decreased. These results suggest that PCD is an important cell fate decision mechanism in the marine diatom S. marinoi Our results provide important insight into how diatoms adjust phenotypic and genotypic features of their cell-regulated death programs when stressed by nutrient limitations. Overall, this study could allow us to better understand the molecular mechanism behind the formation and termination of diatom blooms in the marine environment.IMPORTANCE Our study showed how the ubiquitous diatom S. marinoi responded to different nutrient limitations with PCD in terms of physiological, morphological, biochemical, and molecular characteristics. Some PCD-related genes (PDCD4, GOX, and HSP90) induced by N deficiency were relatively upregulated compared to those induced by P deficiency. In contrast, the expression of the TSG101 gene in S. marinoi showed a clear and constant increase during P limitation compared to N limitation. These findings suggest that PCD is a complex mechanism involving several different proteins. The systematic mRNA level investigations provide new insight into understanding the oxidative stress- and cell death-related functional genes of diatoms involved in the response to nutrient fluctuations (N or P stress) in the marine environment.


Assuntos
Apoptose , Diatomáceas/fisiologia , Expressão Gênica , Fitoplâncton/fisiologia , Nitrogênio/deficiência , Nutrientes/fisiologia , Oxirredução , Fósforo/deficiência
19.
Glob Chang Biol ; 26(9): 5077-5086, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32529708

RESUMO

Increased human-derived nitrogen (N) deposition to terrestrial ecosystems has resulted in widespread phosphorus (P) limitation of net primary productivity. However, it remains unclear if and how N-induced P limitation varies over time. Soil extracellular phosphatases catalyze the hydrolysis of P from soil organic matter, an important adaptive mechanism for ecosystems to cope with N-induced P limitation. Here we show, using a meta-analysis of 140 studies and 668 observations worldwide, that N stimulation of soil phosphatase activity diminishes over time. Whereas short-term N loading (≤5 years) significantly increased soil phosphatase activity by 28%, long-term N loading had no significant effect. Nitrogen loading did not affect soil available P and total P content in either short- or long-term studies. Together, these results suggest that N-induced P limitation in ecosystems is alleviated in the long-term through the initial stimulation of soil phosphatase activity, thereby securing P supply to support plant growth. Our results suggest that increases in terrestrial carbon uptake due to ongoing anthropogenic N loading may be greater than previously thought.


Assuntos
Nitrogênio , Fósforo , Biomassa , Carbono , Ecossistema , Humanos , Solo
20.
Am J Bot ; 107(11): 1606-1613, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33145765

RESUMO

PREMISE: The association of carnivory (an adaptation to nutrient-poor soils) with fire has been described as a paradox, given increases in nutrient availability that often accompany fire. The nutrients that increase in availability following fire, however, may not be the same as those provided by prey and may not reduce nutrient limitation if accompanied by even greater increases in light. METHODS: Using a factorial experiment in the field, we examined how simulated fire (clipping plus nitrogen-free fertilizer addition) and prey-derived nutrient availability (prey exclusion) interacted to influence carnivorous potential in Sarracenia alata and belowground competition with its neighbors (manipulated via trenching). We hypothesized that simulated fire combined with prey exclusion would (1) increase the potential for prey capture relative to shade avoidance, hereafter, relative prey-capture potential (RPCP), and/or (2) increase belowground competition with neighboring plants. RESULTS: Sarracenia alata increased RPCP in response to the combination of simulated fire and prey exclusion, despite increases in phosphorus and other nutrients associated with the simulated fire treatment, suggesting that prey capture potential increases in response to increased nitrogen limitation resulting from increases in light and/or phosphorus after fire. We found no evidence of belowground competition. CONCLUSIONS: The potential importance of carnivory in Sarracenia alata increases following fire. This result helps to explain the paradoxical association of carnivorous plants with fire by demonstrating the potential for prey-derived nutrient limitation to increase rather than decrease in response to increases in light and nutrients other than nitrogen following fire.


Assuntos
Incêndios , Sarraceniaceae , Carnivoridade , Nitrogênio , Fósforo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA