Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 29(24): 6969-6987, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37464471

RESUMO

Polyploidy has been suggested to negatively impact environmental stress tolerance, resulting in increased susceptibility to extreme climate events. In this study, we compared the genomic and physiological response of diploid (2n) and triploid (3n) Pacific oysters (Crassostrea gigas) to conditions present during an atmospheric heatwave that impacted the Pacific Northwestern region of the United States in the summer of 2021. Climate stressors were applied either singly (single stressor; elevated seawater temperature, 30°C) or in succession (multiple stressor; elevated seawater temperature followed by aerial emersion at 44°C), replicating conditions present within the intertidal over a tidal cycle during the event. Oyster mortality rate was elevated within stress treatments with respect to the control and was significantly higher in triploids than diploids following multiple stress exposure (36.4% vs. 14.8%). Triploids within the multiple stressor treatment exhibited signs of energetic limitation, including metabolic depression, a significant reduction in ctenidium Na+ /K+ ATPase activity, and the dysregulated expression of genes associated with stress response, innate immunity, glucose metabolism, and mitochondrial function. Functional enrichment analysis of ploidy-specific gene sets identified that biological processes associated with metabolism, stress tolerance, and immune function were overrepresented within triploids across stress treatments. Our results suggest that triploidy impacts the transcriptional regulation of key processes that underly the stress response of Pacific oysters, resulting in downstream shifts in physiological tolerance limits that may increase susceptibility to extreme climate events that present multiple environmental stressors. The impact of chromosome set manipulation on the climate resilience of marine organisms has important implications for domestic food security within future climate scenarios, especially as triploidy induction becomes an increasingly popular tool to elicit reproductive control across a wide range of species used within marine aquaculture.


Assuntos
Crassostrea , Triploidia , Animais , Crassostrea/genética , Reprodução , Água do Mar , Estações do Ano
2.
J Therm Biol ; 112: 103496, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36796881

RESUMO

Sea urchin's survival may depend on their capacity to recover proper orientation rapidly and effectively after inversion, enabling escape from predator and preventing desiccation. This righting behavior has been used as a repeatable and reliable indicator to assess echinoderms performance across environmental conditions, including thermal sensitivity and thermal stress. The current study aims at evaluating and comparing the thermal reaction norm for righting behavior (time for righting (TFR) and capacity to self-right) of three common sea urchins from high latitude, the Patagonian sea urchins Loxechinus albus and Pseudechinus magellanicus, and the Antarctic sea urchin Sterechinus neumayeri. In addition, to infer the ecological implications of our experiments, we compared laboratory-based and in situ TFR of these three species. We observed that populations of the Patagonian sea urchins L. albus and P. magellanicus presented similar trend of righting behavior, overly accelerating with increasing temperature (from 0 to 22°C). Little variations and high inter-individual variability were observed below 6°C in the Antarctic sea urchin TFR, and righting success strongly decreased between 7 and 11°C. For the three species, TFR was lower in in situ experiments compared to the laboratory. Overall, our results suggest that the populations of Patagonian sea urchin exhibit a wide thermal tolerance and, based on S. neumayeri's TFR, aligning with the narrow thermal tolerance of Antarctic benthos. Finally, the differences between laboratory and in situ experiments highlights the importance of considering the complexity of marine environments for future predictions.


Assuntos
Ouriços-do-Mar , Animais , Regiões Antárticas , Temperatura
3.
Ecology ; 99(6): 1327-1337, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29715377

RESUMO

In an attempt to clarify the role of environmental and biotic interactions on plant growth, there has been a long-running ecological debate over whether the intensity and importance of competition stabilizes, increases or decreases across environmental gradients. We conducted an experiment in a Chinese estuary to investigate the effects of a non-resource stress gradient, soil salinity (from 1.4‰ to 19.0‰ salinity), on the competitive interactions between native Phragmites australis and invasive Spartina alterniflora. We linked these effects to measurements of photosynthetic activities to further elucidate the underlying physiological mechanism behind the competitive interactions and the driver of invasion. The experiments revealed that while biomass of both species decreased in the presence of the other, competition did not alter photosynthetic activity of either species over time. P. australis exhibited high photosynthetic activity, including low chlorophyllase activity, high chlorophyll content, high stomatal conductance and high net photosynthetic rate, at low salinity. Under these conditions, P. australis experienced low competitive intensity, leading to high biomass production and competitive exclusion of S. alterniflora. The opposite was observed for S. alterniflora: while competitive intensity experienced by P. australis increased with increasing salinity, and photosynthetic activity, biomass, competitive dominance and the importance of competition for P. australis growth decreased, those of S. alterniflora were stable. These findings demonstrate that S. alterniflora invasion driven by competitive exclusion are likely to occur and expand in high salinity zones. The change in the nature of competition along a non-resource stress gradient differs between competitors likely due to differences in photosynthetic tolerance to salinity. The driver of growth of the less-tolerant species changes from competition to non-resource stress factors with increasing stress levels, whereas competition is constantly important for growth of the more-tolerant species. Incorporating metrics of both competition intensity and importance, as well as linking these competitive outcomes with physiological mechanisms, is crucial to understanding, predicting, and mediating the effects of invasive species in the future.


Assuntos
Estuários , Fotossíntese , Espécies Introduzidas , Poaceae , Solo
4.
Biol Lett ; 14(9)2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30185608

RESUMO

Species vulnerability to climate change involves an interaction between the magnitude of change (exposure) and a species's tolerance to change. We evaluated fish species vulnerability to predicted stream temperature increases by examining warming tolerances across the Wyoming fish assemblage. Warming tolerance combines stream temperature with a thermal tolerance metric to estimate how much warming beyond current conditions a species can withstand. Brown trout, rainbow trout and burbot had the lowest warming tolerances and the highest proportion of currently occupied sites that will become unsuitable under predicted temperature increases. These most vulnerable species were coldwater species, but had neither the lowest thermal tolerances nor would they experience the greatest temperature increases. Our results highlight the importance of considering the interaction of exposure and warming tolerance when predicting climate change vulnerability and demonstrate an approach that can be applied broadly.


Assuntos
Peixes/fisiologia , Rios , Temperatura , Animais , Mudança Climática , Ecossistema , Wyoming
5.
Microb Ecol ; 72(2): 418-27, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27117797

RESUMO

The physiological tolerance hypothesis (PTH) postulates that it is the tolerance of species to climatic factors that determines overall community richness. Here, we tested whether a group of mutualistic microbes, Glomeromycota, is distributed in semi-arid environments in ways congruent with the PTH. For this purpose, we modeled with climatic predictors the niche of each of the four orders of Glomeromycota and identified predictors of arbuscular mycorrhizal (AM) fungal operational taxonomic unit (OTU) richness. Our dataset consisted of 50 paired grassland and farmland sites in the farming-pastoral ecotone of northern China. We observed shifts in the relative abundance of AM fungal orders in response to climatic variables but also declines in OTU richness in grassland sites that had experienced high precipitation during the preceding year which was incongruous with the PTH. We found pronounced differences across groups of Glomeromycotan fungi in their responses to climatic variables and identified strong dependencies of AM fungal communities on precipitation. Given that precipitation is expected to further decline in the farming-pastoral ecotone over the coming years and that mycorrhiza represents an integral constituent of ecosystem functioning, it is likely that the ecosystem services in the region will change accordingly.


Assuntos
Clima , Glomeromycota/classificação , Micorrizas/classificação , Simbiose , China , Glomeromycota/isolamento & purificação , Pradaria , Micorrizas/isolamento & purificação , Microbiologia do Solo , Estresse Fisiológico , Temperatura
6.
Artigo em Inglês | MEDLINE | ID: mdl-26408107

RESUMO

Temperature and ultraviolet radiation (UVR) are key environmental drivers that are linked in their effects on cellular damage. Exposure to both high temperatures and UVR can cause cellular damage that result in the up-regulation of common protective mechanisms, such as the induction of heat shock proteins (Hsps) and antioxidants. As such, the interactive effects of these stressors at the cellular level may determine physiological limits, such as thermal tolerance. Furthermore, antioxidant activity is often thermally sensitive, which may lead to temperature dependent effects of UVR exposure. Here we examined the interactive effects of temperature and UVR on upper thermal limits, Hsp70 abundance, oxidative damage and antioxidant (catalase) activity. We exposed Limnodynastes peronii tadpoles to one of three temperature treatments (constant 18°C, constant 28°C and daily fluctuations between 18 and 28°C) in the presence or absence of UVR. Tadpoles were tested for upper thermal limits (CTmax), induction of Hsp70, oxidative damage and catalase activity. Our results show that CTmax was influenced by an interactive effect between temperature and UVR treatment. For tadpoles kept in cold temperatures, exposure to UVR led to cross-tolerance to high temperatures, increasing CTmax. Plasticity in this trait was not fully explained by changes in the lower level mechanistic traits examined. These results highlight the difficulty in predicting the mechanistic basis for the interactive effects of multiple stressors on whole animal traits. Multifactorial studies may therefore be required to understand how complex mechanistic processes shape physiological tolerances, and determine responses to environmental variation.


Assuntos
Adaptação Fisiológica , Proteínas de Anfíbios/metabolismo , Anuros/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Modelos Biológicos , Estresse Fisiológico , Adaptação Fisiológica/efeitos da radiação , Proteínas de Anfíbios/genética , Animais , Anuros/crescimento & desenvolvimento , Catalase/genética , Catalase/metabolismo , Plasticidade Celular/efeitos da radiação , Regulação da Expressão Gênica no Desenvolvimento/efeitos da radiação , Proteínas de Choque Térmico HSP72/genética , Proteínas de Choque Térmico HSP72/metabolismo , Temperatura Alta/efeitos adversos , Larva/crescimento & desenvolvimento , Larva/fisiologia , Larva/efeitos da radiação , Peroxidação de Lipídeos/efeitos da radiação , Estresse Oxidativo/efeitos da radiação , Carbonilação Proteica/efeitos da radiação , Queensland , Distribuição Aleatória , Estresse Fisiológico/efeitos da radiação , Análise de Sobrevida , Fatores de Tempo , Raios Ultravioleta/efeitos adversos
7.
Front Plant Sci ; 14: 1257499, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37746020

RESUMO

Understanding how plants respond to thermal stress is central to predicting plant responses and community dynamics in natural ecosystems under projected scenarios of climate change. Although physiological tolerance is suggested to evolve slower than climatic niches, this comparison remains to be addressed in plants using a phylogenetic comparative approach. In this study, we compared i) the evolutionary rates of physiological tolerance to extreme temperatures with ii) the corresponding rates of climatic niche across three major vascular plant groups. We further accounted for the potential effects of hardening when examining the association between physiological and climatic niche rates. We found that physiological cold tolerance evolves faster than heat tolerance in all three groups. The coldest climatic-niche temperatures evolve faster than the warmest climatic-niche temperatures. Importantly, evolutionary rates of physiological cold tolerance were faster than rates of change in climatic niches. However, an inverse association between physiological cold tolerance and responding climatic niche for plants without hardening was detected. Our results indicated that plants may be sensitive to changes in warmer temperatures due to the slower evolutionary rates of heat tolerance. This pattern has deep implications for the framework that is being used to estimate climate-related extinctions over the upcoming century.

8.
Sci Total Environ ; 901: 166187, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37586517

RESUMO

Fish can regulate their Zn body bioaccumulation, but the mechanisms and physiological responses at the organ level are still largely unknown. In the present study, we exposed the marine seabreams under different Zn levels (deficient, optimum and excess levels) over a period of 4 weeks and examined how fish maintained its regulation of bioaccumulation with associated physiological effects at the fish intestinal organ. Our results indicated that fish intestinal organs constantly controlled the Zip family to "rob" more Zn under Zn-deficiency (with a dietary level of 7.9 mg/kg), whereas restricted the Zn efflux to preserve the intestinal function. Under Zn-excess conditions (193.3 mg/kg), the fish intestine maintained a limited Zn homeostasis (37.8-44.6 µg/mg) by initially inhibiting the influx through the Zip family receptor, but later accelerating both influx and efflux of Zn. Based on the WGCNA method, Zn deficient dietary exposure first resulted in defense response with subsequent switching to antioxidant defense. Instead, excess Zn first triggered the immunological response, but then led to physiological toxicity (abnormal in lipid metabolism). Although Zn had multiple biological functions, it was preferentially involved in lipid metabolism under different dietary Zn doses. This study provided direct evidence for Zn regulation at the organ level and detoxification mechanisms against potential environmental toxicity in fish.

9.
J Hazard Mater ; 435: 129077, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35650732

RESUMO

Cadmium (Cd) pollution in croplands is a global environmental problem. Measures to improve the tolerance of sensitive crops and reduce pollutant absorption and accumulation are needed in contaminated agricultural areas, and inoculation with rhizosphere microorganisms to regulate plant resistance and heavy metal transport can provide an effective solution. A pot experiment was conducted to analyse the impact of arbuscular mycorrhizal fungi (AMF) on alfalfa oxidase activity, heavy metal resistance genes and transport proteins, metabolism, and other biochemical regulation mechanisms that lead to complexation, compartmentalisation, efflux, enrichment, and antioxidant detoxification pathways. The AMF reduced shoot and protoplasm Cd inflow, and promoted organic compound production (e.g., by upregulating HM-Res4 for 1.2 times), to complex with Cd, reducing its biological toxicity. The AMF increased the ROS scavenging efficiency and osmotic regulatory substance content of the alfalfa plants, reduced oxidative stress (ROS dereased), and maintained homeostasis. It also alleviated Cd inhibition of photosynthetic electron transport, tricarboxylic acid circulation, and nitrogen assimilation. These AMF effects improved leaf and root biomass by 43.87% and 59.71% and facilitated recovery of a conservative root economic strategy. It is speculated that AMF induces the resistance signal switch by regulating the negative feedback regulation mode of indole acetic acid upward transport and methyl jasmonate downward transmission in plants.


Assuntos
Metais Pesados , Micorrizas , Poluentes do Solo , Cádmio/metabolismo , Medicago sativa/metabolismo , Metais Pesados/metabolismo , Micorrizas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Poluentes do Solo/metabolismo
10.
Pest Manag Sci ; 78(6): 2704-2713, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35394111

RESUMO

BACKGROUND: Some rodent species living in arid areas show elevated physiological tolerance to anti-vitamin K rodenticides (AVKs), which seems to be due to some unknown selective pressures that rodents may experience in desert habitats. Genes involved in the ϒ-carboxylation of blood coagulation, including vitamin K epoxide reductase complex, subunit 1 (Vkorc1), ϒ-glutamyl-carboxylase (Ggcx) and NAD(P)H quinone one dehydrogenase (Nqo1) are associated with anticoagulant resistance, or some levels of elevated tolerance, in rodents. To detect whether the DNA sequences of the three genes are also under natural selection in the desert rodent species, we analyzed the Vkorc1, Ggcx and Nqo1 genes of the desert rodents and compared them with other rodent species. RESULTS: We found an accelerated evolutionary rate in Vkorc1 of desert rodents, especially in Mus spretus, Nannospalax galili and Psammomys obesus. By contrast, signals of positive selection were absent for Ggcx and Nqo1 in all species. Mapping the amino acid variations on the VKORC1 protein three-dimensional model suggested most interspecific amino acid variations occur on the outer surface of the VKORC1 pocket, whereas most intraspecific amino acid changes and known AVK resistance mutations occurred on the inner surface and endoplasmic reticulum luminal loop regions. Some desert-species-specific amino acid variations were found on the positions where known resistance mutations occurred, indicating these variations might be related to the elevated physical tolerance to AVKs in desert rodents. CONCLUSION: The evolution of Vkorc1 has been accelerated in some desert rodent species, indicating genetic preadaptation to anticoagulant rodenticides. Positive selection and relaxed selection have been detected in Psammomys obesus and Nannospalax galili, indicating the two rodent species might also show tolerance to AVKs, which needs further verification. © 2022 Society of Chemical Industry.


Assuntos
Rodenticidas , Aminoácidos , Animais , Anticoagulantes/farmacologia , Proteínas de Membrana/genética , Camundongos , Roedores/genética , Rodenticidas/farmacologia , Vitamina K Epóxido Redutases/genética , Vitamina K Epóxido Redutases/metabolismo
11.
Trends Ecol Evol ; 37(6): 480-487, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35184877

RESUMO

One of landscape ecology's main goals is to unveil how biodiversity is impacted by habitat transformation. However, the discipline suffers from significant context dependency in observed spatial and temporal trends, hindering progress towards understanding the mechanisms driving species declines and preventing the development of accurate estimates of future biodiversity change. Here, we discuss recent evidence that populations' and species' responses to habitat change at the landscape scale are modulated by factors and processes occurring at macroecological scales, such as historical disturbance rates, distance to geographic range edges, and climatic suitability. We suggest that placing landscape ecology studies in a macroecological lens will help to explain seemingly inconsistent results and will ultimately create better predictive models to help mitigate the biodiversity crisis.


Assuntos
Ecologia , Ecossistema , Biodiversidade , Ecologia/métodos
12.
Heliyon ; 7(5): e07028, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34113727

RESUMO

The Global climate change is becoming an increasing challenge for agriculture. Beyond the increased local occurrence of extreme events high temperatures are becoming an increasingly present limiting factor in crop production. The agriculture in the West of Uzbekistan with very limited rainfalls is highly dependent on irrigation schemes using the Amu Darya water flow. With low Winter (freezing nights with minimum air temperatures of less than 0 °C) and high Summer temperatures (hot days and nights with temperatures above 35 °C during daylight, and minimum air temperatures of more than 20 °C during night time - tropical nights) the local continental arid climate temperatures are a main limiting factor faced by the local agriculture. The arid climate, with a crop production dependant on irrigation, allows putting the focus on temperatures influence on field crops, while rainfalls have barely any influence. In temperate countries the focus has mainly been on low temperatures as a main limiting factor. Freeze is indeed influencing the sowing period and putting crops at early development stages at risk. Even though, the West of Uzbekistan is facing low temperatures over the Winter period which is also challenging the local agriculture, high temperatures are becoming an increasing threat over the Summer period. The present study is analysing day and night temperature trends over the period 1987-1990 and 2013-2017. The observed trends are further compared with data from the Intergovernmental Panel on Climate Change (IPCC) model available on the World Bank open portal. Regression lines have been calculated illustrating the trends over the period. The inter-annual temperature variations are important with a relative standard deviation which ranges between 16 and 50%. The trend is considered as not significant when the relative standard deviation exceeds the variation over the overall time-period. The Day degrees are used to provide an insight into the climatic impact on crop growth along plants physiological tolerance. The day degree methodology has been especially adjusted in the present publication in order to take into account the tolerance of the studied crops to high temperatures. While the hot period is progressively expending into the Spring period, Winters are not becoming much milder limiting the benefit for Winter crops. While the hot days and tropical night event will become predominant over the Summer period the yields in cotton and rice are expected to drop drastically over the second half of the XXIst century. The expected reduction of water inflow of the Amu Darya over the century will further strongly put into question the crop production model in the West of Uzbekistan. The present publication aims at describing the ongoing trends, expectable changes in agricultural production and timelines. It is also illustrating how hot temperatures analysis could be integrated in downscaling models in agriculture in other regions of Uzbekistan and of the world.

13.
Aquat Toxicol ; 215: 105271, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31470337

RESUMO

Microcystis blooms and their associated microcystins pose a significant health risk to humans. Microcystis normally occurs as colonies in eutrophic water bodies, and its physiological tolerance to algaecides is dissimilar to that of unicellular forms. However, the differences of physiological response to algaecides between unicellular and colonial Microcystis have been poorly explored. The current study investigated the effects of hexane extract of Acorus calamus rhizome (HEACR) on the physiological and photosynthetic mechanisms of unicellular and colonial M. aeruginosa in the laboratory. We analyzed the cell density, reactive oxygen species (ROS) level, malonaldehyde (MDA) content, photosynthetic pigments, capsular polysaccharide (CPS), and photosystem (PS II) parameters of the two morphological forms of Microcystis. Our results show that HEACR suppresses the growth of both unicellular and colonial M. aeruginosa, increases the intracellular ROS level and cause lipid peroxidation, as well as exerting a detrimental effect on chlorophyll a (chl a) content and photosynthetic efficiency. Almost 100% inhibition was observed for unicellular and colonial M. aeruginosa after 3 d exposure to 50 and 100 mg L-1 HEACR, respectively. The ROS level increase, MDA accumulation, the chl a decrease and carotenoid increase in unicellular M. aeruginosa were all more obvious than that in colonial cells. The fall in photosynthetic efficiency of unicellular M. aeruginosa were also more significant than that of colonial cells. After 3d exposure, the maximum quantum yield of PS II photochemistry (Fv/Fm), effective quantum yield of PS II photochemistry (Fv'/Fm') and effective quantum yield of photochemical energy conversion in PS II (YII) of unicellular M. aeruginosa was almost totally inhibited by 20 mg L-1 HEACR, while the Fv/Fm, Fv'/Fm' and YII of colonial M. aeruginosa decreased by 43%, 26% and 66% for 100 mg L-1 of HEACR, respectively. Comparing the two morphological forms of Microcystis, colonies show a greater increase in CPS level to more effectively resist the stress of HEACR and to mitigate ROS generation thereby better defending against oxidative damage. Furthermore, colonial M. aeruginosa shows better photoprotection ability than the unicellular form when exposed to HEACR. The colonies also sustain their maximum electron transport rate, increase their tolerance to strong light, and maintain a higher ability to disperse excess energy. These results demonstrated that HEACR can significantly interfere with the growth and physiological processes of both unicellular and colonial M. aeruginosa, but that colonial M. aeruginosa has a greater ability to adjust physiological tolerance to resist the stresses of HEACR.


Assuntos
Acorus/química , Microcystis/efeitos dos fármacos , Microcystis/fisiologia , Extratos Vegetais/farmacologia , Rizoma/química , Luz , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos da radiação , Microcystis/crescimento & desenvolvimento , Fotossíntese/efeitos dos fármacos , Fotossíntese/efeitos da radiação , Pigmentos Biológicos/metabolismo , Polissacarídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
14.
PeerJ ; 7: e7923, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31637143

RESUMO

BACKGROUND: How species colonize new environments is still a fundamental question in ecology and evolution, assessable by evaluating range characteristics of invasive species. Here we propose a model approach to evaluate environmental conditions and species features to predict niche changes in non-equilibrium contexts. It incorporates potentially range-limiting processes (fundamental niche), hence allowing for better predictions of range shifts, differentiation of analog and non-analog conditions between the native and non-native (invaded) ranges, and identification of environmental conditions not currently available but likely in the future. We apply our approach with the worldwide invasive slider-turtle Trachemys scripta. METHODS: We estimated the native and non-native realized niches of T. scripta and built its fundamental niche based on key features of the turtle's temperature physiological tolerance limits and survival-associated factors. We next estimated response functions adjusted to the physiological predictor variables and estimated habitat suitability values, followed by a comprehensive set of analyses and simulations to compare the environmental conditions occupied by T. scripta (at its native and non-native ranges). RESULTS: Climatic space analysis showed that the T. scripta's non-native realized niche is 28.6% greater than the native one. Response curves showed that it does not use its entire range of temperature tolerances (density curves for native: 5.3-23.7 °C and non-native: 1.7-28.4 °C ranges). Whether considering the mean temperature of the warmest or the coldest quarter, it occupies a wider range of temperatures along its non-native distribution. Results of the response curves for worldwide (global) and across Mexico (regional) comparisons showed it occupies analog and non-analog conditions between its native and invaded ranges, exhibiting also unoccupied suitable climatic conditions. DISCUSSION: We demonstrate that T. scripta occupies a wider subset of its fundamental niche along its non-native range (within its physiological tolerances), revealing that the species observed niche shift corresponds to a different subset of its fundamental niche (niche unfilling). We also identified suitable environmental conditions, globally and regionally, where the slider turtle could potentially invade. Our approach allows to accurately predict niche changes in novel or non-equilibrium contexts, which can improve our understanding about ecological aspects and geographic range boundaries in current and potential invasions.

15.
Ecol Evol ; 8(14): 6872-6879, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30073051

RESUMO

Changes in climate variables have an important impact on the prediction and protection of elevational biodiversity. Gaps exist in our understanding of the elevational distribution patterns in seed plant species richness. Our study examines the importance of climate variables in shaping the elevational variation in species richness. The importance of boundary constraint was also taken into account. Model selection based on Akaike's information criterion was used to select the best explaining climate models. Variation partitioning was used to assess the independent and joint effects of water-energy, physiological tolerance, and environmental stability variables on species richness. Our results revealed that: (a) Both raw (boundary constraint unreduced) and estimated (boundary constraint reduced) species richness showed large elevational variation, with the peak species richness seen at midelevations. The environmental variables were better at explaining the distribution pattern of species richness along the elevation, when the effect of boundary constraint was reduced; (b) the physiological tolerance and environmental stability variables explained more variation in raw and estimated species richness compared with the water-energy variables. Estimated species richness was better explained (98.6%) by the environmental variables than raw species richness (94%); (c) the water-related variables generally had the highest independent effect on raw and estimated species richness and were dominant in shaping the elevational variation in species richness. Our findings quantify the influence of boundary constraint on the distribution pattern of species along an altitudinal gradient and compare the relative contributions of environmental stability and water-energy in explaining the altitude gradient distribution pattern of plant seed species.

16.
Ecol Evol ; 8(9): 4644-4656, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29760904

RESUMO

Thermal acclimation is hypothesized to offer a selective advantage in seasonal habitats and may underlie disparities in geographic range size among closely-related species with similar ecologies. Understanding this relationship is also critical for identifying species that are more sensitive to warming climates. Here, we study North American plethodontid salamanders to investigate whether acclimation ability is associated with species' latitudinal extents and the thermal range of the environments they inhabit. We quantified variation in thermal physiology by measuring standard metabolic rate (SMR) at different test and acclimation temperatures for 16 species of salamanders with varying latitudinal extents. A phylogenetically-controlled Markov chain Monte Carlo generalized linear mixed model (MCMCglmm) was then employed to determine whether there are differences in SMR between wide- and narrow-ranging species at different acclimation temperatures. In addition, we tested for a relationship between the acclimation ability of species and the environmental temperature ranges they inhabit. Further, we investigated if there is a trade-off between critical thermal maximum (CTMax) and thermal acclimation ability. MCMCglmm results show a significant difference in acclimation ability between wide and narrow-ranging temperate salamanders. Salamanders with wide latitudinal distributions maintain or slightly increase SMR when subjected to higher test and acclimation temperatures, whereas several narrow-ranging species show significant metabolic depression. We also found significant, positive relationships between acclimation ability and environmental thermal range, and between acclimation ability and CTMax. Wide-ranging salamander species exhibit a greater capacity for thermal acclimation than narrow-ranging species, suggesting that selection for acclimation ability may have been a key factor enabling geographic expansion into areas with greater thermal variability. Further, given that narrow-ranging salamanders are found to have both poor acclimation ability and lower tolerance to warm temperatures, they are likely to be more susceptible to environmental warming associated with anthropogenic climate change.

17.
Ecol Evol ; 6(19): 6993-7003, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-28725376

RESUMO

The distributional limits of many ectothermic species are set by thermal tolerances of early-developmental stages in the life history; embryos and larvae often are less able to buffer environmental variation than are conspecific adults. In pond-breeding amphibians, for example, cold water may constrain viability of eggs and larvae, even if adults can find suitable thermal conditions in terrestrial niches. Invasive species provide robust model systems for exploring these questions, because we can quantify thermal challenges at the expanding range edge (from field surveys) and larval responses to thermal conditions (in the laboratory). Our studies on invasive cane toads (Rhinella marina) at the southern (cool-climate) edge of their expanding range in Australia show that available ponds often average around 20°C during the breeding period, 10°C lower than in many areas of the toads' native range, or in the Australian tropics. Our laboratory experiments showed that cane toad eggs and larvae cannot develop successfully at 16°C, but hatching success and larval survival rates were higher at 20°C than in warmer conditions. Lower temperatures slowed growth rates, increasing the duration of tadpole life, but also increased metamorph body mass. Water temperature also influenced metamorph body shape (high temperatures reduced relative limb length, head width, and body mass) and locomotor performance (increased speed from intermediate temperatures, longer hops from high temperatures). In combination with previous studies, our data suggest that lower water temperatures may enhance rather than reduce recruitment of cane toads, at least in areas where pond temperatures reach or exceed 20°C. That condition is fulfilled over a wide area of southern Australia, suggesting that the continuing expansion of this invasive species is unlikely to be curtailed by the impacts of relatively low water temperatures on the viability of early life-history stages.

18.
Anim Behav ; 120: 211-221, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-29104297

RESUMO

The impacts of human activities on the natural world are becoming increasingly apparent, with rapid development and exploitation occurring at the expense of habitat quality and biodiversity. Declines are especially concerning in the oceans, which hold intrinsic value due to their biological uniqueness as well as their substantial sociological and economic importance. Here, we review the literature and investigate whether incorporation of knowledge from the fields of animal behaviour and behavioural ecology may improve the effectiveness of conservation initiatives in marine systems. In particular, we consider (1) how knowledge of larval behaviour and ecology may be used to inform the design of marine protected areas, (2) how protecting species that hold specific ecological niches may be of particular importance for maximizing the preservation of biodiversity, (3) how current harvesting techniques may be inadvertently skewing the behavioural phenotypes of stock populations and whether changes to current practices may lessen this skew and reinforce population persistence, and (4) how understanding the behavioural and physiological responses of species to a changing environment may provide essential insights into areas of particular vulnerability for prioritized conservation attention. The complex nature of conservation programmes inherently results in interdisciplinary responses, and the incorporation of knowledge from the fields of animal behaviour and behavioural ecology may increase our ability to stem the loss of biodiversity in marine environments.

19.
J Insect Physiol ; 78: 55-61, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25956197

RESUMO

For many terrestrial species, habitat associations and range size are dependent on physiological limits, which in turn may influence large-scale patterns of species diversity. The temperature range experienced by individuals is considered to shape the breadth of the thermal niche, with species occupying temporally and/or geographically stable climates tolerating a narrow temperature range. High-elevation environments experience large temperature fluctuations, with frequent periods below 0 °C, but Grylloblatta (Grylloblattodea: Grylloblattidae) occupy climatically stable microhabitats within this region. Here we test critical thermal limits and supercooling points for five Grylloblatta populations from across a large geographic area, to examine whether the stable microhabitats of this group are associated with a narrow thermal niche and assess their capacity to tolerate cold conditions. Thermal limits are highly conserved in Grylloblatta, despite substantial genetic divergence among populations spanning 1500 m elevation and being separated by over 500 km. Further, Grylloblatta show exceptionally narrow thermal limits compared to other insect taxa with little capacity to improve cold tolerance via plasticity. In contrast, upper thermal limits were significantly depressed by cold acclimation. Grylloblatta maintain coordinated movement until they freeze, and they die upon freezing. Convergence of the critical thermal minima, supercooling point and lower lethal limits point to adaptation to a cold but, importantly, constant thermal environment. These physiological data provide an explanation for the high endemism and patchy distribution of Grylloblatta, which relies on subterranean retreats to accommodate narrow thermal limits. These retreats are currently buffered from temperature fluctuations by snow cover, and a declining snowpack thus places Grylloblatta at risk of exposure to temperatures beyond its tolerance capacity.


Assuntos
Insetos/fisiologia , Aclimatação , Adaptação Fisiológica , Altitude , Animais , Clima , Temperatura Baixa , Ecossistema
20.
Conserv Physiol ; 2(1): cou033, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-27293654

RESUMO

Current rates of biodiversity decline are unprecedented and largely attributed to anthropogenic influences. Given the scope and magnitude of conservation issues, policy and management interventions must maximize efficiency and efficacy. The relatively new field of conservation physiology reveals the physiological mechanisms associated with population declines, animal-environment relationships and population or species tolerance thresholds, particularly where these relate to anthropogenic factors that necessitate conservation action. We propose a framework that demonstrates an integrative approach between physiology, conservation and policy, where each can inform the design, conduct and implementation of the other. Each junction of the conservation physiology process has the capacity to foster dialogue that contributes to effective implementation, monitoring, assessment and evaluation. This approach enables effective evaluation and implementation of evidence-based conservation policy and management decisions through a process of ongoing refinement, but may require that scientists (from the disciplines of both physiology and conservation) and policy-makers bridge interdisciplinary knowledge gaps. Here, we outline a conceptual framework that can guide and lead developments in conservation physiology, as well as promote innovative research that fosters conservation-motivated policy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA