Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Bot ; 109(1): 58-66, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34636414

RESUMO

PREMISE: Lichen-forming fungi that colonize leaf surfaces must find a compatible algal symbiont, establish lichen symbiosis, and reproduce within the limited life span of their substratum. Many produce specialized asexual propagules that appear to be dispersed by rain and runoff currents, but less is known about dispersal of their meiotic ascospores. In some taxa, a layer of algal symbionts covers the hymenial surface of the apothecia, where asci discharge their ascospores. We examined the untested hypothesis that their ascospores are ejected into air currents and carry with them algal symbionts from the epihymenial layer for subsequent lichenization. METHODS: Leaves bearing the lichens Calopadia puiggarii, Sporopodium marginatum (Pilocarpaceae), and Gyalectidium viride (Gomphillaceae) were collected in southern Florida. The latter two species have epihymenial algal layers. Leaf fragments with apotheciate thalli were affixed in petri dishes, with glass cover slips attached inside the lid over the thalli. Subsequent discharge of ascospores and any co-dispersed algae was evaluated with light microscopy. RESULTS: All three species discharged ascospores aerially. Discharged ascospores were frequently surrounded by a halo-like sheath of transparent material. In the two species with an epihymenial algal layer, most dispersing ascospores (>90%) co-transported algal cells attached to the spore sheath or wall. CONCLUSIONS: While water may be the usual vector for their asexual propagules, foliicolous lichen-forming fungi make use of air currents to disperse their ascospores. The epihymenial algal layer represents an adaptation for efficient co-dispersal of the algal symbiont with the next genetic generation of the fungus.


Assuntos
Líquens , Florida , Líquens/microbiologia , Folhas de Planta , Simbiose
2.
J Phycol ; 58(4): 612-625, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35567534

RESUMO

The recently described genus Rhizonema is among the most important cyanobacterial partners in lichen symbioses, but its morphological characterization in the genus diagnosis-true branching of the T-type-appears at odds with several published figures showing false branching. We investigated cyanobiont branching and cell division with light microscopy in two basidiolichens from Florida and one from Japan, including aposymbiotically cultured material of the latter. Mycobiont species identities (Cyphellostereum jamesianum, Dictyonema darwinianum, and D. moorei) and photobiont genus identity (Rhizonema) were corroborated with ITS and rbcLX sequences, respectively. Single and paired false branching occurred commonly in all three strains examined. False branches developed adjacent to necridic cells or heterocytes, or by separation of vegetative cells at compression folds in the trichome. Non-transverse cell divisions, usually oblique, were observed in two of the three Rhizonema strains examined. T-type true branches sometimes arose from such divisions, although oblique growth from the branch cell often resulted in ambiguous branch junctions. Additionally, Y-type true branches appeared to grow from contorted filaments. In cultured material, a kind of pseudo-branch sometimes arose from single- or several-celled segments liberated from trichome apices. The segments attached secondarily to filaments and grew there as apparent branches. We conclude that Rhizonema is a genus of considerable morphological flexibility, with multiple modes of branching possible in a single strain. While true branching or non-transverse divisions, when observable, may help distinguish Rhizonema from the phenotypically similar Scytonema, false branching occurs commonly in both genera, and therefore cannot be used to distinguish them.


Assuntos
Cianobactérias , Líquens , Florida , Filogenia , Simbiose
3.
J Phycol ; 52(5): 840-853, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27377166

RESUMO

Foliicolous lichens are formed by diverse, highly specialized fungi that establish themselves and complete their life cycle within the brief duration of their leaf substratum. Over half of these lichen-forming fungi are members of either the Gomphillaceae or Pilocarpaceae, and associate with Trebouxia-like green algae whose identities have never been positively determined. We investigated the phylogenetic affinities of these photobionts to better understand their role in lichen establishment on an ephemeral surface. Thallus samples of Gomphillaceae and Pilocarpaceae were collected from foliicolous communities in southwest Florida and processed for sequencing of photobiont marker genes, algal cultivation and/or TEM. Additional specimens from these families and also from Aspidothelium (Thelenellaceae) were collected from a variety of substrates globally. Sequences from rbcL and nuSSU regions were obtained and subjected to Maximum Likelihood and Bayesian analyses. Analysis of 37 rbcL and 7 nuSSU algal sequences placed all photobionts studied within the provisional trebouxiophycean assemblage known as the Watanabea clade. All but three of the sequences showed affinities within Heveochlorella, a genus recently described from tree trunks in East Asia. The photobiont chloroplast showed multiple thylakoid stacks penetrating the pyrenoid centripetally as tubules lined with pyrenoglobuli, similar to the two described species of Heveochlorella. We conclude that Heveochlorella includes algae of potentially major importance as lichen photobionts, particularly within (but not limited to) foliicolous communities in tropical and subtropical regions worldwide. The ease with which they may be cultivated on minimal media suggests their potential to thrive free-living as well as in lichen symbiosis.


Assuntos
Clorófitas/classificação , Clorófitas/fisiologia , Líquens/fisiologia , Filogenia , Simbiose , Proteínas de Algas/genética , Clorófitas/genética , DNA de Algas/genética , Florida , Análise de Sequência de DNA
4.
Ecotoxicol Environ Saf ; 99: 35-44, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24183288

RESUMO

Bioassays constitute a tool for pollution analysis providing a holistic approach and high-quality indication of the toxicity. Microbioassays allow evaluating the toxicity of many samples, implying lower costs and enabling routine monitoring and pollution control. But tests conducted so far are limited to the use of a small number of taxa. Lichens are excellent bioindicators of pollution with great ecological significance. Studies show that the phycobiont is more sensitive to pollutants than the mycobiont. Phycobiont have features such as adaptation to anhydrobiosis and relatively rapid growth in vitro, making them suitable for microbioassays. Our aim is to determine the sensitivity of phycobionts to the pharmaceutical micropollutants carbamazepine and diclofenac as a preliminary step for the development of a toxicity microbioassay based on phycobionts. Optical dispersion and chlorophyll autofluorescence were used as endpoints of toxicity on two algal species showing that suspensions present cyclic and taxon specific patterns of aggregation. Trebouxia TR9 suspensions present a very high grade of aggregation while Asterochloris erici cells do not. Both micropollutants alter optical properties of the suspensions of both species. No significant alteration of chlorophyll autofluorescence by carbamazepine is observed. A. erici chlorophyll autofluorescence is extremely sensitive to diclofenac but the effect is not dependent on the drug concentration or on the time of exposure. Differently, TR9 only shows punctual chlorophyll alterations. Fluctuations in optical dispersion may indicate changes in the population structure of the species, including reproductive strategy. A. erici seems more sensitive to micropollutants, is better characterized and is available from commercial collections.


Assuntos
Clorófitas/efeitos dos fármacos , Monitoramento Ambiental , Poluentes Ambientais/toxicidade , Líquens/fisiologia , Bioensaio , Microalgas/efeitos dos fármacos
5.
Plants (Basel) ; 10(4)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33923980

RESUMO

Lichens are symbiotic associations (holobionts) established between fungi (mycobionts) and certain groups of cyanobacteria or unicellular green algae (photobionts). This symbiotic association has been essential in the colonization of terrestrial dry habitats. Lichens possess key mechanisms involved in desiccation tolerance (DT) that are constitutively present such as high amounts of polyols, LEA proteins, HSPs, a powerful antioxidant system, thylakoidal oligogalactolipids, etc. This strategy allows them to be always ready to survive drastic changes in their water content. However, several studies indicate that at least some protective mechanisms require a minimal time to be induced, such as the induction of the antioxidant system, the activation of non-photochemical quenching including the de-epoxidation of violaxanthin to zeaxanthin, lipid membrane remodeling, changes in the proportions of polyols, ultrastructural changes, marked polysaccharide remodeling of the cell wall, etc. Although DT in lichens is achieved mainly through constitutive mechanisms, the induction of protection mechanisms might allow them to face desiccation stress in a better condition. The proportion and relevance of constitutive and inducible DT mechanisms seem to be related to the ecology at which lichens are adapted to.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA