Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
J Appl Clin Med Phys ; : e14415, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38924344

RESUMO

BACKGROUND: Intracranial stereotactic radiosurgery (SRS) aims at achieving highly conformal dose distribution and, at the same time, attaining rapid dose falloff outside the treatment target. SRS is performed using different techniques including dynamic conformal arcs (DCA) and volumetric modulated arc therapy (VMAT). PURPOSE: In this study, we compare dose conformity and falloff in DCA and VMAT plans for SRS with a single target. METHODS: To compare dose conformity in SRS plans, we employ a novel conformity index C I d e x p $C{I}_{{d}_{exp}}$ , RTOG conformity index ( C I R T O G $C{I}_{RTOG}$ ), and Riet-Paddick conformity index ( C I R P $C{I}_{RP}$ ). In addition, we use indices R 50 % $R50\% $ , V 10 G y ${V}_{10Gy}$ , and V 12 G y ${V}_{12Gy}$ to evaluate dose falloff. For each of the considered 118 cases of SRS, two plans were created using DCA and VMAT. A two-tailed Student's t-test was used to evaluate the difference between the employed indices for the DCA and VMAT plans. RESULTS: The studied VMAT plans were characterized by higher dose conformity than the DCA plans. The differences between the conformity indices for the DCA plans and VMAT plans were statistically significant. The DCA plans had a smaller number of monitor units (MUs) and smaller indices R50%, V10 Gy, and V12 Gy than the VMAT plans. However, the differences between R50%, V10 Gy, and V12 Gy for the DCA and VMAT plans were not statistically significant. CONCLUSIONS: Although the studied VMAT plans had higher dose conformity, they also had larger MUs than the DCA plans. In terms of dose falloff characterized by parameters R50%, V10 Gy, and V12 Gy, DCA serves as a reasonable alternative to VMAT in the case of a single brain metastasis.

2.
Rep Pract Oncol Radiother ; 29(2): 141-147, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39143963

RESUMO

Background: Set-up errors are an undesirable part of the radiation treatment process. The goal of online imaging is to increase treatment accuracy by reducing the set-up errors. This study aimed to determine the daily variation of patient set-up uncertainties and planning target volume (PTV) margins for head and neck cancer patients using pre-treatment verification by mega voltage cone-beam computed tomography (MV-CBCT). Materials and methods: This retrospective study was internal record base of head and neck (H&N) cancer patients treated with definitive radiotherapy, adjuvant radiotherapy, and hypo-fractionated radiotherapy at our institution since the implementation of HalcyonTM 2.0 machine (Varian, US). Errors collected from each patient setup were recorded and evaluated for each direction [medio-lateral (ML), supero-inferior (SI), antero-posterior (AP)] discretely. For each patient, the systematic error (∑) and random error (σ) were collected. Clinical target volume (CTV) to planning target volume (PTV) margin was calculated using International Commission on Radiation Units and Measurements (ICRU) 62 ( PTV margin = ( Σ 2 + σ 2 ) ), Stroom's (PTV margin = 2∑ + 0.7σ), and Van Herk's (PTV margin = 2.5∑ + 0.7σ) formula. Results: A total of 7900 pre-treatment CBCT scans of 301 patients were analyzed and a total of 23,000 error measurements in the ML, SI, and AP directions were recorded. For all of our H&N cancer patients, the CTV to PTV margin, calculated from the van Herk formula for the head and neck patients was 0.49 mm in the anteroposterior axis. Conclusions: An isometric PTV margin of 5 mm may be considered safe if daily imaging is not being done. In case daily online pretreatment imaging is being utilized, further reduction of PTV margin is possible.

3.
J Appl Clin Med Phys ; 24(8): e13982, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37401002

RESUMO

INTRODUCTION: A system for stabilizing and monitoring eye movements during LINAC-based photon beam one single fraction stereotactic radiotherapy was developed at our Institution. This study aimed to describe the feasibility and the efficacy of our noninvasive optical localization system that was developed, tested, and applied in 20 patients treated for uveal melanoma. METHODS: Our system consisted of a customized thermoplastic mask to immobilize the head, a gaze fixation LED, and a digital micro-camera. The localization procedure, which required the active collaboration of the patient, served to monitor the eye movements during all phases of the treatment, starting from the planning computed tomography up to the administration of radiotherapy, and allowed the operators to suspend the procedure and to interact with the patient in case of large movements of the pupil. RESULTS: Twenty patients were treated with stereotactic radiosurgery (27 Gy in one fraction) for primary uveal melanoma. All patients showed a good tolerance to the treatment; until now, all patients were in local control during the follow up and one died for distant progression 6 months after radiosurgery. CONCLUSIONS: This study showed that this noninvasive technique, based on eye position control, is appropriate and can contribute to the success of LINAC-based stereotactic radiotherapy. A millimetric safety margin to the clinical target volume was adequate to take account for the organ movement. All patients treated till now showed a good local control; failures in the disease control were due to metastatic spread.


Assuntos
Melanoma , Radiocirurgia , Neoplasias Uveais , Humanos , Radiocirurgia/métodos , Neoplasias Uveais/radioterapia , Neoplasias Uveais/cirurgia , Neoplasias Uveais/patologia , Melanoma/radioterapia , Melanoma/cirurgia , Melanoma/patologia , Tomografia Computadorizada por Raios X
4.
Strahlenther Onkol ; 198(6): 566-572, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35267050

RESUMO

PURPOSE: In the beam penumbra of stereotactic body radiotherapy volumes, dose rate effects in implantable cardioverter-defibrillators (ICDs) may be the predominant cause for failures in the absence of neutron-generating photon energies. We investigate such dose rate effects in ICDs and provide evidence for safe use of lung tumor stereotactic radioablation with flattening filter free (FFF) and flattened 6 Megavolt (MV) beams in ICD-bearing patients. METHODS: Sixty-two ICDs were subjected to scatter radiation in 1.0, 2.5, and 7.0 cm distance to 100 Gy within a 5â€¯× 5 cm2 radiation field. Radiation was applied with 6 MV FFF beams (constant dose rate of 1400 cGy/min) and flattened (FLAT) 6 MV beams (430 cGy/min). Local dose rates (LDR) at the position of all ICDs were measured. All ICDs were monitored continuously. RESULTS: With 6 MV FFF beams, ICD errors occurred at distances of 1.0 cm (LDR 46.8 cGy/min; maximum ICD dose 3.4 Gy) and 2.5 cm (LDR 15.6 cGy/min; 1.1 Gy). With 6 MV FLAT beams, ICD errors occurred only at 1 cm distance (LDR 16.8 cGy/min; 3.9 Gy). No errors occurred at an LDR below 7 cGy/min, translating to a safe distance of 2.5 cm (1.5 Gy) in flattened and 7 cm (0.4 Gy) in 6 MV FFF beams. CONCLUSION: A LDR in ICDs larger than 7 cGy/min may cause ICD malfunction. At identical LDR, differences between 6 MV FFF and 6 MV FLAT beams do not yield different rates of malfunction. The dominant reason for ICD failures could be the LDR and not the total dose to the ICD. For most stereotactic treatments, it is recommended to generate a planning risk volume around the ICD in which LDR larger than 7 cGy/min are avoided.


Assuntos
Desfibriladores Implantáveis , Terapia com Prótons , Radiocirurgia , Humanos , Terapia com Prótons/métodos , Dosagem Radioterapêutica , Resultado do Tratamento
5.
Oncologist ; 26(3): e425-e434, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32960471

RESUMO

BACKGROUND: The objective of this study was to investigate the relationship between clinical characteristics, as well as dosimetric parameters, and the risk of treatment-related lymphopenia in esophageal squamous cell carcinoma (ESCC) treated with definitive chemoradiotherapy (CRT). MATERIALS AND METHODS: Clinical characteristics and dosimetric parameters were collected from 436 patients with ESCC who received definitive CRT from 2010 through 2017. Absolute lymphocyte counts (ALCs) were obtained before, during, and 1 month after CRT. Grade 4 (G4) lymphopenia was defined as ALC <0.2 × 109 /L during CRT. Logistic regression analysis was used to evaluate the effect of each factor on predicting G4 lymphopenia. The relationship between lymphopenia and overall survival (OS) was examined, and a nomogram was developed to predict OS. RESULTS: G4 lymphopenia was observed in 103 patients (23.6%) during CRT. Multivariate analysis indicated that planning target volume (PTV), lung V10 , heart V10 , performance status, and pretreatment lymphopenia were significant risk factors for G4 lymphopenia. Patients with G4 lymphopenia had significantly worse survival than those without. Based on multivariate analysis, clinical TNM stage, radiotherapy modality, pretreatment ALC, and G4 lymphopenia were predictive of OS and were incorporated into the nomogram, yielding a concordance index of 0.71. CONCLUSIONS: G4 lymphopenia during definitive CRT was associated with larger PTVs, higher lung V10 and heart V10 , and worse survival. IMPLICATIONS FOR PRACTICE: The purpose of this study was to investigate the relationship between clinical characteristics, as well as dosimetric parameters, and the risk of treatment-related lymphopenia in 436 patients with esophageal squamous cell carcinoma who received definitive chemoradiotherapy. Grade 4 (G4) lymphopenia was observed in 23.6% of patients during radiotherapy. G4 lymphopenia was associated with larger planning target volumes, higher lung V10 and heart V10 , and worse survival. Then, a nomogram was built based on multivariate analysis, yielding excellent performance to predict overall survival. Prospective studies are needed to investigate potential approaches for mitigating severe lymphopenia, which may ultimately convert into survival benefits.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Neoplasias de Cabeça e Pescoço , Linfopenia , Quimiorradioterapia/efeitos adversos , Neoplasias Esofágicas/complicações , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/radioterapia , Humanos , Linfopenia/etiologia , Estudos Prospectivos , Estudos Retrospectivos
6.
Acta Oncol ; 60(10): 1296-1300, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34259116

RESUMO

BACKGROUND: To evaluate the impact of the planning target volume (PTV) density on treatment planning for lung Stereotactic Body Radiation Therapy (SBRT). MATERIAL AND METHODS: The PTV coverage was analyzed in two groups of 40 lung SBRT patients. One group had PTV density <0.5 g/cm3, while the other group had PTV density >0.5 g/cm3. The treatments were planned in Pinnacle 9.10, using the collapsed cone convolution (CCC) algorithm. The prescribed dose was 60 Gy to the PTV in 4-8 fractions. Respecting constraint for the PTV coverage (D98% > 95%), we compared changes in the isodose line prescription, the number of monitor units (MU), maximum dose (Dmax), irradiated volume covered with 30 Gy (V30Gy), and the optimization planning volume (OPV). RESULTS: For the same median values of the PTV coverage (98.3%), the differences are presented with median values between lower and higher density than 0.5 g/cm3. The isodose line prescription was 83 vs. 90% (p < 0.0001), the MUs were 2294 vs. 1655 MU (p < 0.0001), Dmax was 74.26 vs. 68.09 Gy (p < 0.0001), V30Gy was 117.03 vs. 104.81 cc (p = 0.04), and OPV was 28.48 vs. 39.35 cc (p < 0.001). By overriding the ITV density to 0.8 g/cm3, the isodose line prescription decreases. The Dmax and MUs decrease by 7%, V30Gy by 34%, and OPV by 70%. CONCLUSION: To obtain similar PTV coverage for PTV which is <0.5 g/cm3, a larger margin irradiating a large OPV was used. More MUs and a higher maximum dose were delivered. For the PTV density of ≤0.36 g/cm3, overriding is recommended to reduce the dose and irradiated volume.


Assuntos
Neoplasias Pulmonares , Radiocirurgia , Radioterapia de Intensidade Modulada , Humanos , Pulmão , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/cirurgia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
7.
J Appl Clin Med Phys ; 22(9): 242-251, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34339590

RESUMO

PURPOSE: Carbon ion radiotherapy for prostate cancer was performed using two fine needle Gold Anchor (GA) markers for patient position verification in Osaka Heavy Ion Medical Accelerator in Kansai (Osaka HIMAK). The present study examined treatment plans for prostate cases using beam-specific planning target volume (bsPTV) based on the effect of the markers on dose distribution and analysis of target movements. MATERIALS AND METHODS: Gafchromic EBT3 film was used to measure dose perturbations caused by markers. First, the relationships between the irradiated film density and absolute dose with different linear energy transfer distributions within a spread-out Bragg peak (SOBP) were confirmed. Then, to derive the effect of markers, two types of markers, including GA, were placed at the proximal, center, and distal depths within the same SOBP, and dose distributions behind the markers were measured using the films. The amount of internal motion of prostate was derived from irradiation results and analyzed to determine the margins of the bsPTV. RESULTS: The linearity of the film densities against absolute doses was constant within the SOBP and the amount of dose perturbations caused by the markers was quantitatively estimated from the film densities. The dose perturbation close behind the markers was smallest (<10% among depths within the SOBP regardless of types of markers) and increased with depth. The effect of two types of GAs on dose distributions was small and could be ignored in the treatment planning. Based on the analysis results of internal motions of prostate, required margins of the bsPTV were found to be 8, 7, and 7 mm in left-right (LR), anterior-posterior (AP), and superior-inferior (SI) directions, respectively. CONCLUSION: We evaluated the dose reductions caused by markers and determined the margins of the bsPTV, which was applied to the treatment using fiducial markers, using the analysis results of prostate movements.


Assuntos
Radioterapia com Íons Pesados , Íons Pesados , Neoplasias da Próstata , Marcadores Fiduciais , Humanos , Masculino , Neoplasias da Próstata/radioterapia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
8.
J Appl Clin Med Phys ; 22(9): 360-370, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34347933

RESUMO

PURPOSE: We investigated the immobilization accuracy of a new type of thermoplastic mask-the Double Shell Positioning System (DSPS)-in terms of geometry and dose delivery. METHODS: Thirty-one consecutive patients with 1-5 brain metastases treated with stereotactic radiotherapy (SRT) were selected and divided into two groups. Patients were divided into two groups. One group of patients was immobilized by the DSPS (n = 9). Another group of patients was immobilized by a combination of the DSPS and a mouthpiece (n = 22). Patient repositioning was performed with cone beam computed tomography (CBCT) and six-degree of freedom couch. Additionally, CBCT images were acquired before and after treatment. Registration errors were analyzed with off-line review. The inter- and intrafractional setup errors, and planning target volume (PTV) margin were also calculated. Delivered doses were calculated by shifting the isocenter according to inter- and intrafractional setup errors. Dose differences of GTV D99% were compared between planned and delivered doses against the modified PTV margin of 1 mm. RESULTS: Interfractional setup errors associated with the mouthpiece group were significantly smaller than the translation errors in another group (p = 0.03). Intrafractional setup errors for the two groups were almost the same in all directions. PTV margins were 0.89 mm, 0.75 mm, and 0.90 mm for the DSPS combined with the mouthpiece in lateral, vertical, and longitudinal directions, respectively. Similarly, PTV margins were 1.20 mm, 0.72 mm, and 1.37 mm for the DSPS in the lateral, vertical, and longitudinal directions, respectively. Dose differences between planned and delivered doses were small enough to be within 1% for both groups. CONCLUSIONS: The geometric and dosimetric assessments revealed that the DSPS provides sufficient immobilization accuracy. Higher accuracy can be expected when the immobilization is combined with the use of a mouthpiece.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Erros de Configuração em Radioterapia , Encéfalo , Humanos , Imobilização , Posicionamento do Paciente , Erros de Configuração em Radioterapia/prevenção & controle
9.
Rep Pract Oncol Radiother ; 26(3): 481-488, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34277105

RESUMO

BACKGROUND: This study aimed to verify the dosimetric impact of Acuros XB (AXB) (AXB, Varian Medical Systems Palo Alto CA, USA), a two model-based algorithm, in comparison with Anisotropic Analytical Algorithm (AAA ) calculations for prostate, head and neck and lung cancer treatment by volumetric modulated arc therapy (VMAT ), without primary modification to AA. At present, the well-known and validated AA algorithm is clinically used in our department for VMAT treatments of different pathologies. AXB could replace it without extra measurements. The treatment result and accuracy of the dose delivered depend on the dose calculation algorithm. MATERIALS AND METHOD: Ninety-five complex VMAT plans for different pathologies were generated using the Eclipse version 15.0.4 treatment planning system (TPS). The dose distributions were calculated using AA and AXB (dose-to-water, AXBw and dose-to-medium, AXBm), with the same plan parameters for all VMAT plans. The dosimetric parameters were calculated for each planning target volume (PTV) and involved organs at risk (OA R). The patient specific quality assurance of all VMAT plans has been verified by Octavius®-4D phantom for different algorithms. RESULTS: The relative differences among AA, AXBw and AXBm, with respect to prostate, head and neck were less than 1% for PTV D95%. However, PTV D95% calculated by AA tended to be overestimated, with a relative dose difference of 3.23% in the case of lung treatment. The absolute mean values of the relative differences were 1.1 ± 1.2% and 2.0 ± 1.2%, when comparing between AXBw and AA, AXBm and AA, respectively. The gamma pass rate was observed to exceed 97.4% and 99.4% for the measured and calculated doses in most cases of the volumetric 3D analysis for AA and AXBm, respectively. CONCLUSION: This study suggests that the dose calculated to medium using AXBm algorithm is better than AAA and it could be used clinically. Switching the dose calculation algorithm from AA to AXB does not require extra measurements.

10.
Rep Pract Oncol Radiother ; 25(1): 41-45, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31889919

RESUMO

BACKGROUND AND PURPOSE: To assess anatomic changes during intensity modulated radiotherapy (IMRT) for nasopharyngeal carcinoma (NPC) and to determine its dosimetric impact. PATIENTS AND METHODS: Twenty patients treated with IMRT for NPC were enrolled in this study. A second CT was performed at 38 Gy. Manual contouring of the macroscopic tumor volumes (GTV) and the planning target volumes (PTV) were done on the second CT. We recorded the volumes of the different structures, D98 %, the conformity, and the homogeneity indexes for each PTV. Volume percent changes were calculated. RESULTS: We observed a significant reduction in tumor volumes (58.56 % for the GTV N and 29.52 % for the GTV T). It was accompanied by a significant decrease in the D98 % for the 3 PTV (1.4 Gy for PTV H, p = 0.007; 0.3 Gy for PTV I, p = 0.03 and 1.15 Gy for PTV L, p = 0 0.0066). In addition, we observed a significant reduction in the conformity index in the order of 0.02 (p = 0.001) and 0.01 (p = 0.007) for PTV H and PTV I, respectively. The conformity variation was not significant for PTV L. Moreover, results showed a significant increase of the homogeneity index for PTV H (+ 0.03, p = 0.04) and PTV L (+ 0.04, p = 0.01). CONCLUSION: Tumor volume reduction during the IMRT of NPC was accompanied by deterioration of the dosimetric coverage for the different target volumes. It is essential that a careful adaptation of the treatment plan be considered during therapy for selected patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA