Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Environ ; 46(8): 2323-2336, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37303271

RESUMO

Leaf photosynthetic nitrogen-use efficiency (PNUE) diversified significantly among C3 species. To date, the morpho-physiological mechanisms and interrelationships shaping PNUE on an evolutionary time scale remain unclear. In this study, we assembled a comprehensive matrix of leaf morpho-anatomical and physiological traits for 679 C3 species, ranging from bryophytes to angiosperms, to comprehend the complexity of interrelationships underpinning PNUE variations. We discovered that leaf mass per area (LMA), mesophyll cell wall thickness (Tcwm ), Rubisco N allocation fraction (PR ), and mesophyll conductance (gm ) together explained 83% of PNUE variations, with PR and gm accounting for 65% of those variations. However, the PR effects were species-dependent on gm , meaning the contribution of PR on PNUE was substantially significant in high-gm species compared to low-gm species. Standard major axis (SMA) and path analyses revealed a weak correlation between PNUE and LMA (r2 = 0.1), while the SMA correlation for PNUE-Tcwm was robust (r2 = 0.61). PR was inversely related to Tcwm , paralleling the relationship between gm and Tcwm , resulting in the internal CO2 drawdown being only weakly proportional to Tcwm . The coordination of PR and gm in relation to Tcwm constrains PNUE during the course of evolution.


Assuntos
Nitrogênio , Folhas de Planta , Folhas de Planta/fisiologia , Plantas , Fotossíntese/fisiologia , Células do Mesofilo/fisiologia , Parede Celular , Dióxido de Carbono
2.
Glob Chang Biol ; 29(13): 3667-3677, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37021662

RESUMO

Rising atmospheric CO2 concentration triggers an emergent phenomenon called plant photosynthetic acclimation to elevated CO2 (PAC). PAC is often characterized by a reduction in leaf photosynthetic capacity (Asat ), which varies dramatically along the continuum of plant phylogeny. However, it remains unclear whether the mechanisms responsible for PAC are also different across plant phylogeny, especially between gymnosperms and angiosperms. Here, by compiling a dataset of 73 species, we found that although leaf Asat increased significantly from gymnosperms to angiosperms, there was no phylogenetic signal in the PAC magnitude along the phylogenetic continuum. Physio-morphologically, leaf nitrogen concentration (Nm ), photosynthetic nitrogen-use efficiency (PNUE), and leaf mass per area (LMA) dominated PAC for 36, 29, and 8 species, respectively. However, there was no apparent difference in PAC mechanisms across major evolutionary clades, with 75% of gymnosperms and 92% of angiosperms regulated by the combination of Nm and PNUE. There was a trade-off between Nm and PNUE in driving PAC across species, and PNUE dominated the long-term changes and inter-specific differences in Asat under elevated CO2 . These findings indicate that nitrogen-use strategy drives the acclimation of leaf photosynthetic capacity to elevated CO2 across terrestrial plant species.


Assuntos
Dióxido de Carbono , Magnoliopsida , Nitrogênio , Fotossíntese , Plantas , Aclimatação , Folhas de Planta
3.
J Exp Bot ; 73(14): 4886-4896, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35436322

RESUMO

Studies investigating the mechanisms underlying the variation of photosynthesis along plant phylogeny and especially during domestication are of great importance, and may provide new insights to further improve crop photosynthesis. In the present study, we compiled a database including 542 sets of data of leaf gas exchange parameters and leaf structural and chemical traits in ferns and fern allies, gymnosperms, non-crop angiosperms, and crops. We found that photosynthesis was dramatically improved from ferns and fern allies to non-crop angiosperms, and further increased in crops. The improvement of photosynthesis during phylogeny and domestication was related to increases in carbon dioxide diffusional capacities and, to a lesser extent, biochemical capacity. Cell wall thickness rather than chloroplast surface area facing intercellular airspaces drives the variation of mesophyll conductance. The variation of the maximum carboxylation rate was not related to leaf nitrogen content. The slope of the relationship between mass-based photosynthesis and nitrogen was lower in crops than in non-crop angiosperms. These findings suggest that the manipulation of cell wall thickness is the most promising approach to further improve crop photosynthesis, and that an increase of leaf nitrogen will be less efficient in improving photosynthesis in crops than in non-crop angiosperms.


Assuntos
Gleiquênias , Magnoliopsida , Dióxido de Carbono/metabolismo , Cycadopsida/metabolismo , Domesticação , Gleiquênias/metabolismo , Magnoliopsida/metabolismo , Células do Mesofilo/metabolismo , Nitrogênio/metabolismo , Fotossíntese , Folhas de Planta/genética , Folhas de Planta/metabolismo , Estômatos de Plantas/metabolismo , Plantas/metabolismo
4.
J Theor Biol ; 532: 110924, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34627861

RESUMO

Many angiosperms have undergone some series of polyploidization events over the course of their evolutionary history. In these genomes, especially those resulting from multiple autopolyploidization, it may be relatively easy to recognize all the ξ sets of n homeologous chromosomes, but it is much harder, if not impossible, to partition these chromosomes into n subgenomes, each representing one distinct genomic component of ξ chromosomes making up the original polyploid. Thus, if we wish to infer the polyploidization history of the genome, we could make use of all the gene trees inferred from the genes in one set of homeologous chromosomes to construct a consensus tree, but there is no evident way of combining the trees from the ξ different sets, because we have no labelling of the chromosomes that is known to be consistent across these sets. We suggest here that lacking a consistent leaf-labelling, the topological structure of the trees may display sufficient resemblance so that a higher level consensus could be revealing of evolutionary history. This would be especially true of the peripheral structures of the tree, likely representing events that occurred more recently and have thus been less obscured by subsequent evolutionary processes. Here, we present a statistical test to assess whether the subgenomes in a polyploid genome could have been added one at a time. The null hypothesis is that the accumulation of chromosomes follows a stochastic process in which transition from one generation to the next is through randomly choosing an edge, and then subdividing this edge in order to link the new internal vertex to a new external vertex. We analyze the probability distributions of a number of peripheral tree substructures, namely leaf- or terminal-pairs, triples and quadruples, arising from this stochastic process, in terms of some exact recurrences. We propose some conjectures regarding the asymptotic behaviours of these distributions. Applying our analysis to a sugarcane genome, we demonstrate that it is unlikely that the accumulation of subgenomes has occurred one at a time.


Assuntos
Magnoliopsida , Poliploidia , Humanos , Filogenia
5.
Am J Bot ; 109(6): 966-985, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35435244

RESUMO

PREMISE: Anatomically preserved evidence for a novel clade of gymnosperms emphasizes diversity of seed plants immediately prior to the appearance of angiosperm fossils in the paleontological record. METHODS: Cupulate seeds from the Early Cretaceous Apple Bay locality (Vancouver Island) are described from serial cellulose acetate peels and three-dimensional reconstruction. Phylogenetic context is assessed through the comparative analysis of gymnosperm seed producing fructifications and maximum parsimony analysis of a revised morphological data set for seed plant phylogeny. RESULTS: Xadzigacalix quatsinoensis gen. et sp. nov. is characterized by an orthotropous ovule with an elongated micropyle and complex integument, enclosed within a radial cupule. The micropylar canal is elongated; and the nucellus extends into the micropyle to seal the post pollination ovule. Except at the apex of the micropyle, the seed is completely enclosed by a parenchymatous cupule with ca. 20 axially elongated secretory ducts. The cupulate seed is produced upon a triangular woody stele, consisting of a parenchymatous pith surrounded by radially aligned tracheids. The stele produces three short terete traces that terminate within the base of the cupule as transfusion tissue at the seed chalaza. CONCLUSIONS: Organography, vascularization, nature of the integument and nucellus, and configuration of the micropylar canal distinguish Xadzigacalix quatsinoensis from all other gymnosperm clades. Cladistic analyses suggest the new plant may have affinities with gnetophytes or angiosperms. These results are complemented with a critical re-evaluation of ovulate structures for Mesozoic gymnosperms, providing new insight into plant diversity immediately antecedent to the explosive diversification of flowering plants.


Assuntos
Magnoliopsida , Traqueófitas , Cycadopsida/genética , Fósseis , Magnoliopsida/genética , Filogenia , Sementes/anatomia & histologia , Traqueófitas/genética
6.
Plant J ; 104(2): 522-531, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32744366

RESUMO

Root microbiomes are established through selective recruitment by host plants from pools of potential partners. However, the assembly rules of root microbiomes remain unclear. To elucidate (i) the effects of host plant phylogeny on root microbiome assembly and (ii) which microbial groups affect differences in root microbiome assemblies, the structures of bacterial and fungal root microbiomes from 20 cultivated angiosperms were compared. Surface-sterilized seeds from each species were sown in identical soil, and DNA was extracted from the plant roots after 7-8 weeks. The bacterial (16S rRNA) and fungal (ITS) communities were then examined using Illumina MiSeq. The phylogenetic distances of host plants and assembly dissimilarities of bacterial microbiomes, but not of fungal ones, were significantly correlated, as were the topologies of the host plant phylogenetic tree and the community dissimilarity tree, thereby confirming the phylogenetic conservation of bacterial root microbiomes. Furthermore, host plant phylogeny mainly affected only a few specific bacterial lineages, including the Betaproteobacteria, Gammaproteobacteria, and Chloroflexi. Burkholderia (Betaproteobacteria) taxa were more abundant in monocots than in dicots, whereas Streptomyces (Actinobacteria) taxa were less abundant. These findings suggest that bacterial root microbiomes have significantly contributed to the functional divergence of angiosperms at higher taxonomic levels.


Assuntos
Magnoliopsida/microbiologia , Microbiota/genética , Filogenia , Raízes de Plantas/microbiologia , Microbiologia do Solo , Bactérias/genética , Fungos/genética , Magnoliopsida/genética
7.
New Phytol ; 230(4): 1300-1304, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33521973

RESUMO

Phylogenetic trees have permeated biology. However, an understanding of how to interpret phylogenies has lagged behind, notably in publications outside of evolutionary biology. Here I argue that some language commonly used in plant systematics has contributed to the confusion by describing phylogenetic trees using intuitive but misleading terms reminiscent of Aristotle's Scala Naturae. These terms (perhaps inadvertently) misrepresent evolution, not as a process acting on all living species, but rather as a progression of successively diverging lineages leading to a group that represents a subjectively defined endpoint. My goal here is to show how thinking of the tree of life in terms of early-diverging lineages and higher groups can distort evolutionary literacy, confound interdisciplinary communication, and potentially bias research agendas. I focus on the relationship between bryophytes and angiosperms as a case study, but the theme applies to all branches of the tree of life. Fortunately, evolutionary biologists have developed an easily understood alternative framework - tree thinking - which I highlight as a means to promote a clear understanding of phylogenies across sub-disciplines of biology, and between practicing biologists and students, or members the public which funds much of our work.


Assuntos
Briófitas , Embriófitas , Magnoliopsida , Briófitas/genética , Embriófitas/genética , Magnoliopsida/genética , Filogenia , Plantas
8.
Glob Chang Biol ; 27(16): 3911-3922, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33993589

RESUMO

As the number of non-native invasive species in the world is increasing, there is a pressing need to understand the effects of invasive species on recipient biotic communities to improve our ability to migrate or relieve their potential negative effects on biodiversity and ecosystem functions. Plant invasions have been shown to impose great threats to aboveground biotic communities; however, invasive impacts on soil biota remain ambiguous, partially because of the paucity of studies with a large number of species across biogeographic gradients. Here, we characterized rhizosphere fungal communities of 53 native and invasive plants spanning approximately 1800 km in China, as well as eight pairs of phylogenetically related native versus invasive plants in a greenhouse experiment. The results of both field survey and greenhouse experiment showed that rhizosphere fungal composition was primarily predicted by plant phylogeny (e.g. family and species), and plant geographic origin (native vs. invasive) and abiotic factors had much smaller effects. We detected no differences in the number and relative abundance of total and family/species-specific OTUs (i.e. overall, pathogens and mutualists) associated with these native and invasive plants on average, suggesting novel co-evolution between native soil fungi and these invasive plants. These results suggest that non-native plant invasions had only a weak impact on soil fungi, partially due to stronger controls of plant evolution on rhizosphere fungi and adaptation of native fungi to these invasive species. Interestingly, rhizosphere fungal composition was more variable between invasive plants than between native plants at middle latitudes, potentially creating spatial variations in plant-soil interactions and, in turn, invasion dynamics. These novel findings highlight the importance of integrating phylogenetic and biogeographical approaches to explore invasive effects on native biota.


Assuntos
Ecossistema , Rizosfera , China , Fungos/genética , Filogenia , Raízes de Plantas , Solo , Microbiologia do Solo
9.
Sensors (Basel) ; 21(24)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34960306

RESUMO

Electrochemical sensors have shown potential in recent years for plant species identification and phylogenetic studies. These works have been used to investigate the affinities of different species in many genera. However, the ability of electrochemical sensors to study relationships between different genera within a family has not been investigated. In this work, we selected 31 species in the Labiatae and 5 exotaxa as subjects to investigate the feasibility of electrochemical sensors at the genus level. The results show that electrochemical sensors are still very effective for the identification of these plants. Different pattern recognition techniques can make the identification more efficient. Also, the fingerprint profiles collected by the sensors can be used for phylogenetic studies of Labiatae. The phylogram divides all the species into five clusters, where the exotaxa are in one cluster. Species in the Labiatae are mainly distributed in four other clusters. Importantly, the different genera of species all showed close affinities, representing that electrochemical fingerprinting can well distinguish the affinities between the different genera. The results of this work demonstrate the great potential of electrochemical sensors in the study of plant phylogeny. Its application is not limited to the study at the species level, but can be extended to the genus level.


Assuntos
Lamiaceae , Humanos , Filogenia , Plantas
10.
J Insect Sci ; 20(3)2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32417920

RESUMO

After its initial discovery in California in 2008, Drosophila suzukii Matsumura has become one of the most important invasive agricultural pest insects across climate zones in much of Asia, Europe, North America, and South America. Populations of D. suzukii have demonstrated notable behavioral and physiological plasticity, adapting to diverse environmental and climatic conditions, interspecific competition, novel food sources, and potential predators. This adaptability and plasticity have enabled rapid range expansion and diversified niche use by D. suzukii, making it a species particularly suited to changing habitats and conditions. This article reviews factors and evidence that influence plasticity in D. suzukii and promotes this species' invasiveness.


Assuntos
Adaptação Fisiológica , Drosophila/fisiologia , Espécies Introduzidas , Animais , Clima , Meio Ambiente , Cadeia Alimentar
11.
Am J Bot ; 105(3): 614-622, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29603138

RESUMO

Providing science and society with an integrated, up-to-date, high quality, open, reproducible and sustainable plant tree of life would be a huge service that is now coming within reach. However, synthesizing the growing body of DNA sequence data in the public domain and disseminating the trees to a diverse audience are often not straightforward due to numerous informatics barriers. While big synthetic plant phylogenies are being built, they remain static and become quickly outdated as new data are published and tree-building methods improve. Moreover, the body of existing phylogenetic evidence is hard to navigate and access for non-experts. We propose that our community of botanists, tree builders, and informaticians should converge on a modular framework for data integration and phylogenetic analysis, allowing easy collaboration, updating, data sourcing and flexible analyses. With support from major institutions, this pipeline should be re-run at regular intervals, storing trees and their metadata long-term. Providing the trees to a diverse global audience through user-friendly front ends and application development interfaces should also be a priority. Interactive interfaces could be used to solicit user feedback and thus improve data quality and to coordinate the generation of new data. We conclude by outlining a number of steps that we suggest the scientific community should take to achieve global phylogenetic synthesis.


Assuntos
Disseminação de Informação , Gestão da Informação , Filogenia , Plantas/genética , DNA de Plantas , Humanos , Tecnologia da Informação , Análise de Sequência de DNA
12.
Microbiol Res ; 283: 127658, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38457993

RESUMO

Litter decomposition is an important process in ecosystem and despite recent research elucidating the significant influence of plant phylogeny on plant-associated microbial communities, it remains uncertain whether a parallel correlation exists between plant phylogeny and the community of decomposers residing in forest litter. In this study, we conducted a controlled litterbag experiment using leaf litter from ten distinct tree species in a central subtropical forest ecosystem in a region characterized by subtropical humid monsoon climate in China. The litterbags were placed in situ using a random experimental design and were collected after 12 months of incubation. Then, the litter chemical properties, microbial community composition and activities of enzyme related to the decomposition of organic carbon (C) and nitrogen (N) were assessed. Across all ten tree species, Alphaproteobacteria, Gammaproteobacteria, and Actinobacteria were identified as the predominant bacterial classes, while the primary fungal classes were Dothideomycetes, Sordariomycetes and Eurotiomycetes. Mantel test revealed significant correlations between litter chemical component and microbial communities, as well as enzyme activities linked to N and C metabolism. However, after controlling for plant phylogenetic distance in partial Mantel test, the relationships between litter chemical component and microbial community structure and enzyme activities were not significant. Random forest and structural equation modeling indicated that plant phylogenetic distance exerted a more substantial influence than litter chemical components on microbial communities and enzyme activities associated with the decomposition of leaf litter. In summary, plant phylogenic divergence was found to be a more influential predictor of enzyme activity variations than microbial communities and litter traits, which were commonly considered reliable indicators of litter decomposition and ecosystem function, thereby highlighting the previously underestimated significance of plant phylogeny in shaping litter microbial communities and enzyme activities associated with degradation processes in forest litter.


Assuntos
Actinobacteria , Microbiota , Ecossistema , Filogenia , Bactérias , Folhas de Planta/química , Solo/química , Microbiologia do Solo
13.
ChemSusChem ; 17(7): e202301306, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38078500

RESUMO

The inedible parts of nuts and stone fruits are low-cost and lignin-rich feedstock for more sustainable production of aromatic chemicals in comparison with the agricultural and forestry residues. However, the depolymerization performances on food-related biomass remains unclear, owing to the broad physicochemical variations from the edible parts of the fruits and plant species. In this study, the monomer production potentials of ten major fruit and nutshell biomass were investigated with comprehensive numerical information derived from instrumental analysis, such as plant cell wall chemical compositions, syringyl/guaiacyl (S/G ratios, and contents of lignin substructure linkages (ß-O-4, ß-ß, ß-5). A standardized one-pot reductive catalytic fractionation (RCF) process was applied to benchmark the monomer yields, and the results were statistically analyzed. Among all the tested biomass, mango endocarp provided the highest monolignol yields of 37.1 % per dry substrates. Positive S-lignin (70-84 %) resulted in higher monomer yield mainly due to more cleavable ß-O-4 linkages and less condensed C-C linkages. Strong positive relationships were identified between ß-O-4 and S-lignin and between ß-5 and G-lignin. The analytical, numerical, and experimental results of this study shed lights to process design of lignin-first biorefinery in food-processing industries and waste management works.


Assuntos
Frutas , Lignina , Lignina/química , Plantas , Catálise , Biomassa
14.
Am J Bot ; 100(12): 2426-36, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24285570

RESUMO

PREMISE OF THE STUDY: Seed cone scales assigned to the genus Schizolepidopsis are widespread in Late Triassic to Cretaceous Eurasian deposits. They have been linked to the conifer family Pinaceae based on associated vegetative remains, but their exact affinities are uncertain. Recently discovered material from the Early Cretaceous of Mongolia reveals important new information concerning Schizolepidopsis cone scales and seeds, and provides support for a relationship between the genus and extant Pinaceae. METHODS: Specimens were collected from Early Cretaceous (probable Aptian-Albian) lignite deposits in central Mongolia. Lignite samples were disaggregated, cleaned in hydrofluoric acid, and washed in water. Specimens were selected for further study using light and electron microscopy. KEY RESULTS: Schizolepidopsis canicularis seed cones consist of loosely arranged, bilobed ovulate scales subtended by a small bract. A single inverted seed with an elongate micropyle is borne on each lobe of the ovulate scale. Each seed has a wing formed by the separation of the adaxial surface of the ovulate scale. CONCLUSIONS: Schizolepidopsis canicularis produced winged seeds that formed in a manner that is unique to Pinaceae among extant conifers. We do not definitively place this species in Pinaceae pending more complete information concerning its pollen cones and vegetative remains. Nevertheless, this material suggests that Schizolepidopsis may be important for understanding the early evolution of Pinaceae, and may potentially help reconcile the appearance of the family in the fossil record with results based on phylogenetic analyses of molecular data.


Assuntos
Evolução Biológica , Fósseis , Pinaceae/genética , Pólen , Sementes/anatomia & histologia , Traqueófitas/genética , Mongólia , Filogenia , Pinaceae/anatomia & histologia , Pinaceae/fisiologia , Reprodução , Traqueófitas/anatomia & histologia , Traqueófitas/fisiologia
15.
Plants (Basel) ; 12(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38005751

RESUMO

As a vital component of biodiversity, phyllosphere bacteria in forest canopy play a critical role in maintaining plant health and influencing the global biogeochemical cycle. There is limited research on the community structure of phyllosphere bacteria in natural forests, which creates a gap in our understanding of whether and/or how phyllosphere bacteria are connected to leaf traits of their host. In this study, we investigated the bacterial diversity and composition of the canopy leaves of six dominant tree species in deciduous broad-leaved forests in northeastern China, using high-throughput sequencing. We then compare the differences in phyllosphere bacterial community structure and functional genes of dominant tree species. Fourteen key leaf functional traits of their host trees were also measured according to standard protocols to investigate the relationships between bacterial community composition and leaf functional traits. Our result suggested that tree species with closer evolutionary distances had similar phyllosphere microbial alpha diversity. The dominant phyla of phyllosphere bacteria were Proteobacteria, Actinobacteria, and Firmicutes. For these six tree species, the functional genes of phyllosphere bacteria were mainly involved in amino acid metabolism and carbohydrate metabolism processes. The redundancy and envfit analysis results showed that the functional traits relating to plant nutrient acquisition and resistance to diseases and pests (such as leaf area, isotope carbon content, and copper content) were the main factors influencing the community structure of phyllosphere bacteria. This study highlights the key role of plant interspecific genetic relationships and plant attributes in shaping phyllosphere bacterial diversity.

16.
FEMS Microbiol Ecol ; 99(11)2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37816673

RESUMO

The root-associated soil microbiome contributes immensely to support plant health and performance against abiotic and biotic stressors. Understanding the processes that shape microbial assembly in root-associated soils is of interest in microbial ecology and plant health research. In this study, 37 plant species were grown in the same soil mixture for 10 months, whereupon the root-associated soil microbiome was assessed using amplicon sequencing. From this, the contribution of direct and indirect plant effects on microbial assembly was assessed. Plant species and plant-induced changes in soil physicochemistry were the most significant factors that accounted for bacterial and fungal community variation. Considering that all plants were grown in the same starting soil mixture, our results suggest that plants, in part, shape the assembly of their root-associated soil microbiome via their effects on soil physicochemistry. With the increase in phylogenetic ranking from plant species to class, we observed declines in the degree of community variation attributed to phylogenetic origin. That is, plant-microbe associations were unique to each plant species, but the phylogenetic associations between plant species were not important. We observed a large degree of residual variation (> 65%) not accounted for by any plant-related factors, which may be attributed to random community assembly.


Assuntos
Microbiota , Microbiologia do Solo , Filogenia , Solo , Bactérias/genética , Plantas/microbiologia , Raízes de Plantas/microbiologia , Rizosfera
17.
Sci China Life Sci ; 66(5): 1134-1150, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36462107

RESUMO

Plant and fungal species interactions drive many essential ecosystem properties and processes; however, how these interactions differ between aboveground and belowground habitats remains unclear at large spatial scales. Here, we surveyed 494 pairwise fungal communities in leaves and soils by Illumina sequencing, which were associated with 55 woody plant species across more than 2,000-km span of mountain forests in eastern China. The relative contributions of plant, climate, soil and space to the variation of fungal communities were assessed, and the plant-fungus network topologies were inferred. Plant phylogeny was the strongest predictor for fungal community composition in leaves, accounting for 19.1% of the variation. In soils, plant phylogeny, climatic factors and soil properties explained 9.2%, 9.0% and 8.7% of the variation in soil fungal community, respectively. The plant-fungus networks in leaves exhibited significantly higher specialization, modularity and robustness (resistance to node loss), but less complicated topology (e.g., significantly lower linkage density and mean number of links) than those in soils. In addition, host/fungus preference combinations and key species, such as hubs and connectors, in bipartite networks differed strikingly between aboveground and belowground samples. The findings provide novel insights into cross-kingdom (plant-fungus) species co-occurrence at large spatial scales. The data further suggest that community shifts of trees due to climate change or human activities will impair aboveground and belowground forest fungal diversity in different ways.


Assuntos
Ecossistema , Fungos , Humanos , Fungos/genética , Biodiversidade , Florestas , Plantas/microbiologia , Solo , Microbiologia do Solo
19.
Front Microbiol ; 8: 2414, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29321763

RESUMO

Rhizosphere microbial communities are critically important for soil nitrogen cycling and plant productivity. There is evidence that plant species and genotypes select distinct rhizosphere communities, however, knowledge of the drivers and extent of this variation remains limited. We grew 11 annual species and 11 maize (Zea mays subsp. mays) inbred lines in a common garden experiment to assess the influence of host phylogeny, growth, and nitrogen metabolism on rhizosphere communities. Growth characteristics, bacterial community composition and potential activity of extracellular enzymes were assayed at time of flowering, when plant nitrogen demand is maximal. Bacterial community composition varied significantly between different plant species and genotypes. Rhizosphere beta-diversity was positively correlated with phylogenetic distance between plant species, but not genetic distance within a plant species. In particular, life history traits associated with plant resource acquisition (e.g., longer lifespan, high nitrogen use efficiency, and larger seed size) were correlated with variation in bacterial community composition and enzyme activity. These results indicate that plant evolutionary history and life history strategy influence rhizosphere bacterial community composition and activity. Thus, incorporating phylogenetic or functional diversity into crop rotations may be a tool to manipulate plant-microbe interactions in agricultural systems.

20.
Ecol Evol ; 7(8): 2535-2545, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28428845

RESUMO

The present study is the first to consider human and nonhuman consumers together to reveal several general patterns of plant utilization. We provide evidence that at a global scale, plant apparency and phylogenetic isolation can be important predictors of plant utilization and consumer diversity. Using the number of species or genera or the distribution area of each plant family as the island "area" and the minimum phylogenetic distance to common plant families as the island "distance", we fitted presence-area relationships and presence-distance relationships with a binomial GLM (generalized linear model) with a logit link. The presence-absence of consumers among each plant family strongly depended on plant apparency (family size and distribution area); the diversity of consumers increased with plant apparency but decreased with phylogenetic isolation. When consumers extended their host breadth, unapparent plants became more likely to be used. Common uses occurred more often on common plants and their relatives, showing higher host phylogenetic clustering than uncommon uses. On the contrary, highly specialized uses might be related to the rarity of plant chemicals and were therefore very species-specific. In summary, our results provide a global illustration of plant-consumer combinations and reveal several general patterns of plant utilization across humans, insects and microbes. First, plant apparency and plant phylogenetic isolation generally govern plant utilization value, with uncommon and isolated plants suffering fewer parasites. Second, extension of the breadth of utilized hosts helps explain the presence of consumers on unapparent plants. Finally, the phylogenetic clustering structure of host plants is different between common uses and uncommon uses. The strength of such consistent plant utilization patterns across a diverse set of usage types suggests that the persistence and accumulation of consumer diversity and use value for plant species are determined by similar ecological and evolutionary processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA