RESUMO
Brassica vegetable and oilseed crops are attacked by several different flea beetle species (Chrysomelidae: Alticini). Over the past decades, most research has focused on two Phyllotreta species, Phyllotreta striolata and Phyllotreta cruciferae, which are major pests of oilseed rape in North America. More recently, and especially after the ban of neonicotinoids in the European Union, the cabbage stem flea beetle, Psylliodes chrysocephala, has become greatly important and is now considered to be the major pest of winter oilseed rape in Europe. The major challenges to flea beetle control are the prediction of population dynamics in the field, differential susceptibility to insecticides, and the lack of resistant plant cultivars and other economically viable alternative management strategies. At the same time, many fundamental aspects of flea beetle biology and ecology, which may be relevant for the development of sustainable control strategies, are not well understood. This review focuses on the interactions between flea beetles and plants and summarizes the literature on current management strategies with an emphasis on the potential for biological control in flea beetle management.
Assuntos
Brassica napus , Brassica , Besouros , Inseticidas , Sifonápteros , Animais , EcologiaRESUMO
Colletotrichum tabacum, causing anthracnose in tobacco, is a notorious plant pathogen threatening tobacco production globally. The underlying mechanisms of C. tabacum effectors that interfere with plant defense are not well known. Here, we identified a novel effector, Cte1, from C. tabacum, and its expression was upregulated in the biotrophic stage. We found that Cte1 depresses plant cell death initiated by BAX and inhibits reactive oxygen species (ROS) bursts triggered by flg22 and chitin in Nicotiana benthamiana. The CTE1 knockout mutants decrease the virulence of C. tabacum to N. benthamiana, and the Cte1 transgenic N. benthamiana increase susceptibility to C. tabacum, verifying that Cte1 is involved in the pathogenicity of C. tabacum. We demonstrated that Cte1 interacted with NbCPR1, a Constitutive expresser of Plant Resistance (CPR) protein in plants. Silencing of NbCPR1 expression attenuated the infection of C. tabacum, indicating that NbCPR1 negatively regulates plant immune responses. Cte1 stabilizes NbCPR1 in N. benthamiana. Our study shows that Cte1 suppresses plant immunity to facilitate C. tabacum infection by intervening in the native function of NbCPR1. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2024.
Assuntos
Colletotrichum , Proteínas Fúngicas , Nicotiana , Doenças das Plantas , Imunidade Vegetal , Proteínas de Plantas , Espécies Reativas de Oxigênio , Colletotrichum/patogenicidade , Nicotiana/microbiologia , Nicotiana/imunologia , Nicotiana/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Virulência , Regulação da Expressão Gênica de PlantasRESUMO
Zymoseptoria tritici, the causal agent of Septoria tritici blotch, is one of Europe's most damaging wheat pathogens, causing significant economic losses. Genetic resistance is a common strategy to control the disease, Stb6 being a resistance gene used for more than 100 years in Europe. This study investigates the molecular mechanisms underlying Stb6-mediated resistance. Utilizing confocal microscopy imaging, we determined that Z. tritici epiphytic hyphae mainly accumulate the corresponding avirulence factor AvrStb6 in close proximity to stomata. Consequently, the progression of AvrStb6-expressing avirulent strains is hampered during penetration. The fungal growth inhibition co-occurs with a transcriptional reprogramming in wheat characterized by an induction of immune responses, genes involved in stomatal regulation, and cell wall-related genes. Overall, we shed light on the gene-for-gene resistance mechanisms in the wheat-Z. tritici pathosystem at the cytological and transcriptomic level, and our results highlight that stomatal penetration is a critical process for pathogenicity and resistance. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Assuntos
Ascomicetos , Proteínas Fúngicas , Hifas , Doenças das Plantas , Estômatos de Plantas , Triticum , Triticum/microbiologia , Triticum/genética , Ascomicetos/patogenicidade , Ascomicetos/fisiologia , Ascomicetos/genética , Estômatos de Plantas/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação da Expressão Gênica de Plantas , Resistência à Doença/genética , Virulência , Interações Hospedeiro-Patógeno , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Virulência/metabolismo , Fatores de Virulência/genéticaRESUMO
Climate change is predicted to increase the occurrence of extreme weather events such as heatwaves, which may thereby impact the outcome of plant-herbivore interactions. While elevated temperature is known to directly affect herbivore growth, it remains largely unclear if it indirectly influences herbivore performance by affecting the host plant they feed on. In this study, we investigated how transient exposure to high temperature influences plant herbivory-induced defenses at the transcript and metabolic level. To this end, we studied the interaction between potato (Solanum tuberosum) plants and the larvae of the potato tuber moth (Phthorimaea operculella) under different temperature regimes. We found that P. operculella larvae grew heavier on leaves co-stressed by high temperature and insect herbivory than on leaves pre-stressed by herbivory alone. We also observed that high temperature treatments altered phylotranscriptomic patterns upon herbivory, which changed from an evolutionary hourglass pattern, in which transcriptomic responses at early and late time points after elicitation are more variable than the ones in the middle, to a vase pattern. Specifically, transcripts of many herbivory-induced genes in the early and late defense stage were suppressed by HT treatment, whereas those in the intermediate stage peaked earlier. Additionally, we observed that high temperature impaired the induction of jasmonates and defense compounds upon herbivory. Moreover, using jasmonate-reduced (JA-reduced, irAOC) and -elevated (JA-Ile-elevated, irCYP94B3s) potato plants, we showed that high temperature suppresses JA signaling mediated plant-induced defense to herbivore attack. Thus, our study provides evidences on how temperature reprograms plant-induced defense to herbivores.
Assuntos
Resposta ao Choque Térmico , Herbivoria , Larva , Mariposas , Solanum tuberosum , Solanum tuberosum/fisiologia , Solanum tuberosum/parasitologia , Solanum tuberosum/genética , Solanum tuberosum/imunologia , Animais , Mariposas/fisiologia , Larva/fisiologia , Regulação da Expressão Gênica de Plantas , Folhas de Planta/fisiologia , Folhas de Planta/parasitologia , Temperatura Alta , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Defesa das Plantas contra Herbivoria , Transcriptoma , Mudança ClimáticaRESUMO
Partial resistance to multiple biotrophic fungal pathogens in wheat (Triticum aestivum L.) is conferred by a variant of the Lr67 gene, which encodes a hexose-proton symporter. Two mutations (G144R and V387L) differentiate the resistant and susceptible protein variants (Lr67res and Lr67sus). Lr67res lacks sugar transport capability and was associated with anion transporter-like properties when expressed in Xenopus laevis oocytes. Here, we extended this functional characterization to include yeast and in planta studies. The Lr67res allele, but not Lr67sus, induced sensitivity to ions in yeast (including NaCl, LiCl, and KI), which is consistent with our previous observations that Lr67res expression in oocytes induces novel ion fluxes. We demonstrate that another naturally occurring single amino acid variant in wheat, containing only the Lr67G144R mutation, confers rust resistance. Transgenic barley plants expressing the orthologous HvSTP13 gene carrying the G144R and V387L mutations were also more resistant to Puccinia hordei infection. NaCl treatment of pot-grown adult wheat plants with the Lr67res allele induced leaf tip necrosis and partial leaf rust resistance. An Lr67res-like function can be introduced into orthologous plant hexose transporters via single amino acid mutation, highlighting the strong possibility of generating disease resistance in other crops, especially with gene editing.
Assuntos
Resistência à Doença , Hordeum , Doenças das Plantas , Proteínas de Plantas , Triticum , Triticum/genética , Triticum/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resistência à Doença/genética , Hordeum/genética , Hordeum/microbiologia , Basidiomycota/fisiologia , Polimorfismo Genético , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Plantas Geneticamente Modificadas/genéticaRESUMO
Crops face constant threats from insect pests, which can lead to sudden disasters and global famine. One of the most dangerous pests is the Asian citrus psyllid (ACP), which poses a significant threat to citrus plantations worldwide. Effective and adaptive management strategies to combat ACP are always in demand. Plant resistance (PR) is a key element in pest management, playing crucial roles such as deterring pests through antifeedant and repellant properties, while also attracting natural enemies of these pests. One effective and innovative approach is the use of entomopathogenic fungi (EPF) to reduce pest populations. Additionally, other natural enemies play an important role in controlling certain insect pests. Given the significance of PR, EPF, and natural arthropod enemies (NAE), this review highlights the benefits of these strategies against ACP, drawing on successful examples from recent research. Furthermore, we discuss how EPF can be effectively utilized in citrus orchards, proposing strategies to ensure its efficient use and safeguard food security in the future.
RESUMO
Aphid genomic resources enable the study of complex life history traits and provide information on vector biology, host adaption and speciation. The currant-lettuce aphid (Nasonovia ribisnigri (Hemiptera: Aphididae) (Mosley)) is a cosmopolitan pest of outdoor lettuce (Lactuca sativa (Asterales: Asteraceae) (Linnaeus)). Until recently, the use of resistant cultivars was an effective method for managing N. ribisnigri. A resistant cultivar containing a single gene (Nr-locus), introduced in the 1980s, conferred complete resistance to feeding. Overreliance of this Nr-locus in lettuce resulted in N. ribisnigri's ability to break resistance mechanism, with first reports during 2003. Our work attempts to understand which candidate gene(s) are associated with this resistance-breaking mechanism. We present two de novo draft assembles for N. ribisnigri genomes, corresponding to both avirulent (Nr-locus susceptible) and virulent (Nr-locus resistant) biotypes. Changes in gene expression of the two N. ribisnigri biotypes were investigated using transcriptomic analyses of RNA-sequencing (RNA-seq) data to understand the potential mechanisms of resistance to the Nr-locus in lettuce. The draft genome assemblies were 94.2% and 91.4% complete for the avirulent and virulent biotypes, respectively. Out of the 18,872 differentially expressed genes, a single gene/locus was identified in N. ribisnigri that was shared between two resistant-breaking biotypes. This locus was further explored and validated in Real-Time Quantitative Reverse Transcription PCR (qRT-PCR) experiments and has predicted localisations in both the cytoplasm and nucleus. This is the first study to provide evidence that a single gene/locus is likely responsible for the ability of N. ribisnigri to overcome the Nr-locus resistance in the lettuce host.
Assuntos
Afídeos , Lactuca , Lactuca/genética , Lactuca/parasitologia , Afídeos/genética , Animais , Perfilação da Expressão Gênica , Genoma de Inseto , TranscriptomaRESUMO
BACKGROUND AND AIMS: Epichloë endophytes are vertically transmitted via grass seeds and chemically defend their hosts against herbivory. Endophyte-conferred plant defence via alkaloid biosynthesis may occur independently of costs for host plant growth. However, fitness consequences of endophyte-conferred defence and transgenerational effects on herbivore resistance of progeny plants, are rarely studied. The aim of this study was to test whether severe defoliation in mother plants affects their seed production, seed germination rate, and the endophyte-conferred resistance of progeny plants. METHODS: In a field study, we tested the effects of defoliation and endophyte symbiosis (Epichloë uncinata) on host plant (Festuca pratensis) performance, loline alkaloid concentrations in leaves and seeds, seed biomass and seed germination rates. In a subsequent greenhouse study, we challenged the progeny of the plants from the field study to aphid herbivory and tested whether defoliation of mother plants affects endophyte-conferred resistance against aphids in progeny plants. KEY RESULTS: Defoliation of the mother plants resulted in a reduction of alkaloid concentrations in leaves and elevated the alkaloid concentrations in seeds when compared with non-defoliated endophyte-symbiotic plants. Viability and germination rate of seeds of defoliated endophyte-symbiotic plants were significantly lower compared to those of non-defoliated endophyte-symbiotic plants and endophyte-free (defoliated and non-defoliated) plants. During six weeks growth, seedlings of defoliated endophyte-symbiotic mother plants had elevated alkaloid concentrations, which negatively correlated with aphid performance. CONCLUSIONS: Endophyte-conferred investment in higher alkaloid levels in seeds -elicited by defoliation- provided herbivore protection in progenies during the first weeks of plant establishment. Better protection of seeds via high alkaloid concentrations negatively correlated with seed germination indicating trade-off between protection and viability.
RESUMO
BACKGROUND: Sorghum (Sorghum bicolor) is an important cereal crop grown worldwide because of its multipurpose uses such as food, forage, and bioenergy feedstock and its wide range of adaption even in marginal environments. Greenbug can cause severe damage to sorghum plants and yield loss. Plant NAC transcription factors (TFs) have been reported to have diverse functions in plant development and plant defense but has not been studied in sorghum yet. METHODS AND RESULTS: In this study, a comprehensive analysis of the sorghum NAC (SbNAC) gene family was conducted through genome-wide analysis. A total of 112 NAC genes has been identified in the sorghum genome. These SbNAC genes are phylogenetically clustered into 15 distinct subfamilies and unevenly distribute in clusters at the telomeric ends of each chromosome. Twelve pairs of SbNAC genes are possibly involved in the segmental duplication among nine chromosomes except chromosome 10. Structure analysis showed the diverse structures with a highly variable number of exons in the SbNAC genes. Furthermore, most of the SbNAC genes showed specific temporal and spatial expression patterns according to the results of RNA-seq analysis, suggesting their diverse functions during sorghum growth and development. We have also identified nine greenbug-inducible SbNAC genes by comparing the expression profiles between two sorghum genotypes (susceptible BTx623 and resistant PI607900) in response to greenbug infestation. CONCLUSIONS: Our systematic analysis of the NAC gene expression profiles provides both a preliminary survey into their roles in plant defense against insect pests and a useful reference for in-depth characterization of the SbNAC genes and the regulatory network that contributes genetic resistance to aphids.
Assuntos
Sorghum , Sorghum/genética , Grão Comestível , Genótipo , AcetilcisteínaRESUMO
The bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae (Psa) is the most devastating disease threatening the global kiwifruit production. This pathogen delivers multiple effector proteins into plant cells to resist plant immune responses and facilitate their survival. Here, we focused on the unique effector HopZ5 in Psa, which previously has been reported to have virulence functions. In this study, our results showed that HopZ5 could cause macroscopic cell death and trigger a serious immune response by agroinfiltration in Nicotiana benthamiana, along with upregulated expression of immunity-related genes and significant accumulation of reactive oxygen species and callose. Subsequently, we confirmed that HopZ5 interacted with the phosphoserine-binding protein GF14C in both the nonhost plant N. benthamiana (NbGF14C) and the host plant kiwifruit (AcGF14C), and silencing of NbGF14C compromised HopZ5-mediated cell death, suggesting that GF14C plays a crucial role in the detection of HopZ5. Further studies showed that overexpression of NbGF14C both markedly reduced the infection of Sclerotinia sclerotiorum and Phytophthora capsica in N. benthamiana, and overexpression of AcGF14C significantly enhanced the resistance of kiwifruit against Psa, indicating that GF14C positively regulates plant immunity. Collectively, our results revealed that the virulence effector HopZ5 could be recognized by plants and interact with GF14C to activate plant immunity.
Assuntos
Actinidia , Proteínas de Bactérias , Nicotiana , Doenças das Plantas , Imunidade Vegetal , Pseudomonas syringae , Pseudomonas syringae/patogenicidade , Pseudomonas syringae/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Nicotiana/microbiologia , Nicotiana/imunologia , Actinidia/microbiologia , Actinidia/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Virulência , Phytophthora/patogenicidade , Phytophthora/fisiologia , Glucanos/metabolismo , Morte Celular , Ascomicetos/fisiologia , Ascomicetos/patogenicidade , Espécies Reativas de Oxigênio/metabolismo , Regulação da Expressão Gênica de PlantasRESUMO
The use of biocontrol agents (BCAs) coping with fungal pathogens causing Fusarium head blight (FHB) is a compelling strategy for disease management, but a better elucidation of their effectiveness is crucial. Meta-analysis is the analysis of the results of multiple studies, which is typically performed to synthesize evidence from many possible sources in a formal probabilistic manner. This meta-analytic study, including 30 pathometric, biometric, physiochemical, genetic, and mycotoxin response variables reported in 56 studies, evidences the BCA effects on FHB in wheat. The effectiveness of BCAs of FHB in wheat in terms of pathogen abundance and disease reductions, biomass and yield conservation, and mycotoxin prevention/control was confirmed. BCAs showed higher efficacy (i) in studies published more recently; (ii) under controlled conditions; (iii) in high susceptible wheat cultivars; (iv) when Fusarium inoculation and BCA treatment did not occur directly on the plant (i.e., at the seed and kernel levels) in terms of disease development and mycotoxin control, and vice versa in terms of biomass conservation; (v) if Fusarium inoculation and BCA treatment occurred by spraying spikes in terms of yield; (vi) at 15 to 21 days post Fusarium inoculation or BCA treatment; and (vii) if they were filamentous fungi. However, BCAs overall were less efficacious than conventional agrochemicals, especially in terms of pathogen abundance and FHB reductions, as well as of mycotoxin prevention/control, although inconsistencies were reported among the investigated moderator variables. This study also highlights the complexity of reaching a good balance among BCA effects, and the need for further research.
Assuntos
Fusarium , Micotoxinas , Triticum/microbiologia , Fusarium/fisiologia , Doenças das Plantas/microbiologiaRESUMO
Stripe or yellow rust (YR) caused by Puccinia striiformis tritici (Pst) is an important foliar disease affecting wheat production globally. Resistant varieties are the most economically and environmentally effective way to manage this disease. The common winter wheat (Triticum aestivum L.) cultivar Luomai 163 exhibited resistance to Pst races CYR32 and CYR33 at the seedling stage and showed a high level adult plant resistance in the field. To understand the genetic basis of YR resistance in this cultivar, 142 F5 recombinant inbred lines (RILs) derived from cross Apav#1 × LM163 and both parents were genotyped with the 16K SNP array and bulked segregant analysis sequencing (BSA-Seq). The analysis detected a major gene, YrLM163, at the seedling stage associated with the 1BL.1RS translocation. Additionally, three genes for resistance at the adult plant stage were detected on chromosome arms 1BL (Lr46/Yr29/Pm39/Sr58), 6BS and 6BL in Luomai 163, whereas Apav#1 contributed resistance at a QTL on 2BL. These QTL explained YR disease severity variations ranging from 6.9 to 54.8%. KASP markers KASP-2BL, KASP-6BS and KASP-6BL for three novel loci QYr.hzau-2BL, QYr.hzau-6BS and QYr.hzau-6BL were developed and validated. QYr.hzau-1BL, QYr.hzau-2BL and QYr.hzau-6BS showed varying degrees of resistance to YR when present individually or in combination based on genotype and phenotype analysis of a panel of 570 wheat accessions. Six RILs combining resistance alleles of all QTL, showing higher resistance to YR in the field than Luomai 163 with disease severities of 10.7-16.0%, are important germplasm resources for breeding programs to develop YR resistant wheat varieties with good agronomic traits.
RESUMO
Stripe rust (or yellow rust), caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most devastating diseases of wheat worldwide. Currently, the utilization of resistant cultivars is the most viable way to reduce yield losses. In this study, a panel of 188 wheat accessions from China was evaluated for stripe rust resistance, and genome-wide association studies were performed using high-quality Diversity Arrays Technology markers. According to the phenotype and genotype data, a total of 26 significant marker-trait associations were identified, representing 18 quantitative trait loci (QTLs) on chromosomes 1B, 2A, 2B, 3A, 3B, 5A, 5B, 6B, 7B, and 7D. Of the 18 QTLs, almost all were associated with adult plant resistance (APR) except QYr.nwsuaf-6B.2, which was associated with all-stage resistance (also known as seedling resistance). Three of the 18 QTLs were mapped far from previously identified Pst resistance genes and QTLs and were considered potentially new loci. The other 15 QTLs were mapped close to known resistance genes and QTLs. Subsequent haplotype analysis for QYr.nwsuaf-2A and QYr.nwsuaf-7B.3 revealed the degrees of resistance of the panel in the APR stage. In summary, the favorable alleles identified in this study may be useful in breeding for disease resistance to stripe rust.
Assuntos
Basidiomycota , Estudo de Associação Genômica Ampla , Triticum/genética , Melhoramento Vegetal , Locos de Características Quantitativas/genética , Fenótipo , Basidiomycota/genéticaRESUMO
The reniform nematode (Rotylenchulus reniformis Linford and Oliveira) adversely impacts the quality and quantity of sweetpotato storage roots. Management of R. reniformis in sweetpotato remains a challenge because host plant resistance is not available, fumigants are detrimental to the environment and health, and crop rotation is not effective. We screened a core set of 24 sweetpotato plant introductions (PIs) against R. reniformis. Four PIs were resistant, and 10 were moderately resistant to R. reniformis, suggesting these PIs can serve as sources of resistance for sweetpotato resistance breeding programs. PI 595869, PI 153907, and PI 599386 suppressed 83 to 89% egg production relative to the susceptible control 'Beauregard', and these PIs were employed in subsequent experiments to determine if their efficacy against R. reniformis can be further increased by applying nonfumigant nematicides oxamyl, fluopyram, and fluensulfone. A 34 to 93% suppression of nematode reproduction was achieved by the application of nonfumigant nematicides, with oxamyl providing the best suppression followed by fluopyram and fluensulfone. Although sweetpotato cultivars resistant to R. reniformis are currently not available and there is a need for the development of safer yet highly effective nonfumigant nematicides, results from the current study suggest that complementing host plant resistance with nonfumigant nematicides can serve as an important tool for effective and sustainable nematode management.
Assuntos
Antinematódeos , Ipomoea batatas , Doenças das Plantas , Ipomoea batatas/parasitologia , Animais , Antinematódeos/farmacologia , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Resistência à Doença , Tylenchoidea/efeitos dos fármacos , Tylenchoidea/fisiologia , Interações Hospedeiro-Parasita/efeitos dos fármacosRESUMO
Wheat leaf rust (Lr), which is caused by Puccinia triticina Eriks. (Pt), is one of the most important wheat diseases affecting wheat production globally. Using resistant wheat cultivars is the most economical and environmentally friendly way to control leaf rust. The Italian wheat cultivar Libellula has demonstrated good resistance to Lr in field studies. To identify the genetic basis of Lr resistance in 'Libellula', 248 F6 recombinant inbred lines from the cross 'Libellula'/'Huixianhong' was phenotyped for Lr severity in seven environments: the 2014/2015, 2016/2017, 2017/2018, and 2018/2019 cropping seasons at Baoding, Hebei Province, and the 2016/2017, 2017/2018, and 2018/2019 crop seasons at Zhoukou, Henan Province. Bulked segregant analysis and simple sequence repeat markers were then used to identify the quantitative trait loci (QTLs) for Lr adult-plant resistance in the population. Six QTLs were consequently detected and designated as QLr.hebau-1AL and QLr.hebau-1AS that were presumed to be new and QLr.hebau-1BL, QLr.hebau-3AL, QLr.hebau-4BL, and QLr.hebau-7DS that were identified at similar physical positions as previously reported QTLs. Based on chromosome positions and molecular marker tests, QLr.hebau-1BL and QLr.hebau-7DS share similar flanking markers with Lr46 and Lr34, respectively. Lr46 and Lr34 are race nonspecific adult plant resistance (APR) genes for leaf rust and stripe rust and powdery mildew. QLr.hebau-4BL showed multiple disease resistance to leaf rust, stripe rust, Fusarium head blight, and powdery mildew. The QTL identified in this study, as well as their closely linked markers, may potentially be used in marker-assisted selection in wheat breeding.
Assuntos
Basidiomycota , Puccinia , Triticum , Triticum/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Mapeamento Cromossômico , Basidiomycota/genética , ItáliaRESUMO
The stink bug Glyphepomis spinosa Campos & Grazia (Hemiptera: Pentatomidae) is a potential rice pest in Brazil. This study evaluates the interaction between silicon sources and 3 rice cultivars (BRS Esmeralda, Canela de Ferro, and IRGA 417) and examines how increasing silicon levels affect the stylet probing behavior of G. spinosa. The experiment was set up in a completely randomized design with a 3â ×â 3 factorial scheme (silicon sources: calcium silicate, potassium silicate, a control, and 3 rice cultivars). Fertilizing rice plants with Si altered the probing behavior of the stink bug G. spinosa. The cultivar interaction by Si source was significant in a few variables. This was evidenced by longer periods without ingestion, prolonged time to the first stylet probe (initial probing), and less time spent in cellular maceration. This result supports the use of electropenetrography as a tool to evaluate resistance inducers in plants.
Assuntos
Heterópteros , Oryza , Animais , Silício , BrasilRESUMO
Grape is one of the most economically significant berry crops. Owing to the biological characteristics of grapes, such as the long juvenile period (5-8 years), high degree of genome heterozygosity, and the frequent occurrence of inbreeding depression, homozygosity during crossbreeding leads to loss of varietal characteristics and viability. CRISPR/Cas editing has become the tool of choice for improving elite technical grape varieties. This study provides the first evidence of a decrease in the total fraction of phenolic compounds and an increase in the concentration of peroxide compounds in grape callus cells upon the addition of chitosan to the culture medium. These previously unreported metabolic features of the grape response to chitosan have been described and used for the first time to increase the probability of selecting plant cells with MLO7 knockout characterised by an oxidative burst in response to the presence of a pathogen modulated by chitosan in the high-metabolite black grape variety 'Merlot'. This was achieved by using a CRISPR/Cas9 editing vector construction with the peroxide sensor HyPer as a reporter. This research represents the first CRISPR/Cas9 editing of 'Merlot', one of the most economically important elite technical grape varieties.
Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Vitis , Vitis/genética , Edição de Genes/métodos , Resistência à Doença/genética , Quitosana/farmacologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Células Vegetais/metabolismo , Fenóis , Vinho , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMO
Goji berries, long valued in Traditional Chinese Medicine and Asian cuisine for their wide range of medicinal benefits, are now considered a 'superfruit' and functional food worldwide. Because of growing demand, Europe and North America are increasing their goji berry production, using goji berry varieties that are not originally from these regions. European breeding programs are focusing on producing Lycium varieties adapted to local conditions and market demands. By 2023, seven varieties of goji berries were successfully registered in Romania, developed using germplasm that originated from sources outside the country. A broader project focused on goji berry breeding was initiated in 2014 at USAMV Bucharest. In the present research, five cultivated and three wild L. barbarum genotypes were compared to analyse genetic variation at the whole genome level. In addition, a case study presents the differences in the genomic coding sequences of BODYGUARD (BDG) 3 and 4 genes from chromosomes 4, 8, and 9, which are involved in cuticle-related resistance. All three BDG genes show distinctive differences between the cultivated and wild-type genotypes at the SNP level. In the BDG 4 gene located on chromosome 8, 69% of SNPs differentiate the wild from the cultivated genotypes, while in BDG 3 on chromosome 4, 64% of SNPs could tell the difference between the wild and cultivated goji berry. The research also uncovered significant SNP and InDel differences between cultivated and wild genotypes, in the entire genome, providing crucial insights for goji berry breeders to support the development of goji berry cultivation in Romania.
Assuntos
Lycium , Lycium/genética , Romênia , Melhoramento Vegetal , Genótipo , Genômica , Frutas/genéticaRESUMO
Trichomes are well-known efficient plant defense mechanisms to limit arthropod herbivory, especially in Solanaceae. The present study aims to evaluate the impact of trichome types on the development, survival and dispersal of Tetranychus urticae, and the phytoseiid predatory mite Typhlodromus (Anthoseius) recki. Six Solanum lycopersicum cultivars and two wild Solanum species, S. cheesmaniae and S. peruvianum, presenting contrasting densities and types of trichomes, were considered. Cultivars and species were characterized by counting each trichome type on leaves, petioles and stems. Mites stuck on petiole and stem and alive mites on the leaflet used for mite release and in the whole plant were counted three weeks after T. urticae plant infestation. Tetranychus urticae settlement and dispersal were differently affected by trichomes. Trichome types V and VI did not affect settlement and dispersal, whereas trichome types I and IV on the petiole had the highest impacton mites. Trichomes on leaves slightly affected mite establishment, there appears to be a repellent effect of trichome types I and IV. The low densities of both T. urticae and its predator detected for the cv. Lancaster could not be clearly associated to the trichome types here considered. The predator did not seem to be affected by plant characteristics, but rather by T. urticae numbers on the plant. The trichome traits unfavorable to T. urticae, did not affect the predator which showed high efficiency to control this pest on all the plant genotypes considered, but at a favorable predator:prey ratio (1:1). Altogether, these results are encouraging for the use of T. (A.) recki as a biological control agent of T. urticae regardless of the trichome structure of the tomato cultivars, but other conditions should be tested to conclude on practical implementations.
Assuntos
Ácaros , Comportamento Predatório , Solanum lycopersicum , Tetranychidae , Tricomas , Animais , Tetranychidae/fisiologia , Ácaros/fisiologia , Solanum lycopersicum/parasitologia , Cadeia Alimentar , Controle Biológico de Vetores , Folhas de Planta/parasitologia , HerbivoriaRESUMO
The red palm mite Raoiella indica Hirst, 1924 (Acari: Tenuipalpidae) is an important pest of the coconut palm Cocos nucifera L. (Arecaceae) and has caused problems in coconut production worldwide. Research has been carried out aiming at controlling the mite through chemical, biological, alternative, and host plant resistance methods. Identifying coconut palm cultivars resistant to R. indica is important to reduce the problems caused to plantations. Therefore, the objective of this work was to evaluate the performance of R. indica in six dwarf coconut palm cultivars, to identify sources of resistance. The cultivars of the sub-varieties green, red, and yellow evaluated were Brazilian Green Dwarf-Jiqui (BGDJ), Brazilian Red Dwarf-Gramame (BRDG), Cameroon Red Dwarf (CRD), Malayan Red Dwarf (MRD), Brazilian Yellow Dwarf-Gramame (BYDG), and Malayan Yellow Dwarf (MYD). Confinement and free choice tests of R. indica on the cultivars were performed, in which biological parameters and preference were evaluated. Mite performance was different in the cultivars evaluated. In the confinement bioassay, R. indica had the worst performance in the cultivar BGDJ, the best performance in CRD, MRD, and BRDG, and intermediate performance in BYDG and MYD. In the free choice test, the cultivars MRD and MYD were preferred in relation to BGDJ, and CRD was less preferred in relation to BGDJ. Therefore, we considered that the cultivar BGDJ is the most resistant to R. indica, by antibiosis and antixenosis; CRD has resistance by antixenosis; and MRD, BRDG, BYDG, and MYD are susceptible.