Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38612681

RESUMO

Small-molecule positive allosteric modulator 1 (SPAM1), which targets pituitary adenylate cyclase-activating polypeptide receptor 1 (PAC1-R), has been found to have a neuroprotective effect, and the underlying mechanism was explored in this study. First, using a D-galactose (D-gal)-induced aging mouse model, we confirmed that SPAM1 improves the structure of the hippocampal dentate gyrus and restores the number of neurons. Compared with D-gal model mice, SPAM1-treated mice showed up-regulated expression of Sirtuin 6 (SIRT6) and Lamin B1 and down-regulated expression of YinYang 1 (YY1) and p16. A similar tendency was observed in senescent RGC-5 cells induced by long-term culture, indicating that SPAM1 exhibits significant in vitro and in vivo anti-senescence activity in neurons. Then, using whole-transcriptome sequencing and proteomic analysis, we further explored the mechanism behind SPAM1's neuroprotective effects and found that SPAM is involved in the longevity-regulating pathway. Finally, the up-regulation of neurofilament light and medium polypeptides indicated by the proteomics results was further confirmed by Western blotting. These results help to lay a pharmacological network foundation for the use of SPAM1 as a potent anti-aging therapeutic drug to combat neurodegeneration with anti-senescence, neuroprotective, and nerve regeneration activity.


Assuntos
Proteômica , Transcriptoma , Animais , Camundongos , Perfilação da Expressão Gênica , Envelhecimento/genética , Longevidade , Galactose/farmacologia
2.
J Pharmacol Sci ; 153(3): 175-182, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37770159

RESUMO

We previously found that pituitary adenylate cyclase-activating polypeptide (PACAP)-deficient (PACAP-/-) mice exhibit dendritic spine morphology impairment and neurodevelopmental disorder (NDD)-like behaviors such as hyperactivity, increased novelty-seeking behavior, and deficient pre-pulse inhibition. Recent studies have indicated that rodent models of NDDs (e.g., attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorder) show abnormalities in the axon initial segment (AIS). Here, we revealed that PACAP-/- mice exhibited a longer AIS length in layer 2/3 pyramidal neurons of the primary somatosensory barrel field compared with wild-type control mice. Further, we previously showed that a single injection of atomoxetine, an ADHD drug, improved hyperactivity in PACAP-/- mice. In this study, we found that repeated treatments of atomoxetine significantly improved AIS abnormality along with hyperactivity in PACAP-/- mice. These results suggest that AIS abnormalities are associated with NDDs-like behaviors in PACAP-/- mice. Thus, improvement in AIS abnormalities will be a novel drug therapy for NDDs.

3.
Rev Neurol (Paris) ; 179(4): 289-296, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36754669

RESUMO

INTRODUCTION: Based on animal studies, calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating polypeptide (PACAP) are thought to play a role in neurobiological events such as neuropathic pain, neuroprotection, neurotransmission, neural plasticity, and neurotrophic effects. The aim of the study is to investigate whether there is a change in the blood level of CGRP and PACAP in patients with neuropathic pain and to look for clues about the utility of these peptides as pharmacological targets in the treatment of neuropathic pain in humans. METHODS: The study included 60 polyneuropathy patients with neuropathic pain, 30 polyneuropathy patients without neuropathic pain (NNP) and 29 healthy subjects as control group. Polyneuropathy patients with neuropathic pain were divided into two groups as diabetic (D-PNP) and non-diabetic polyneuropathy (ND-PNP) patients. Plasma CGRP and serum PACAP levels were measured from venous blood samples of the patients and healthy controls. RESULTS: The CGRP level was significantly higher in the D-PNP and ND-PNP groups compared to the control and NNP groups (P<0.05). PACAP levels were significantly higher in the D-PNP and ND-PNP groups compared to the control and NNP groups (P<0.05). There was no significant correlation between CGRP and PACAP levels and neuropathic pain scale (NPS). CONCLUSIONS: This study is the first to demonstrate elevated plasma CGRP and serum PACAP levels in polyneuropathy patients with neuropathic pain. The results of this study are important in terms of showing that both CGRP and PACAP can be new pharmacological targets in the treatment of neuropathic pain and polyneuropathy in humans.


Assuntos
Neuralgia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Animais , Humanos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Peptídeo Relacionado com Gene de Calcitonina
4.
Int J Mol Sci ; 23(9)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35563181

RESUMO

Multiple sclerosis (MS) is a chronic neuroinflammatory and demyelinating disease of the central nervous system (CNS), characterised by the infiltration of peripheral immune cells, multifocal white-matter lesions, and neurodegeneration. In recent years, microglia have emerged as key contributors to MS pathology, acting as scavengers of toxic myelin/cell debris and modulating the inflammatory microenvironment to promote myelin repair. In this review, we explore the role of two neuropeptides, pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP), as important regulators of microglial functioning during demyelination, myelin phagocytosis, and remyelination, emphasising the potential of these neuropeptides as therapeutic targets for the treatment of MS.


Assuntos
Esclerose Múltipla , Peptídeo Intestinal Vasoativo , Humanos , Microglia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase
5.
Int J Mol Sci ; 23(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36555637

RESUMO

The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) exerts effective neuroprotective activity through its specific receptor, PAC1-R. We accidentally discovered that as a positive allosteric modulator (PAM) of PAC1-R, the small-molecule PAM (SPAM1) has a hydrazide-like structure, but different binding characteristics, from hydrazide for the N-terminal extracellular domain of PAC1-R (PAC1-R-EC1). SPAM1 had a significant neuroprotective effect against oxidative stress, both in a cell model treated with hydrogen peroxide (H2O2) and an aging mouse model induced by D-galactose (D-gal). SPAM1 was found to block the decrease in PACAP levels in brain tissues induced by D-gal and significantly induced the nuclear translocation of PAC1-R in PAC1R-CHO cells and mouse retinal ganglion cells. Nuclear PAC1-R was subjected to fragmentation and the nuclear 35 kDa, but not the 15 kDa fragments, of PAC1-R interacted with SP1 to upregulate the expression of Huntingtin (Htt), which then exerted a neuroprotective effect by attenuating the binding availability of the neuron-restrictive silencer factor (NRSF) to the neuron-restrictive silencer element (NRSE). This resulted in an upregulation of the expression of NRSF-related neuropeptides, including PACAP, the brain-derived neurotrophic factor (BDNF), tyrosine hydroxylase (TH), and synapsin-1 (SYN1). The novel mechanism reported in this study indicates that SPAM1 has potential use as a drug, as it exerts a neuroprotective effect by regulating NRSF.


Assuntos
Fármacos Neuroprotetores , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Cricetinae , Camundongos , Animais , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Fármacos Neuroprotetores/farmacologia , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Cricetulus , Peróxido de Hidrogênio
6.
Int J Mol Sci ; 23(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35897648

RESUMO

Pituitary Adenylate Cyclase-Activating Peptide (PACAP) and Vasoactive Intestinal Peptide (VIP) are neuropeptides involved in a diverse array of physiological and pathological processes through activating the PACAP subfamily of class B1 G protein-coupled receptors (GPCRs): VIP receptor 1 (VPAC1R), VIP receptor 2 (VPAC2R), and PACAP type I receptor (PAC1R). VIP and PACAP share nearly 70% amino acid sequence identity, while their receptors PAC1R, VPAC1R, and VPAC2R share 60% homology in the transmembrane regions of the receptor. PACAP binds with high affinity to all three receptors, while VIP binds with high affinity to VPAC1R and VPAC2R, and has a thousand-fold lower affinity for PAC1R compared to PACAP. Due to the wide distribution of VIP and PACAP receptors in the body, potential therapeutic applications of drugs targeting these receptors, as well as expected undesired side effects, are numerous. Designing selective therapeutics targeting these receptors remains challenging due to their structural similarities. This review discusses recent discoveries on the molecular mechanisms involved in the selectivity and signaling of the PACAP subfamily of receptors, and future considerations for therapeutic targeting.


Assuntos
Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Peptídeo Intestinal Vasoativo , Sequência de Aminoácidos , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptores Tipo II de Peptídeo Intestinal Vasoativo , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/metabolismo , Transdução de Sinais , Peptídeo Intestinal Vasoativo/metabolismo
7.
J Neurochem ; 158(2): 153-168, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33704788

RESUMO

γ-Aminobutyric acid (GABA) is thought to play a paracrine role in adrenal medullary chromaffin (AMC) cells. Comparative physiological and immunocytochemical approaches were used to address the issue of how the paracrine function of GABA in AMC cells is established. GABAA receptor Cl- channel activities in AMC cells of rats and mice, where corticosterone is the major glucocorticoid, were much smaller than those in AMC cells of guinea-pigs and cattle, where cortisol is the major. The extent of enhancement of GABAA receptor α3 subunit expression in rat pheochromocytoma (PC12) cells by cortisol was larger than that by corticosterone in parallel with their glucocorticoid activities. Thus, the species difference in GABAA receptor expression may be ascribed to a difference in glucocorticoid activity between corticosterone and cortisol. GABAA receptor Cl- channel activity in mouse AMC cells was enhanced by allopregnanolone, as noted with that in guinea-pig AMC cells, and the enzymes involved in allopregnanolone production were immunohistochemically detected in the zona fasciculata in both mice and guinea pigs. The expression of glutamic acid decarboxylase 67 (GAD67), one of the GABA synthesizing enzymes, increased after birth, whereas GABAA receptors already developed at birth. Stimulation of pituitary adenylate cyclase-activating polypeptide (PACAP) receptors, but not nicotinic or muscarinic receptors, in PC12 cells, resulted in an increase in GAD67 expression in a protein-kinase A-dependent manner. The results indicate that glucocorticoid and PACAP are mainly responsible for the expressions of GABAA receptors and GAD67 involved in GABA signaling in AMC cells, respectively.


Assuntos
Medula Suprarrenal/fisiologia , Células Cromafins/fisiologia , Comunicação Parácrina/fisiologia , Ácido gama-Aminobutírico/fisiologia , Medula Suprarrenal/citologia , Animais , Bovinos , Canais de Cloreto/metabolismo , Cricetinae , Glutamato Descarboxilase/metabolismo , Cobaias , Hidrocortisona/metabolismo , Imuno-Histoquímica , Masculino , Mesocricetus , Camundongos , Camundongos Endogâmicos C57BL , Células PC12 , Pregnanolona/farmacologia , Ratos , Receptores de GABA-A/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/efeitos dos fármacos , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo
8.
J Cell Physiol ; 234(4): 5203-5214, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30238989

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the loss of upper and lower motor neurons. Based on transcriptional profiles of motor cortex samples, in a previous work, we were able to classify two subgroups of sporadic ALS (SALS) patients, named SALS1 and SALS2. A further meta-analysis study has revealed sixteen drug targets commonly deregulated in SALS2 and superoxide dismutase 1 (SOD1) G93A mice. The identified candidate drug targets included pituitary adenylate cyclase-activating polypeptide (PACAP), epidermal growth factor receptor (EGFR) and matrix metallopeptidase-2 (MMP-2). By using a motor neuron-like hybrid cell line (NSC-34) expressing human SOD1 G93A as an in vitro model of ALS, here we investigated the functional correlation among these three genes. Our results have shown that PACAP increases cell viability following serum deprivation. This effect is induced through EGFR transactivation mediated by protein kinase A stimulation. Furthermore, EGFR phosphorylation activates mitogen-activated protein kinases/extracellular signal-regulated kinases 1 and 2 survival signaling pathway and increases MMP-2 expression, significantly reduced by serum starvation. These results suggest that a deeper characterization of mechanisms involved in PACAP/EGFR/MMP-2 axis activation in G93A SOD1 mutated neurons may allow identifying new targets for ALS therapy.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Neurônios Motores/efeitos dos fármacos , Degeneração Neural , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Meios de Cultura Livres de Soro/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Receptores ErbB/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Mutação , Fosforilação , Transdução de Sinais , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Tirosina
9.
J Pharmacol Sci ; 130(4): 194-203, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26948958

RESUMO

Intrathecal (i.t.) administration of pituitary adenylate cyclase-activating polypeptide (PACAP) induces long-lasting nociceptive behaviors for more than 60 min in mice, while the involvement of PACAP type1 receptor (PAC1-R) has not been clarified yet. The present study investigated signaling mechanisms of the PACAP-induced prolonged nociceptive behaviors. Single i.t. injection of a selective PAC1-R agonist, maxadilan (Max), mimicked nociceptive behaviors in a dose-dependent manner similar to PACAP. Pre- or post-treatment of a selective PAC1-R antagonist, max.d.4, significantly inhibited the nociceptive behaviors by PACAP or Max. Coadministration of a protein kinase A inhibitor, Rp-8-Br-cAMPS, a mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase inhibitor, PD98059 or a c-Jun N-terminal kinase (JNK) inhibitor, SP600125, significantly inhibited the nociceptive behaviors by Max. Immunohistochemistry and immunoblotting analysis revealed that spinal administration of Max-induced ERK phosphorylation and JNK phosphorylation, and also augmented an astrocyte marker, glial fibrillary acidic protein in mouse spinal cord. Furthermore, an astroglial toxin, l-α-aminoadipate, significantly attenuated the development of the nociceptive behaviors and ERK phosphorylation by Max. These results suggest that the activation of spinal PAC1-R induces long-lasting nociception through the interaction of neurons and astrocytes.


Assuntos
Astrócitos/fisiologia , Comportamento Animal/fisiologia , Nociceptividade/fisiologia , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/fisiologia , Transdução de Sinais , Medula Espinal/citologia , Medula Espinal/fisiologia , Animais , Masculino , Camundongos Endogâmicos
10.
Cell Biochem Funct ; 33(1): 29-36, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25515530

RESUMO

Development and homeostasis of multicellular organisms require interactions between neighbouring cells. We recently established an in vitro model of cell-cell interaction based on a collagen vitrigel membrane. We have now examined the role of neural cells in retinal homeostasis by coculture of human retinal pigment epithelial (RPE) cells and neural cells on opposite sides of such a membrane. The neural cells (differentiated PC12 cells) induced up-regulation of semaphorin 4A (Sema4A), a member of the semaphorin family of neural guidance proteins, in RPE (ARPE19) cells. This effect of the neural cells was mimicked by the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) and was abolished by the PACAP antagonist PACAP(6-38). Coculture with neural cells or stimulation with PACAP also induced the phosphorylation of extracellular-signal-regulated kinase in ARPE19 cells, and this effect of the neural cells was inhibited by PACAP(6-38). Finally, among various cytokines examined, only the amount of interleukin-6 released by cocultures of ARPE19 and neural cells differed from that released by ARPE19 cells cultured alone. Interleukin-6 was not detected in culture supernatants of neural cells, and the reduction in the amount of interleukin-6 released by the cocultures compared with that released by ARPE19 cells alone was prevented by PACAP(6-38). Our findings suggest that PACAP released from retinal neural cells (photoreceptors or optic nerve cells) may regulate Sema4A expression in RPE cells and thereby contribute to the maintenance of retinal structure and function. Development and homeostasis of multicellular organisms require interactions between neighbouring cells. With the use of a coculture system based on a collagen vitrigel membrane, we have now shown that neural cells induce up-regulation of the neural guidance protein Sema4A in RPE cells. This effect of neural cells appears to be mediated by the neuropeptide PACAP. PACAP released from retinal neural cells (photoreceptors or optic nerve cells) may thus regulate Sema4A expression in RPE cells and thereby contribute to the maintenance of retinal structure and function.


Assuntos
Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Retina/citologia , Semaforinas/genética , Regulação para Cima , Animais , Linhagem Celular Tumoral , Técnicas de Cocultura/métodos , Citocinas/metabolismo , Regulação para Baixo , Células Epiteliais/efeitos dos fármacos , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Modelos Biológicos , Nervo Óptico/citologia , Nervo Óptico/metabolismo , Células Fotorreceptoras/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/antagonistas & inibidores , Ratos , Retina/metabolismo , Transdução de Sinais
11.
Korean J Physiol Pharmacol ; 19(5): 435-40, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26330756

RESUMO

This study aimed to investigate the effect of pituitary adenylate cyclase-activating peptide (PACAP) on the pacemaker activity of interstitial cells of Cajal (ICC) in mouse colon and to identify the underlying mechanisms of PACAP action. Spontaneous pacemaker activity of colonic ICC and the effects of PACAP were studied using electrophysiological recordings. Exogenously applied PACAP induced hyperpolarization of the cell membrane and inhibited pacemaker frequency in a dose-dependent manner (from 0.1 nM to 100 nM). To investigate cyclic AMP (cAMP) involvement in the effects of PACAP on ICC, SQ-22536 (an inhibitor of adenylate cyclase) and cell-permeable 8-bromo-cAMP were used. SQ-22536 decreased the frequency of pacemaker potentials, and cell-permeable 8-bromo-cAMP increased the frequency of pacemaker potentials. The effects of SQ-22536 on pacemaker potential frequency and membrane hyperpolarization were rescued by co-treatment with glibenclamide (an ATP-sensitive K(+) channel blocker). However, neither N (G)-nitro-L-arginine methyl ester (L-NAME, a competitive inhibitor of NO synthase) nor 1H-[1,2,4]oxadiazolo[4,3-α]quinoxalin-1-one (ODQ, an inhibitor of guanylate cyclase) had any effect on PACAP-induced activity. In conclusion, this study describes the effects of PACAP on ICC in the mouse colon. PACAP inhibited the pacemaker activity of ICC by acting through ATP-sensitive K(+) channels. These results provide evidence of a physiological role for PACAP in regulating gastrointestinal (GI) motility through the modulation of ICC activity.

12.
Mil Med Res ; 11(1): 49, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39044298

RESUMO

BACKGROUND: The development of ketamine-like rapid antidepressants holds promise for enhancing the therapeutic efficacy of depression, but the underlying cellular and molecular mechanisms remain unclear. Implicated in depression regulation, the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is investigated here to examine its role in mediating the rapid antidepressant response. METHODS: The onset of antidepressant response was assessed through depression-related behavioral paradigms. The signaling mechanism of PACAP in the hippocampal dentate gyrus (DG) was evaluated by utilizing site-directed gene knockdown, pharmacological interventions, or optogenetic manipulations. Overall, 446 mice were used for behavioral and molecular signaling testing. Mice were divided into control or experimental groups randomly in each experiment, and the experimental manipulations included: chronic paroxetine treatments (4, 9, 14 d) or a single treatment of ketamine; social defeat or lipopolysaccharides-injection induced depression models; different doses of PACAP (0.4, 2, 4 ng/site; microinjected into the hippocampal DG); pharmacological intra-DG interventions (CALM and PACAP6-38); intra-DG viral-mediated PACAP RNAi; and opotogenetics using channelrhodopsins 2 (ChR2) or endoplasmic natronomonas halorhodopsine 3.0 (eNpHR3.0). Behavioral paradigms included novelty suppressed feeding test, tail suspension test, forced swimming test, and sucrose preference test. Western blotting, ELISA, or quantitative real-time PCR (RT-PCR) analysis were used to detect the expressions of proteins/peptides or genes in the hippocampus. RESULTS: Chronic administration of the slow-onset antidepressant paroxetine resulted in an increase in hippocampal PACAP expression, and intra-DG blockade of PACAP attenuated the onset of the antidepressant response. The levels of hippocampal PACAP expression were reduced in both two distinct depression animal models and intra-DG knockdown of PACAP induced depression-like behaviors. Conversely, a single infusion of PACAP into the DG region produced a rapid and sustained antidepressant response in both normal and chronically stressed mice. Optogenetic intra-DG excitation of PACAP-expressing neurons instantly elicited antidepressant responses, while optogenetic inhibition induced depression-like behaviors. The longer optogenetic excitation/inhibition elicited the more sustained antidepressant/depression-like responses. Intra-DG PACAP infusion immediately facilitated the signaling for rapid antidepressant response by inhibiting calcium/calmodulin-dependent protein kinase II (CaMKII)-eukaryotic elongation factor 2 (eEF2) and activating the mammalian target of rapamycin (mTOR). Pre-activation of CaMKII signaling within the DG blunted PACAP-induced rapid antidepressant response as well as eEF2-mTOR-brain-derived neurotrophic factor (BDNF) signaling. Finally, acute ketamine treatment upregulated hippocampal PACAP expression, whereas intra-DG blockade of PACAP signaling attenuated ketamine's rapid antidepressant response. CONCLUSIONS: Activation of hippocampal PACAP signaling induces a rapid antidepressant response through the regulation of CaMKII inhibition-governed eEF2-mTOR-BDNF signaling.


Assuntos
Depressão , Hipocampo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Transdução de Sinais , Animais , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Camundongos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Transdução de Sinais/efeitos dos fármacos , Masculino , Depressão/tratamento farmacológico , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Modelos Animais de Doenças , Comportamento Animal/efeitos dos fármacos , Paroxetina/farmacologia , Paroxetina/uso terapêutico
13.
Cells ; 12(22)2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37998368

RESUMO

Multiple sclerosis (MS) is an immune-mediated disorder characterized by focal demyelination and chronic inflammation of the central nervous system (CNS). Although the exact etiology is unclear, mounting evidence indicates that endoplasmic reticulum (ER) stress represents a key event in disease pathogenesis. Pituitary adenylate cyclase-activating peptide (PACAP) and vasoactive intestinal peptide (VIP) are two structurally related neuropeptides that are abundant in the CNS and are known to exert neuroprotective and immune modulatory roles. Activation of this endogenous neuropeptide system may interfere with ER stress processes to promote glial cell survival and myelin self-repair. However, the potential crosstalk between the PACAP/VIP system and ER stress remains elusive. In this review, we aim to discuss how these peptides ameliorate ER stress in the CNS, with a focus on MS pathology. Our goal is to emphasize the importance of this potential interaction to aid in the identification of novel therapeutic targets for the treatment of MS and other demyelinating disorders.


Assuntos
Esclerose Múltipla , Peptídeo Intestinal Vasoativo , Humanos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Receptores de Peptídeo Intestinal Vasoativo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Transdução de Sinais/fisiologia , Estresse do Retículo Endoplasmático
14.
Cells ; 12(22)2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37998384

RESUMO

Migraine is a neurovascular disorder that can be debilitating for individuals and society. Current research focuses on finding effective analgesics and management strategies for migraines by targeting specific receptors and neuropeptides. Nonetheless, newly approved calcitonin gene-related peptide (CGRP) monoclonal antibodies (mAbs) have a 50% responder rate ranging from 27 to 71.0%, whereas CGRP receptor inhibitors have a 50% responder rate ranging from 56 to 71%. To address the need for novel therapeutic targets, researchers are exploring the potential of another secretin family peptide, pituitary adenylate cyclase-activating polypeptide (PACAP), as a ground-breaking treatment avenue for migraine. Preclinical models have revealed how PACAP affects the trigeminal system, which is implicated in headache disorders. Clinical studies have demonstrated the significance of PACAP in migraine pathophysiology; however, a few clinical trials remain inconclusive: the pituitary adenylate cyclase-activating peptide 1 receptor mAb, AMG 301 showed no benefit for migraine prevention, while the PACAP ligand mAb, Lu AG09222 significantly reduced the number of monthly migraine days over placebo in a phase 2 clinical trial. Meanwhile, another secretin family peptide vasoactive intestinal peptide (VIP) is gaining interest as a potential new target. In light of recent advances in PACAP research, we emphasize the potential of PACAP as a promising target for migraine treatment, highlighting the significance of exploring PACAP as a member of the antimigraine armamentarium, especially for patients who do not respond to or contraindicated to anti-CGRP therapies. By updating our knowledge of PACAP and its unique contribution to migraine pathophysiology, we can pave the way for reinforcing PACAP and other secretin peptides, including VIP, as a novel treatment option for migraines.


Assuntos
Hormônios Gastrointestinais , Transtornos de Enxaqueca , Humanos , Peptídeo Relacionado com Gene de Calcitonina , Transtornos de Enxaqueca/tratamento farmacológico , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/antagonistas & inibidores , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Secretina/antagonistas & inibidores , Peptídeo Intestinal Vasoativo
15.
Nanomaterials (Basel) ; 13(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38063700

RESUMO

The lack of effective treatments for neurodegenerative diseases (NDs) is an important current concern. Lipid nanoparticles can deliver innovative combinations of active molecules to target the various mechanisms of neurodegeneration. A significant challenge in delivering drugs to the brain for ND treatment is associated with the blood-brain barrier, which limits the effectiveness of conventional drug administration. Current strategies utilizing lipid nanoparticles and cell-penetrating peptides, characterized by various uptake mechanisms, have the potential to extend the residence time and bioavailability of encapsulated drugs. Additionally, bioactive molecules with neurotropic or neuroprotective properties can be delivered to potentially mediate the ND targeting pathways, e.g., neurotrophin deficiency, impaired lipid metabolism, mitochondrial dysfunction, endoplasmic reticulum stress, accumulation of misfolded proteins or peptide fragments, toxic protein aggregates, oxidative stress damage, and neuroinflammation. This review discusses recent advancements in lipid nanoparticles and CPPs in view of the integration of these two approaches into nanomedicine development and dual-targeted nanoparticulate systems for brain delivery in neurodegenerative disorders.

16.
J Mol Neurosci ; 73(9-10): 724-737, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37646964

RESUMO

Previous evidence shows that rapid changes occur in the brain following spinal cord injury (SCI). Here, we interrogated the expression of the neuropeptides pituitary adenylyl cyclase-activating peptide (PACAP), vasoactive intestinal peptides (VIP), and their binding receptors in the rat brain 24 h following SCI. Female Sprague-Dawley rats underwent thoracic laminectomy; half of the rats received a mild contusion injury at the level of the T10 vertebrate (SCI group); the other half underwent sham surgery (sham group). Twenty-four hours post-surgery, the hypothalamus, thalamus, amygdala, hippocampus (dorsal and ventral), prefrontal cortex, and periaqueductal gray were collected. PACAP, VIP, PAC1, VPAC1, and VPAC2 mRNA and protein levels were measured by real-time quantitative polymerase chain reaction and Western blot. In SCI rats, PACAP expression was increased in the hypothalamus (104-141% vs sham) and amygdala (138-350%), but downregulated in the thalamus (35-95%) and periaqueductal gray (58-68%). VIP expression was increased only in the thalamus (175-385%), with a reduction in the amygdala (51-68%), hippocampus (40-75%), and periaqueductal gray (74-76%). The expression of the PAC1 receptor was the least disturbed by SCI, with decrease expression in the ventral hippocampus (63-68%) only. The expression levels of VPAC1 and VPAC2 receptors were globally reduced, with more prominent reductions of VPAC1 vs VPAC2 in the amygdala (21-70%) and ventral hippocampus (72-75%). In addition, VPAC1 downregulation also extended to the dorsal hippocampus (69-70%). These findings demonstrate that as early as 24 h post-SCI, there are region-specific disruptions of PACAP, VIP, and related receptor transcript and protein levels in supraspinal regions controlling higher cognitive functions.


Assuntos
Receptores do Hormônio Hipofisário , Traumatismos da Medula Espinal , Feminino , Ratos , Animais , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Ratos Sprague-Dawley , Receptores do Hormônio Hipofisário/genética , Receptores do Hormônio Hipofisário/metabolismo , Peptídeo Intestinal Vasoativo/genética , Peptídeo Intestinal Vasoativo/metabolismo , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/genética , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/metabolismo , Receptores Tipo II de Peptídeo Intestinal Vasoativo/genética , Receptores Tipo II de Peptídeo Intestinal Vasoativo/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Traumatismos da Medula Espinal/metabolismo , Encéfalo/metabolismo
17.
Neuropeptides ; 99: 102327, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36842389

RESUMO

BACKGROUND: Trigeminal neuralgia is a common chronic maxillofacial neuropathic pain disorder, and voltage-gated sodium channels (VSGCs) are likely involved in its pathology. Prior studies report that pituitary adenylate cyclase-activating polypeptide (PACAP), a neuropeptide highly expressed in the trigeminal ganglion, may contribute to dorsal root ganglion neuron excitability by modulating the Nav1.7. OBJECTIVE: We investigated whether PACAP can regulate Nav1.7 through the mitogen-activated protein kinase/ERK kinase/extracellular-signal-regulated kinase (MEK/ERK) pathway in the trigeminal ganglion after chronic constriction injury of the infraorbital nerve (ION-CCI) in rats. STUDY DESIGN: Sprague-Dawley rats underwent ION-CCI, followed by intrathecal injection of PACAP 6-38 (PAC1 receptor antagonist) and PD98059 (MEK/ERK antagonist). Quantitative real-time PCR and western blot were used to quantify ATF3, PACAP, ERK, p-ERK, and Nav1.7 expression. RESULTS: The mechanical pain threshold decreased from day 3 to day 21 after ION-CCI and reached the lowest testing value by day 14; however, it increased after PACAP 6-38 and PD98059 injections. Additionally, ION-CCI surgery increased ATF3, PACAP, and p-ERK expression in the rat trigeminal ganglion and decreased Nav1.7 and PAC1 receptor expression; however, there was no difference in ERK expression. PACAP 6-38 injection significantly decreased PACAP, p-ERK, and Nav1.7 expression and increased the PAC1 receptor expression, with no change in ERK expression. Moreover, PD98059 injection decreased PACAP, p-ERK, and Nav1.7 expression and increased the expression of PAC1 receptor. CONCLUSION: After ION-CCI, PACAP in the rat trigeminal ganglion can modulate Nav1.7 through the MEK/ERK pathway via the PAC1 receptor. Further, PACAP inhibition alleviates allodynia in ION-CCI rats.


Assuntos
Sistema de Sinalização das MAP Quinases , Neuralgia , Ratos , Animais , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Ratos Sprague-Dawley , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Constrição , Neuralgia/tratamento farmacológico , Transdução de Sinais , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo
18.
Front Behav Neurosci ; 15: 787362, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34924973

RESUMO

Alcohol use disorder (AUD) is a chronic, relapsing disorder whose genetic and environmental susceptibility components are not fully understood. Neuropeptidergic signaling has been repeatedly implicated in modulating excessive alcohol drinking, especially within sub-regions of the striatum. Here, we investigated the potential involvement of the selective receptor for pituitary adenylate cyclase-activating polypeptide (PACAP), PAC1R, in the nucleus accumbens shell (NAcc Shell) in excessive alcohol drinking in alcohol-preferring rats, an established animal model of the genetic propensity for alcoholism. Scr:sP alcohol-preferring rats were trained to operantly self-administer alcohol and then either an AAV virus short-hairpin RNA (shRNA) targeted to knockdown PAC1R, or an AAV control virus were microinfused into the NAcc Shell. NAcc Shell PAC1R shRNA knockdown virus was confirmed to significantly decrease PAC1R levels in the NAcc Shell. The effects of NAcc Shell PAC1R shRNA knockdown on ethanol self-administration were investigated using a Fixed Ratio (FR) 1 and a Progressive Ratio (PR) schedule of reinforcement. The effect of PAC1R knockdown on self-administration of an alternative reinforcer, saccharin, was also assessed. The results showed that the reduction in PAC1R in the NAcc Shell led to excessive ethanol drinking, increased preference for ethanol, and higher motivation to drink. NAcc Shell PAC1R shRNA knockdown did not comparably increase saccharin self-administration, suggesting selectivity of action. These data suggest that NAcc Shell PAC1R may serves as a "brake" on alcohol drinking, and thereby the loss of function of PAC1R leads to excessive alcohol consumption. Therefore, the PACAP/PAC1R system may represent a novel target for the treatment of AUD.

19.
Curr Med Chem ; 28(9): 1703-1715, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32196442

RESUMO

BACKGROUND: Parkinson's disease is one of the most common neurodegenerative disorders and although its aetiology is not yet fully understood, neuroinflammation has been identified as a key factor in the progression of the disease. Vasoactive intestinal peptide and pituitary adenylate-cyclase activating polypeptide are two neuropeptides that exhibit anti-inflammatory and neuroprotective properties, modulating the production of cytokines and chemokines and the behaviour of immune cells. However, the role of chemokines and cytokines modulated by the endogenous receptors of the peptides varies according to the stage of the disease. METHODS: We present an overview of the relationship between some cytokines and chemokines with vasoactive intestinal peptide, pituitary adenylate cyclase activating polypeptide and their endogenous receptors in the context of Parkinson's disease neuroinflammation and oxidative stress, as well as the modulation of microglial cells by the peptides in this context. RESULTS: The two peptides exhibit neuroprotective and anti-inflammatory properties in models of Parkinson's disease, as they ameliorate cognitive functions, decrease the level of neuroinflammation and promote dopaminergic neuronal survival. The peptides have been tested in a variety of in vivo and in vitro models of Parkinson's disease, demonstrating the potential for therapeutic application. CONCLUSION: More studies are needed to establish the clinical use of vasoactive intestinal peptide and pituitary adenylate cyclase activating polypeptide as safe candidates for treating Parkinson's disease, as the use of the peptides in different stages of the disease could produce different results concerning effectiveness.


Assuntos
Doença de Parkinson , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Humanos , Doença de Parkinson/tratamento farmacológico , RNA Mensageiro , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo , Peptídeo Intestinal Vasoativo
20.
Front Endocrinol (Lausanne) ; 12: 732456, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34759890

RESUMO

Mice lacking pituitary adenylate cyclase-activating polypeptide (PACAP) display psychomotor abnormalities, most of which are ameliorated by atypical antipsychotics with serotonin (5-HT) 2A receptor (5-HT2A) antagonism. Heterozygous Pacap mutant mice show a significantly higher hallucinogenic response than wild-type mice to a 5-HT2A agonist. Endogenous PACAP may, therefore, affect 5-HT2A signaling; however, the underlying neurobiological mechanism for this remains unclear. Here, we examined whether PACAP modulates 5-HT2A signaling by addressing cellular protein localization. PACAP induced an increase in internalization of 5-HT2A but not 5-HT1A, 5-HT2C, dopamine D2 receptors or metabotropic glutamate receptor 2 in HEK293T cells. This PACAP action was inhibited by protein kinase C inhibitors, ß-arrestin2 silencing, the PACAP receptor PAC1 antagonist PACAP6-38, and PAC1 silencing. In addition, the levels of endogenous 5-HT2A were decreased on the cell surface of primary cultured cortical neurons after PACAP stimulation and were increased in frontal cortex cell membranes of Pacap-/- mice. Finally, intracerebroventricular PACAP administration suppressed 5-HT2A agonist-induced head twitch responses in mice. These results suggest that PACAP-PAC1 signaling increases 5-HT2A internalization resulting in attenuation of 5-HT2A-mediated signaling, although further study is necessary to determine the relationship between behavioral abnormalities in Pacap-/- mice and PACAP-induced 5-HT2A internalization.


Assuntos
Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/fisiologia , Receptor 5-HT2A de Serotonina/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/fisiologia , Animais , Células Cultivadas , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , Neurônios/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Transporte Proteico/genética , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA