Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Trends Biochem Sci ; 49(6): 480-493, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38514274

RESUMO

Osmotic stress conditions occur at multiple stages of plant life. Changes in water availability caused by osmotic stress induce alterations in the mechanical properties of the plasma membrane, its interaction with the cell wall, and the concentration of macromolecules in the cytoplasm. We summarize the reported players involved in the sensing mechanisms of osmotic stress in plants. We discuss how changes in macromolecular crowding are perceived intracellularly by intrinsically disordered regions (IDRs) in proteins. Finally, we review methods for dynamically monitoring macromolecular crowding in living cells and discuss why their implementation is required for the discovery of new plant osmosensors. Elucidating the osmosensing mechanisms will be essential for designing strategies to improve plant productivity in the face of climate change.


Assuntos
Pressão Osmótica , Plantas , Plantas/metabolismo , Substâncias Macromoleculares/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Intrinsicamente Desordenadas/química
2.
Elife ; 132024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037769

RESUMO

Urea is intensively utilized as a nitrogen fertilizer in agriculture, originating either from root uptake or from catabolism of arginine by arginase. Despite its extensive use, the underlying physiological mechanisms of urea, particularly its adverse effects on seed germination and seedling growth under salt stress remains unclear. In this study, we demonstrate that salt stress induces excessive hydrolysis of arginine-derived urea, leading to an increase in cytoplasmic pH within seed radical cells, which, in turn, triggers salt-induced inhibition of seed germination (SISG) and hampers seedling growth. Our findings challenge the long-held belief that ammonium accumulation and toxicity are the primary causes of SISG, offering a novel perspective on the mechanism underlying these processes. This study provides significant insights into the physiological impact of urea hydrolysis under salt stress, contributing to a better understanding of SISG.

3.
J Microbiol Biol Educ ; 25(1): e0016623, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661410

RESUMO

We present a weeklong curricular module for high school biology students that promotes knowledge of phytohormones, the circadian clock, and the Central Dogma. The module, which relies on easily accessible items and requires minimal space, integrates a hands-on experiment that guides students through replicating research examining circadian entrainment in postharvest cabbage from groceries. This work found that plants have cyclical, circadian expression of genes that produce phytohormones, and that such cyclical expression influences herbivory by caterpillars. Such cyclical patterns were found in plants both in situ and in postharvest cabbage. This work thus provides an ideal platform to shape student conceptions of circadian rhythms, gene expression, and plant herbivory by having students use light timers to entrain postharvest cabbage to alternating light and dark cycles and then measuring herbivory in these plants. The results should replicate previous work and demonstrate less herbivory when both plant and caterpillar are entrained to the same light and dark cycles since the expression of phytohormones involved in plant defense will be greatest when caterpillars are active. The module then concludes with a discussion of gene regulation and how this influences phytohormones. This module was field tested at four public schools, reaching over 600 students, and we present data demonstrating that the module led to learning gains and likely increases in interest in plant biology and self-efficacy.

4.
iScience ; 27(5): 109666, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38665206

RESUMO

Plant cell walls constitute complex polysaccharidic/proteinaceous networks whose biosynthesis and dynamics implicate several cell compartments. The synthesis and remodeling of homogalacturonan pectins involve Golgi-localized methylation/acetylation and subsequent cell wall-localized demethylation/deacetylation. So far, TRICHOME BIREFRINGENCE-LIKE (TBL) family members have been described as Golgi-localized acetyltransferases targeting diverse hemicelluloses or pectins. Using seed mucilage secretory cells (MSCs) from Arabidopsis thaliana, we demonstrate the atypical localization of TBL38 restricted to a cell wall microdomain. A tbl38 mutant displays an intriguing homogalacturonan immunological phenotype in this cell wall microdomain and in an MSC surface-enriched abrasion powder. Mass spectrometry oligosaccharide profiling of this fraction reveals an increased homogalacturonan acetylation phenotype. Finally, TBL38 displays pectin acetylesterase activity in vitro. These results indicate that TBL38 is an atypical cell wall-localized TBL that displays a homogalacturonan acetylesterase activity rather than a Golgi-localized acetyltransferase activity as observed in previously studied TBLs. TBL38 function during seed development is discussed.

5.
iScience ; 27(2): 108855, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38318384

RESUMO

The subnuclear distribution of centromeres is cooperatively regulated by condensin II and the linker of nucleoskeleton and cytoskeleton (LINC) complex. However, other nuclear membrane structures and nuclear proteins are probably involved in centromere dynamics and distribution. Here, we focused on the nuclear pore complex (NPC), which is known to regulate gene expression, transcription memory, and chromatin structure in addition to transport between the cytoplasm and nucleoplasm. We report here that some nucleoporins (Nups), including Nup85, Nup133, CG1, Nup93b, and NUA, are involved in centromere scattering in Arabidopsis thaliana. In addition, the centromere dynamics after metaphase in nup mutants were found to be similar to that of the condensin II mutant. Furthermore, both biochemical and genetic approaches showed that the Nups interact with the LINC complex. These results suggest that Nups regulate centromere scattering cooperatively with condensin II and the LINC complex.

6.
iScience ; 27(2): 108901, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38533455

RESUMO

Heterosis, a universal phenomenon in nature, mainly reflected in the superior productivity, quality, and fitness of F1 hybrids compared with their inbred parents, has been exploited in agriculture and greatly benefited human society in terms of food security. However, the flexible and efficient utilization of heterosis has remained a challenge in hybrid breeding systems because of the limitations of "three-line" and "two-line" methods. In the past two decades, rapidly developed biotechnologies have provided unprecedented conveniences for both understanding and utilizing heterosis. Notably, "third-generation" (3G) hybrid breeding technology together with high-throughput sequencing and gene editing greatly promoted the efficiency of hybrid breeding. Here, we review emerging ideas about the genetic or molecular mechanisms of heterosis and the development of 3G hybrid breeding system in the age of biotechnology. In addition, we summarized opportunities and challenges for optimal heterosis utilization in the future.

7.
iScience ; 27(3): 109053, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38361623

RESUMO

The optimization of the CRISPR-Cas9 system for enhancing editing efficiency holds significant value in scientific research. In this study, we optimized single guide RNA and Cas9 promoters of the CRISPR-Cas9 vector and established an efficient protoplast isolation and transient transformation system in Eustoma grandiflorum, and we successfully applied the modified CRISPR-Cas9 system to detect editing efficiency of the EgPDS gene. The activity of the EgU6-2 promoter in E. grandiflorum protoplasts was approximately three times higher than that of the GmU6 promoter. This promoter, along with the EgUBQ10 promoter, was applied in the CRISPR-Cas9 cassette, the modified CRISPR-Cas9 vectors that pEgU6-2::sgRNA-2/pEgUBQ10::Cas9-2 editing efficiency was 37.7%, which was 30.3% higher than that of the control, and the types of mutation are base substitutions, small fragment deletions and insertions. Finally we obtained an efficient gene editing vector for E. grandiflorum. This project provides an important technical platform for the study of gene function in E. grandiflorum.

8.
iScience ; 27(5): 109761, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38706863

RESUMO

The genetic mechanisms of reproductive isolation have been widely investigated within Asian cultivated rice (Oryza sativa); however, relevant genes between diverged species have been in sighted rather less. Herein, a gene showing selfish behavior was discovered in hybrids between the distantly related rice species Oryza longistaminata and O. sativa. The selfish allele S13l in the S13 locus impaired male fertility, discriminately eliminating pollens containing the allele S13s from O. sativa in heterozygotes (S13s/S13l). Genetic analysis revealed that a gene encoding a chromatin-remodeling factor (CHR) is involved in this phenomenon and a variety of O. sativa owns the truncated gene OsCHR745, whereas its homologue OlCHR has a complete structure in O. longistaminata. CRISPR-Cas9-mediated loss of function mutants restored fertility in hybrids. African cultivated rice, which naturally lacks the OlCHR homologue, is compatible with both S13s and S13l carriers. These results suggest that OlCHR is a Killer gene, which leads to reproductive isolation.

9.
iScience ; 27(6): 109890, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38827396

RESUMO

Arabidopsis lines with loss-of-function mutation in Embryo sac-specific Pectin MethylEsterase Inhibitor (Atepmei) gene showed seed sterility with embryo sac cellularization defects. Examination of tissue-cleared mature ovules revealed irregularly positioned nuclei/embryos within the embryo sacs. Egg cell-specific marker (DD45) expression analysis confirmed the presence of multiple egg cells in the mutant embryo sacs. These supernumerary egg cells were functional as evident from the production of twin embryos when supernumerary sperm cells were provided. The results of ruthenium red and tannic acid-ferric chloride staining of developing Atepmei mutant ovules showed that cell wall formation and maintenance were altered around embryo sac nuclei, which also coincided with change in the gamete specification. This report implicates the role of cell walls in gamete cell fate determination by altering cell-cell communication. Our analysis of the twin-embryo phenotype of epmei mutants also sheds light on the boundary conditions for double fertilization in plant reproduction.

10.
iScience ; 27(6): 109936, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38832021

RESUMO

Auxin regulates plant growth and development through the transcription factors of the AUXIN RESPONSE FACTOR (ARF) gene family. ARF7 is one of five activators that bind DNA and elicit downstream transcriptional responses. In roots, ARF7 regulates growth, gravitropism and redundantly with ARF19, lateral root organogenesis. In this study we analyzed ARF7 cis-regulation, using different non-coding sequences of the ARF7 locus to drive GFP. We show that constructs containing the first intron led to increased signal in the root tip. Although bioinformatics analyses predicted several transcription factor binding sites in the first intron, we were unable to significantly alter expression of GFP in the root by mutating these. We instead observed the intronic sequences needed to be present within the transcribed sequences to drive expression in the root meristem. These data support a mechanism by which intron-mediated enhancement regulates the tissue specific expression of ARF7 in the root meristem.

11.
iScience ; 27(7): 110191, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38974968

RESUMO

Significant progress has been recently made in our understanding of the evolution of jasmonates biosynthesis and signaling. The bioactive jasmonate activating COI1-JAZ co-receptor differs in bryophytes and vascular plants. Dinor-iso-12-oxo-phytodienoic acid (dn-iso-OPDA) is the bioactive hormone in bryophytes and lycophytes. However, further studies showed that the full activation of hormone signaling in Marchantia polymorpha requires additional unidentified hormones. Δ4-dn-OPDAs were previously identified as novel bioactive jasmonates in M. polymorpha. In this paper, we describe the major bioactive isomer of Δ4-dn-OPDAs as Δ4-dn-iso-OPDA through chemical synthesis, receptor binding assay, and biological activity in M. polymorpha. In addition, we disclosed that Δ4-dn-cis-OPDA is a biosynthetic precursor of Δ4-dn-iso-OPDA. We demonstrated that in planta cis-to-iso conversion of Δ4-dn-cis-OPDA occurs in the biosynthesis of Δ4-dn-iso-OPDA, defining a key biosynthetic step in the chemical evolution of hormone structure. We predict that these findings will facilitate further understanding of the molecular evolution of plant hormone signaling.

12.
iScience ; 27(6): 109847, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38840840

RESUMO

Camellia oleifera is an economically and medicinally valuable oilseed crop. Honeybee, the most abundant pollinator, rarely visits C. oleifera because of the toxic sugars in the nectar and pollen. These toxic sugars cannot be fully digested by honeybees and inhibit the process of synthesizing trehalose in honeybees. C. oleifera exhibits self-incompatibility, and its pollination heavily depends on Andrena camellia. However, the mechanism by which A. camellia digests toxic sugars in C. oleifera nectar and pollen remains unknown. Consequently, we identified and validated four single-copy genes (α-N-acetyl galactosamine-like, galactokinase, galactose-1-phosphate uridyltransferase, and UDP-galactose-4'-epimerase, abbreviated as NAGA-like, GALK, GALT, and GALE) essential for detoxifying toxic sugars in vitro. Then, we cloned the four genes into Escherichia coli, and expressed enzyme successfully degraded the toxic sugars. The phylogeny suggests that the genes were conserved and functionally diverged among the evolution. These results provide novel insights into pollinator detoxification during co-evolution.

13.
iScience ; 27(2): 108892, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38322988

RESUMO

Besides traditional ubiquitin-dependent proteasome degradation, thousands of eukaryotic proteins more than previously appreciated could undergo ubiquitin-independent proteasomal degradation (UbInPD). A pathogen-encoded effector protein SAP05 secreted by phytoplasma, could hijack hostage Rpn10 subunit of proteasome derived from Arabidopsis thaliana and target the degradation of GATA BINDING FACTOR (GATA) or SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors (TFs) without ubiquitin or additional proteasome shuttle factors. To explain how could SAP05 target the degradation bypassing the ubiquitin-dependent pathway, we have determined the crystal structure of the complex between Arabidopsis thaliana Rpn10 and Aster Yellows witches'-broom phytoplasma SAP05 or onion yellow phytoplasma SAP05, which showed a previously unknown recognition interface. Sequence alignment and structural biological evidence showed that this interaction is highly conserved in various SAP05 homologs, suggesting a general mode in plant infection. After docking the complex structure to the plant proteasome, SAP05 was near to the adenosine triphosphatase (ATPase) central pore and enough to submit substrate to degradation process, which suggested a molecular glue-like role to bridge TFs close to the ATPase central pore of proteasomes for the direct degradation.

14.
iScience ; 27(1): 108625, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38188528

RESUMO

The plant hormone (3R, 7S)-jasmonoyl-L-isoleucine ((3R, 7S)-JA-Ile) is perceived by the COI1-JAZ co-receptor in Arabidopsis thaliana, leading to the activation of gene expression for plant defense responses, growth, development, and other processes. Therefore, understanding the interaction between the COI1-JAZ co-receptor and its ligands is essential for the development of COI1-JAZ agonists and antagonists as potent chemical tools for regulating (3R, 7S)-JA-Ile signaling. This study demonstrated that COI1-JAZ has two independent modes of ligand perception using a differential scanning fluorimetry (DSF) assay. (3R, 7S)-JA-Ile is perceived through a one-step model in which (3R, 7S)-JA-Ile causes protein-protein interaction between COI1 and JAZ. In contrast, coronatine (COR), a mimic of (3R, 7S)-JA-Ile, is perceived through a two-step model in which COR is first perceived by COI1 and then recruits JAZ to form the COI1-COR-JAZ complex. Our results demonstrate two distinct modes of action of molecular glues causing protein-protein interactions.

15.
iScience ; 27(1): 108652, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38205259

RESUMO

The land surface phenology (LSP) indicators (i.e., start, end, and length of the growing season: SOS, EOS, LOS) are important to reflect the growth of forest and its response to environmental changes. However, the spatiotemporal variation and its mechanism of forest phenology under different human disturbance' levels are still unclear. Here, we compare the LSP indicators inside and outside China's 257 protected areas (PAs) and explore the influencing factors of phenological differences (ΔSOS, ΔEOS, ΔLOS). We find that in general, EOS inside PAs (mean ± s.e.m: 312.6 ± 1.2days) is significantly earlier than outside (314.6 ± 1.2days), and LOS inside PAs (218.9 ± 2.0days) are significantly shorter than outside (220.6 ± 2.0days). ΔSOS and ΔEOS are controlled by nighttime and daytime temperature differences, respectively, and both factors affect ΔLOS. This evidence provides a new understanding about the functions of PAs and its influence on forest vegetation growth.

16.
iScience ; 27(1): 108709, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38269095

RESUMO

The increasing demand for food production due to the growing population is raising the need for more food-productive environments for plants. The genetic behavior of plant traits remains different in different growing environments. However, it is tedious and impossible to look after the individual plant component traits manually. Plant breeders need computer vision-based plant monitoring systems to analyze different plants' productivity and environmental suitability. It leads to performing feasible quantitative analysis, geometric analysis, and yield rate analysis of the plants. Many of the data collection methods have been used by plant breeders according to their needs. In the presented review, most of them are discussed with their corresponding challenges and limitations. Furthermore, the traditional approaches of segmentation and classification of plant phenotyping are also discussed. The data limitation problems and their currently adapted solutions in the computer vision aspect are highlighted, which somehow solve the problem but are not genuine. The available datasets and current issues are enlightened. The presented study covers the plants phenotyping problems, suggested solutions, and current challenges from data collection to classification steps.

17.
iScience ; 27(3): 109151, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38384836

RESUMO

In Arabidopsis thaliana, ARGONAUTE1 (AGO1) plays a central role in microRNA (miRNA) and small interfering RNA (siRNA)-mediated silencing. AGO1 associates to the rough endoplasmic reticulum to conduct miRNA-mediated translational repression, mRNA cleavage, and biogenesis of phased siRNAs. Here, we show that a 37°C heat stress (HS) promotes AGO1 protein accumulation in cytosolic condensates where it colocalizes with components of siRNA bodies and of stress granules. AGO1 contains a prion-like domain in its poorly characterized N-terminal Poly-Q domain, which is sufficient to undergo phase separation independently of the presence of SGS3. HS only moderately affects the small RNA repertoire, the loading of AGO1 by miRNAs, and the signatures of target cleavage, suggesting that its localization in condensates protects AGO1 rather than promoting or impairing its activity in reprogramming gene expression during stress. Collectively, our work sheds new light on the impact of high temperature on a main effector of RNA silencing in plants.

18.
iScience ; 27(1): 108762, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38269098

RESUMO

Interactions between algae and bacteria are ubiquitous and play fundamental roles in nutrient cycling and biomass production. Recent studies have shown that the plant auxin indole acetic acid (IAA) can mediate chemical crosstalk between algae and bacteria, resembling its role in plant-bacterial associations. Here, we report a mechanism for algal extracellular IAA production from L-tryptophan mediated by the enzyme L-amino acid oxidase (LAO1) in the model Chlamydomonas reinhardtii. High levels of IAA inhibit algal cell multiplication and chlorophyll degradation, and these inhibitory effects can be relieved by the presence of the plant-growth-promoting bacterium (PGPB) Methylobacterium aquaticum, whose growth is mutualistically enhanced by the presence of the alga. These findings reveal a complex interplay of microbial auxin production and degradation by algal-bacterial consortia and draws attention to potential ecophysiological roles of terrestrial microalgae and PGPB in association with land plants.

19.
iScience ; 27(7): 110217, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38993663

RESUMO

Sucrose is the transport form of carbohydrate in plants serving as signal molecule besides nutrition, but the signaling is elusive. Here, neutral invertase 8 (OsNIN8) mutated at G461R into OsNIN8m, which increased its charge and hydrophobicity, decreased hydrolysis of sucrose to 13% and firmer binding to sucrose than the wildtype. This caused downstream metabolites and energy accumulation forming overnutrition. Paradoxically, division of subinitials in longitudinal cell lineages was only about 15 times but more than 100 times in wildtype, resulting in short radicle. Further, mutation of OsNIN8 into deficiency of hydrolysis but maintenance of sucrose binding allowed cell division until ran out of energy showing the association but not hydrolysis gave the signal. Chemically, sucrose binding to OsNIN8 was exothermic but to OsNIN8m was endothermic. Therefore, OsNIN8m lost the signal function owing to change of thermodynamic state. So, OsNIN8 sensed sucrose for cell division besides hydrolyzed sucrose.

20.
iScience ; 27(8): 110414, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39108734

RESUMO

Cell functions are based on the integrity of actin filaments. The actin cytoskeleton is typically the target but also the source of signals. Arabidopsis PRL1 (Pleiotropic Regulatory Locus 1), regulates multiple cellular processes and physiological responses. However, the precise mechanisms underlying PRL1`s multiple functions are unclear. Here, we show that PRL1 maintains actin integrity and concomitant cellular homeostasis. The cortical actin cytoskeleton was de-polymerized in the prl1 mutant, causing the developmental root defect. Actin depolymerization, rather than reactive oxygen species (ROS) imbalance, constituted the fundamental cause of retarded root growth in prl1. ANAC085 upregulation by, and cooperation with, actin depolymerization triggered stele cell death in prl1 roots. Differential gene expression and alternative splicing defects resulting from actin depolymerization occurred independently in prl1. Our work establishes the cause-effect relationships between actin depolymerization and downstream stress-related signals, revealing a novel function of PRL1 and enhancing the understanding of PRL`s functional mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA