Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.286
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(20): e2321545121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38713621

RESUMO

The efficiency of photodynamic therapy (PDT) is greatly dependent on intrinsic features of photosensitizers (PSs), but most PSs suffer from narrow diffusion distances and short life span of singlet oxygen (1O2). Here, to conquer this issue, we propose a strategy for in situ formation of complexes between PSs and proteins to deactivate proteins, leading to highly effective PDT. The tetrafluorophenyl bacteriochlorin (FBC), a strong near-infrared absorbing photosensitizer, can tightly bind to intracellular proteins to form stable complexes, which breaks through the space-time constraints of PSs and proteins. The generated singlet oxygen directly causes the protein dysfunction, leading to high efficiency of PSs. To enable efficient delivery of PSs, a charge-conversional and redox-responsive block copolymer POEGMA-b-(PAEMA/DMMA-co-BMA) (PB) was designed to construct a protein-binding photodynamic nanoinhibitor (FBC@PB), which not only prolongs blood circulation and enhances cellular uptake but also releases FBC on demand in tumor microenvironment (TME). Meanwhile, PDT-induced destruction of cancer cells could produce tumor-associated antigens which were capable to trigger robust antitumor immune responses, facilitating the eradication of residual cancer cells. A series of experiments in vitro and in vivo demonstrated that this multifunctional nanoinhibitor provides a promising strategy to extend photodynamic immunotherapy.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Microambiente Tumoral , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Animais , Humanos , Camundongos , Microambiente Tumoral/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Linhagem Celular Tumoral , Oxigênio Singlete/metabolismo , Porfirinas/farmacologia , Porfirinas/química , Ligação Proteica , Nanopartículas/química
2.
Proc Natl Acad Sci U S A ; 121(14): e2316303121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38551838

RESUMO

Photodynamic therapy (PDT) relies on a series of photophysical and photochemical reactions leading to cell death. While effective for various cancers, PDT has been less successful in treating pigmented melanoma due to high light absorption by melanin. Here, this limitation is addressed by 2-photon excitation of the photosensitizer (2p-PDT) using ~100 fs pulses of near-infrared laser light. A critical role of melanin in enabling rather than hindering 2p-PDT is elucidated using pigmented and non-pigmented murine melanoma clonal cell lines in vitro. The photocytotoxicities were compared between a clinical photosensitizer (Visudyne) and a porphyrin dimer (Oxdime) with ~600-fold higher σ2p value. Unexpectedly, while the 1p-PDT responses are similar in both cell lines, 2p activation is much more effective in killing pigmented than non-pigmented cells, suggesting a dominant role of melanin 2p-PDT. The potential for clinical translational is demonstrated in a conjunctival melanoma model in vivo, where complete eradication of small tumors was achieved. This work elucidates the melanin contribution in multi-photon PDT enabling significant advancement of light-based treatments that have previously been considered unsuitable in pigmented tumors.


Assuntos
Melanoma , Fotoquimioterapia , Neoplasias Cutâneas , Camundongos , Humanos , Animais , Fármacos Fotossensibilizantes/farmacologia , Melanoma/tratamento farmacológico , Melanoma/patologia , Melaninas/metabolismo , Neoplasias Cutâneas/tratamento farmacológico
3.
Proc Natl Acad Sci U S A ; 120(39): e2311667120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37729197

RESUMO

Multidrug-resistant bacteria are one of the most serious threats to infection control. Few new antibiotics have been developed; however, the lack of an effective new mechanism of their action has worsened the situation. Photodynamic inactivation (PDI) can break antimicrobial resistance, since it potentiates the effect of antibiotics, and induces oxidative stress in microorganisms through the interaction of light with a photosensitizer. This paper addresses the application of PDI for increasing bacterial susceptibility to antibiotics and helping in bacterial persistence and virulence. The effect of photodynamic action on resistant bacteria collected from patients and bacteria cells with induced resistance in the laboratory was investigated. Staphylococcus aureus resistance breakdown levels for each antibiotic (amoxicillin, erythromycin, and gentamicin) from the photodynamic effect (10 µM curcumin, 10 J/cm2) and its maintenance in descendant microorganisms were demonstrated within five cycles after PDI application. PDI showed an innovative feature for modifying the degree of bacterial sensitivity to antibiotics according to dosages, thus reducing resistance and persistence of microorganisms from standard and clinical strains. We hypothesize a reduction in the degree of antimicrobial resistance through photooxidative action combats antibiotic failures.


Assuntos
Amoxicilina , Antibacterianos , Humanos , Antibacterianos/farmacologia , Eritromicina , Gentamicinas/farmacologia , Bactérias
4.
Proc Natl Acad Sci U S A ; 120(29): e2218973120, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37428928

RESUMO

Antibiotics are among the most used weapons in fighting microbial infections and have greatly improved the quality of human life. However, bacteria can eventually evolve to exhibit antibiotic resistance to almost all prescribed antibiotic drugs. Photodynamic therapy (PDT) develops little antibiotic resistance and has become a promising strategy in fighting bacterial infection. To augment the killing effect of PDT, the conventional strategy is introducing excess ROS in various ways, such as applying high light doses, high photosensitizer concentrations, and exogenous oxygen. In this study, we report a metallacage-based PDT strategy that minimizes the use of ROS by jointly using gallium-metal organic framework rods to inhibit the production of bacterial endogenous NO, amplify ROS stress, and enhance the killing effect. The augmented bactericidal effect was demonstrated both in vitro and in vivo. This proposed enhanced PDT strategy will provide a new option for bacterial ablation.


Assuntos
Fotoquimioterapia , Humanos , Espécies Reativas de Oxigênio/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias
5.
Proc Natl Acad Sci U S A ; 119(34): e2210504119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35969782

RESUMO

Elucidating the underlying photochemical mechanisms of action (MoA) of photodynamic therapy (PDT) may allow its efficacy to be improved and could set the stage for the development of new classes of PDT photosensitizers. Here, we provide evidence that "photoredox catalysis in cells," wherein key electron transport pathways are disrupted, could constitute a general MoA associated with PDT. Taking the cellular electron donor nicotinamide adenine dinucleotide as an example, we have found that well-known photosensitizers, such as Rose Bengal, BODIPY, phenoselenazinium, phthalocyanine, and porphyrin derivatives, are able to catalyze its conversion to NAD+. This MoA stands in contrast to conventional type I and type II photoactivation mechanisms involving electron and energy transfer, respectively. A newly designed molecular targeting photocatalyst (termed CatER) was designed to test the utility of this mechanism-based approach to photosensitizer development. Photoexcitation of CatER induces cell pyroptosis via the caspase 3/GSDME pathway. Specific epidermal growth factor receptor positive cancer cell recognition, high signal-to-background ratio tumor imaging (SBRTI = 12.2), and good tumor growth inhibition (TGI = 77.1%) are all hallmarks of CatER. CatER thus constitutes an effective near-infrared pyroptotic cell death photo-inducer. We believe the present results will provide the foundation for the synthesis of yet-improved phototherapeutic agents that incorporate photocatalytic chemistry into their molecular design.


Assuntos
Antineoplásicos , Neoplasias , Fotoquimioterapia , Fármacos Fotossensibilizantes , Antineoplásicos/farmacologia , Catálise , Linhagem Celular Tumoral , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/farmacologia
6.
Proc Natl Acad Sci U S A ; 119(25): e2123564119, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35696565

RESUMO

In the context of the rapid increase of antibiotic-resistant infections, in particular of pneumonia, antimicrobial photodynamic therapy (aPDT), the microbiological application of photodynamic therapy (PDT), comes in as a promising treatment alternative since the induced damage and resultant death are not dependent on a specific biomolecule or cellular pathway. The applicability of aPDT using the photosensitizer indocyanine green with infrared light has been successfully demonstrated for different bacterial agents in vitro, and the combination of pulmonary delivery using nebulization and external light activation has been shown to be feasible. However, there has been little progress in obtaining sufficient in vivo efficacy results. This study reports the lung surfactant as a significant suppressor of aPDT in the lungs. In vitro, the clinical surfactant Survanta® reduced the aPDT effect of indocyanine green, Photodithazine®, bacteriochlorin-trizma, and protoporphyrin IX against Streptococcus pneumoniae. The absorbance and fluorescence spectra, as well as the photobleaching profile, suggested that the decrease in efficacy is not a result of singlet oxygen quenching, while a molecular dynamics simulation showed an affinity for the polar head groups of the surfactant phospholipids that likely impacts uptake of the photosensitizers by the bacteria. Methylene blue is the exception, likely because its high water solubility confers a higher mobility when interacting with the surfactant layer. We propose that the interaction between lung surfactant and photosensitizer must be taken into account when developing pulmonary aPDT protocols.


Assuntos
Antibacterianos , Bactérias , Fotoquimioterapia , Fármacos Fotossensibilizantes , Tensoativos , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Verde de Indocianina/farmacologia , Pulmão/microbiologia , Simulação de Dinâmica Molecular , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Tensoativos/metabolismo
7.
Proc Natl Acad Sci U S A ; 119(46): e2216239119, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36346844

RESUMO

The management of biofilm-related infections is a challenge in healthcare, and antimicrobial photodynamic therapy (aPDT) is a powerful tool that has demonstrated a broad-spectrum activity. Nanotechnology has been used to increase the aPDT effectiveness by improving the photosensitizer's delivery properties. NewPS is a simple, versatile, and safe surfactant-free nanoemulsion with a porphyrin salt shell encapsulating a food-grade oil core with promising photodynamic action. This study evaluated the use of NewPS for aPDT against microorganisms in planktonic, biofilm, and in vivo models of infected wounds. First, the potential of NewPS-mediated aPDT to inactivate Streptococcus pneumoniae and Staphylococcus aureus suspensions was evaluated. Then, a series of protocols were assessed against S. aureus biofilms by means of cell viability and confocal microscopy. Finally, the best biofilm protocol was used for the treatment of S. aureus in a murine-infected wound model. A high NewPS-bacteria cell interaction was achieved since 0.5 nM and 30 J/cm2 was able to kill S. pneumoniae suspension. In the S. aureus biofilm, enhanced efficacy of NewPS-aPDT was achieved when 100 µM of NewPS was applied with longer periods of incubation at the light dose of 60 J/cm2. The best single and double-session protocol reduced 5.56 logs and 6.03 logs, respectively, homogeneous NewPS distribution, resulting in a high number of dead cells after aPDT. The in vivo model showed that one aPDT session enabled a reduction of 6 logs and faster tissue healing than the other groups. In conclusion, NewPS-aPDT may be considered a safe and effective anti-biofilm antimicrobial photosensitizer.


Assuntos
Anti-Infecciosos , Fotoquimioterapia , Porfirinas , Camundongos , Animais , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/farmacologia , Staphylococcus aureus , Biofilmes , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia
8.
Proc Natl Acad Sci U S A ; 119(36): e2208378119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36037346

RESUMO

The widespread use of antibiotics drives the evolution of antimicrobial-resistant bacteria (ARB), threatening patients and healthcare professionals. Therefore, the development of novel strategies to combat resistance is recognized as a global healthcare priority. The two methods to combat ARB are development of new antibiotics or reduction in existing resistances. Development of novel antibiotics is a laborious and slow-progressing task that is no longer a safe reserve against looming risks. In this research, we suggest a method for reducing resistance to extend the efficacious lifetime of current antibiotics. Antimicrobial photodynamic therapy (aPDT) is used to generate reactive oxygen species (ROS) via the photoactivation of a photosensitizer. ROS then nonspecifically damage cellular components, leading to general impairment and cell death. Here, we test the hypothesis that concurrent treatment of bacteria with antibiotics and aPDT achieves an additive effect in the elimination of ARB. Performing aPDT with the photosensitizer methylene blue in combination with antibiotics chloramphenicol and tetracycline results in significant reductions in resistance for two methicillin-resistant Staphylococcus aureus (MRSA) strains, USA300 and RN4220. Additional resistant S. aureus strain and antibiotic combinations reveal similar results. Taken together, these results suggest that concurrent aPDT consistently decreases S. aureus resistance by improving susceptibility to antibiotic treatment. In turn, this development exhibits an alternative to overcome some of the growing MRSA challenge.


Assuntos
Resistência Microbiana a Medicamentos , Staphylococcus aureus Resistente à Meticilina , Fotoquimioterapia , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Resistência Microbiana a Medicamentos/efeitos da radiação , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos da radiação , Fármacos Fotossensibilizantes/farmacologia , Espécies Reativas de Oxigênio/farmacologia
9.
Proc Natl Acad Sci U S A ; 119(29): e2203994119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858319

RESUMO

The development of more effective tumor therapy remains challenging and has received widespread attention. In the past decade, there has been growing interest in synergistic tumor therapy based on supramolecular coordination complexes. Herein, we describe two triangular metallacycles (1 and 2) constructed by the formation of pyridyl boron dipyrromethene (BODIPY)-platinum coordination. Metallacycle 2 had considerable tumor penetration, as evidenced by the phenylthiol-BODIPY ligand imparting red fluorescent emission at ∼660 nm, enabling bioimaging, and transport visualization within the tumor. Based on the therapeutic efficacy of the platinum(II) acceptor and high singlet oxygen (1O2) generation ability of BODIPY, 2 was successfully incorporated into nanoparticles and applied in chemo-photodynamic tumor therapy against malignant human glioma U87 cells, showing excellent synergistic therapeutic efficacy. A half-maximal inhibitory concentration of 0.35 µM was measured for 2 against U87 cancer cells in vitro. In vivo experiments indicated that 2 displayed precise tumor targeting ability and good biocompatibility, along with strong antitumor effects. This work provides a promising approach for treating solid tumors by synergistic chemo-photodynamic therapy of supramolecular coordination complexes.


Assuntos
Compostos de Boro , Neoplasias , Fotoquimioterapia , Compostos de Boro/uso terapêutico , Linhagem Celular Tumoral , Complexos de Coordenação/uso terapêutico , Sinergismo Farmacológico , Humanos , Neoplasias/tratamento farmacológico , Platina/uso terapêutico , Porfobilinogênio/análogos & derivados
10.
Nano Lett ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38857313

RESUMO

The quantum yield of reactive oxygen species is of central importance for the development of organic photosensitizers and photodynamic therapy (PDT). A common molecular design approach for optimizing organic photosensitizers involves the incorporation of heavy atoms into their backbones. However, this raises concerns regarding heightened dark cytotoxicity and a shortened triplet-state lifetime. Herein, we demonstrate a heavy-atom-free (HAF) photosensitizer design strategy founded on the singlet fission (SF) mechanism for cancer PDT. Through the "single-atom surgery" approach to deleting oxygen atoms in pyrazino[2,3-g]quinoxaline skeleton photosensitizers, photosensitizers PhPQ and TriPhPQ are produced with Huckel's aromaticity and Baird's aromaticity in the ground state and triplet state, respectively, enabling the generation of two triplet excitons through SF. The SF process endows photosensitizer PhPQ with an ultrahigh triplet-state quantum yield (186%) and an outstanding 1O2 quantum yield (177%). Notably, HAF photosensitizers PhPQ and TriPhPQ enhanced PDT efficacy and potentiated αPD-L1 immune check blockade therapy in vivo, which show their promise for translational oncology treatment.

11.
Nano Lett ; 24(10): 3005-3013, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38416810

RESUMO

Most aggregation-induced emission (AIE) luminogens exhibit high brightness, excellent photostability, and good biocompatibility, but these AIE-active agents, which kill two birds with one stone to result in applications in both stimulated emission depletion (STED) super-resolution imaging and photodynamic therapy (PDT), have not been reported yet but are urgently needed. To meet the requirements of STED nanoscopy and PDT, D-A-π-A-D type DTPABT-HP is designed by tuning conjugated π spacers. It exhibits red-shifted emission, high PLQY of 32.04%, and impressive 1O2 generation (9.24 fold compared to RB) in nanoparticles (NPs). Then, DTPABT-HP NPs are applied in cell imaging via STED nanoscopy, especially visualizing the dynamic changes of lysosomes in the PDT process at ultrahigh resolution. After that, in vivo PDT was also conducted by DTPABT-HP NPs, resulting in significantly inhibited tumor growth, with an inhibition rate of 86%. The work here is beneficial to the design of multifunctional agents and the deep understanding of their phototheranostic mechanism in biological research.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/uso terapêutico , Diagnóstico por Imagem , Neoplasias/tratamento farmacológico , Fotoquimioterapia/métodos
12.
Nano Lett ; 24(11): 3386-3394, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38452250

RESUMO

Utilizing one molecule to realize combinational photodynamic and photothermal therapy upon single-wavelength laser excitation, which relies on a multifunctional phototherapy agent, is one of the most cutting-edge research directions in tumor therapy owing to the high efficacy achieved over a short course of treatment. Herein, a simple strategy of "suitable isolation side chains" is proposed to collectively improve the fluorescence intensity, reactive oxygen species production, photothermal conversion efficiency, and biodegradation capacity. Both in vitro and in vivo results reveal the practical value and huge potential of the designed biodegradable conjugated polymer PTD-C16 with suitable isolation side chains in fluorescence image-guided combinational photodynamic and photothermal therapy. These improvements are achieved through manipulation of aggregated states by only side chain modification without changing any conjugated structure, providing new insight into the design of biodegradable high-performance phototherapy agents.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Polímeros/química , Fototerapia/métodos , Nanopartículas/uso terapêutico , Nanopartículas/química , Espécies Reativas de Oxigênio/metabolismo , Fotoquimioterapia/métodos , Linhagem Celular Tumoral
13.
Biochem Biophys Res Commun ; 690: 149285, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37995454

RESUMO

Multidrug-resistant Pseudomonas aeruginosa is a common pathogen that causes topical infections following burn injuries. Antimicrobial photodynamic therapy (aPDT) has emerged as a promising approach for treating antibiotic-resistant bacterial infections. The objective of this study was to evaluate the aPDT efficacy of aloe-emodin (AE), which is a photosensitizer extracted from traditional Chinese herbs, on antibiotic-sensitive and antibiotic-resistant P. aeruginosa in vitro. In this study, we confirmed the effectiveness of AE-mediated aPDT against both standard and MDR P. aeruginosa, explored the effects of irradiation time and AE concentration on bacterial survival in AE-mediated aPDT, and observed the structural damage of P. aeruginosa by using transmission electron microscope. Our results showed that neither AE nor light irradiation alone caused cytotoxic effects on P. aeruginosa. However, AE-mediated aPDT effectively inactivated both antibiotic-sensitive and antibiotic-resistant P. aeruginosa. The transmission electron microscope investigation showed that aPDT mediated by AE primarily caused damage to the cytoplasm and cell membrane. Our findings suggest that AE is a photosensitizer in the aPDT of MDR P. aeruginosa-caused topical infections following burn injuries. Future investigations will concentrate on the safety and efficacy of AE-mediated aPDT in animal models and clinical trials.


Assuntos
Aloe , Anti-Infecciosos , Queimaduras , Emodina , Fotoquimioterapia , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Pseudomonas aeruginosa , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/química , Emodina/farmacologia , Fotoquimioterapia/métodos , Anti-Infecciosos/farmacologia , Queimaduras/tratamento farmacológico
14.
Biochem Biophys Res Commun ; 720: 150131, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38763124

RESUMO

Drug-resistant bacterial infections cause significant harm to public life, health, and property. Biofilm is characterized by overexpression of glutathione (GSH), hypoxia, and slight acidity, which is one of the main factors for the formation of bacterial resistance. Traditional antibiotic therapy gradually loses its efficacy against multi-drug-resistant (MDR) bacteria. Therefore, synergistic therapy, which regulates the biofilm microenvironment, is a promising strategy. A multifunctional nanoplatform, SnFe2O4-PBA/Ce6@ZIF-8 (SBC@ZIF-8), in which tin ferrite (SnFe2O4, denoted as SFO) as the core, loaded with 3-aminobenzeneboronic acid (PBA) and dihydroporphyrin e6 (Ce6), and finally coated with zeolite imidazole salt skeleton 8 (ZIF-8). The platform has a synergistic photothermal therapy (PTT)/photodynamic therapy (PDT) effect, which can effectively remove overexpressed GSH by glutathione peroxidase-like activity, reduce the antioxidant capacity of biofilm, and enhance PDT. The platform had excellent photothermal performance (photothermal conversion efficiency was 55.7 %) and photothermal stability. The inhibition rate of two MDR bacteria was more than 96 %, and the biofilm clearance rate was more than 90 % (150 µg/mL). In the animal model of MDR S. aureus infected wound, after 100 µL SBC@ZIF-8+NIR (150 µg/mL) treatment, the wound area of mice was reduced by 95 % and nearly healed. The serum biochemical indexes and H&E staining results were within the normal range, indicating that the platform could promote wound healing and had good biosafety. In this study, we designed and synthesized multifunctional nanoplatforms with good anti-drug-resistant bacteria effect and elucidated the molecular mechanism of its anti-drug-resistant bacteria. It lays a foundation for clinical application in treating wound infection and promoting wound healing.


Assuntos
Antibacterianos , Estruturas Metalorgânicas , Fotoquimioterapia , Antibacterianos/farmacologia , Antibacterianos/química , Fotoquimioterapia/métodos , Animais , Camundongos , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Biofilmes/efeitos dos fármacos , Terapia Fototérmica , Staphylococcus aureus/efeitos dos fármacos , Nanopartículas/química , Testes de Sensibilidade Microbiana , Compostos Férricos/química , Compostos Férricos/farmacologia , Compostos de Estanho/química , Compostos de Estanho/farmacologia , Zeolitas/química , Zeolitas/farmacologia
15.
J Comput Chem ; 45(16): 1322-1328, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38363067

RESUMO

The modulation of the photophysical properties of di-substituted porphyrin rings upon the oxygen and sulfur-for-nitrogen replacement has been investigated at density functional theory (DFT) and its time-dependent formulation (TDDFT). The considered properties range from structural behaviors and excitation energies to spin-orbit coupling (SOC) and nonradiative intersystem kinetic constants. Results show that the SOC strongly increase upon chalcogen substitution and, accordingly, the computed nonradiative kinetic constant also indicate an efficient singlet-triplet intersystem crossing in the sulfur containing macrocycle. The presented results indicate an alternative way to properly modulate the porphyrin's crucial properties for their use in photodynamic therapy, without resorting to the use of heavy atoms.

16.
J Comput Chem ; 45(15): 1254-1260, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38351736

RESUMO

A DFT and TDDFT study has been carried out on monomeric anthraquinones Emodin and Dermocybin (Em, Derm) recently proposed as natural antibacterial photosensitizers able to act also against gram-negative microbes. The computational study has been performed considering the relative amount of neutral and ionic forms of each compound in water, with the variation of pH. The occurrence of both Type I and Type II photoreactions has been explored computing the absorption properties of each species, the spin-orbit coupling constants (SOC), the vertical ionization potentials and the vertical electron affinities. The most plausible deactivation channels leading to the population of excited triplet states have been proposed. Our data indicate Emodin as more active than Dermocybin in antimicrobial photodynamic therapy throughout the Type II mechanism. Our data support a dual TypeI/II activity of the monomeric anthraquinones Emodin and Dermccybin in water, in all the considered protonation states.


Assuntos
Emodina , Fármacos Fotossensibilizantes , Fármacos Fotossensibilizantes/química , Antraquinonas , Antibacterianos , Água
17.
Small ; 20(26): e2306916, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38221813

RESUMO

Ferroptosis, a novel form of nonapoptotic cell death, can effectively enhance photodynamic therapy (PDT) performance by disrupting intracellular redox homeostasis and promoting apoptosis. However, the extremely hypoxic tumor microenvironment (TME) together with highly expressed hypoxia-inducible factor-1α (HIF-1α) presents a considerable challenge for clinical PDT against osteosarcoma (OS). Hence, an innovative nanoplatform that enhances antitumor PDT by inducing ferroptosis and alleviating hypoxia is fabricated. Capsaicin (CAP) is widely reported to specifically activate transient receptor potential vanilloid 1 (TRPV1) channel, trigger an increase in intracellular Ca2+ concentration, which is closely linked with ferroptosis, and participate in decreased oxygen consumption by inhibiting HIF-1α in tumor cells, potentiating PDT antitumor efficiency. Thus, CAP and the photosensitizer IR780 are coencapsulated into highly biocompatible human serum albumin (HSA) to construct a nanoplatform (CI@HSA NPs) for synergistic tumor treatment under near-infrared (NIR) irradiation. Furthermore, the potential underlying signaling pathways of the combination therapy are investigated. CI@HSA NPs achieve real-time dynamic distribution monitoring and exhibit excellent antitumor efficacy with superior biosafety in vivo. Overall, this work highlights a promising NIR imaging-guided "pro-death" strategy to overcome the limitations of PDT for OS by promoting ferroptosis and alleviating hypoxia, providing inspiration and support for future innovative tumor therapy approaches.


Assuntos
Capsaicina , Ferroptose , Osteossarcoma , Fotoquimioterapia , Ferroptose/efeitos dos fármacos , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Osteossarcoma/metabolismo , Fotoquimioterapia/métodos , Humanos , Capsaicina/farmacologia , Linhagem Celular Tumoral , Animais , Nanopartículas/química , Camundongos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia/tratamento farmacológico , Hipóxia/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico
18.
Small ; : e2309086, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321834

RESUMO

Ferroptosis therapy, which uses ferroptosis inducers to produce lethal lipid peroxides and induce tumor cell death, is considered a promising cancer treatment strategy. However, challenges remain regarding how to increase the accumulation of reactive oxygen species (ROS) in the tumor microenvironment (TME) to enhance antitumor efficacy. In this study, a hyaluronic acid (HA) encapsulated hollow mesoporous manganese dioxide (H-MnO2 ) with double-shell nanostructure is designed to contain iron coordinated cyanine near-infrared dye IR783 (IR783-Fe) for synergistic ferroptosis photodynamic therapy against tumors. The nano photosensitizer IR783-Fe@MnO2 -HA, in which HA actively targets the CD44 receptor, subsequently dissociates and releases Fe3+ and IR783 in acidic TME. First, Fe3+ consumes glutathione to produce Fe2+ , which promotes the Fenton reaction in cells to produce hydroxyl free radicals (·OH) and induce ferroptosis of tumor cells. In addition, MnO2 catalyzes the production of O2 from H2 O2 and enhances the production of singlet oxygen (1 O2 ) by IR783 under laser irradiation, thus increasing the production and accumulation of ROS to provide photodynamic therapy. The highly biocompatible IR783-Fe@MnO2 -HA nano-photosensitizers have exhibited tumor-targeting ability and efficient tumor inhibition in vivo due to the synergistic effect of photodynamic and ferroptosis antitumor therapies.

19.
Small ; 20(10): e2305174, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37875654

RESUMO

Photodynamic therapy (PDT) has promising applications. However, the lethal function of reactive oxygen species (ROS) produced during PDT is typically limited. This restriction is induced by oxygen shortage in the tumor microenvironment due to tumor cell hypermetabolism and reductive chemicals overexpression in tumor tissues. Glutamine (Gln) metabolism is crucial for malignancy development and is closely associated with redox. Herein, a novel nanoparticle (NP) named IRCB@M is constructed to boost PDT through dual effects. This NP simultaneously blocks aerobic respiration and inhibits cellular reduced substances by blocking the Gln metabolic pathway. Within the nanocomplex, a photosensitizer (IR-780) and a glutaminase inhibitor (CB-839) are self-assembled and then encapsulated by cancer cell membranes for homologous targeting. The Gln metabolism intervention relieves hypoxia and decreases the levels of nicotinamide adenine dinucleotide phosphate (NADPH) as well as reduced glutathione (GSH) in vitro and in vivo, which are the dual amplification effects on the IR-780-mediated lethal PDT. The antitumor effects against gastric cancer are ultimately evoked in vivo, thus offering a novel concept for enhancing PDT and other ROS-dependent therapeutic approaches.


Assuntos
Benzenoacetamidas , Indóis , Nanopartículas , Fotoquimioterapia , Tiadiazóis , Espécies Reativas de Oxigênio/metabolismo , Glutaminase/farmacologia , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/química , Nanopartículas/química , Microambiente Tumoral
20.
Small ; 20(16): e2305708, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38018311

RESUMO

Photodynamic therapy (PDT) has recently been considered a potential tumor therapy due to its time-space specificity and non-invasive advantages. PDT can not only directly kill tumor cells by using cytotoxic reactive oxygen species but also induce an anti-tumor immune response by causing immunogenic cell death of tumor cells. Although it exhibits a promising prospect in treating tumors, there are still many problems to be solved in its practical application. Tumor hypoxia and immunosuppressive microenvironment seriously affect the efficacy of PDT. The hypoxic and immunosuppressive microenvironment is mainly due to the abnormal vascular matrix around the tumor, its abnormal metabolism, and the influence of various immunosuppressive-related cells and their expressed molecules. Thus, reprogramming the tumor microenvironment (TME) is of great significance for rejuvenating PDT. This article reviews the latest strategies for rejuvenating PDT, from regulating tumor vascular matrix, interfering with tumor cell metabolism, and reprogramming immunosuppressive related cells and factors to reverse tumor hypoxia and immunosuppressive microenvironment. These strategies provide valuable information for a better understanding of the significance of TME in PDT and also guide the development of the next-generation multifunctional nanoplatforms for PDT.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes , Microambiente Tumoral , Hipóxia , Espécies Reativas de Oxigênio , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA