RESUMO
Although complex inflammatory-like alterations are observed around the amyloid plaques of Alzheimer's disease (AD), little is known about the molecular changes and cellular interactions that characterize this response. We investigate here, in an AD mouse model, the transcriptional changes occurring in tissue domains in a 100-µm diameter around amyloid plaques using spatial transcriptomics. We demonstrate early alterations in a gene co-expression network enriched for myelin and oligodendrocyte genes (OLIGs), whereas a multicellular gene co-expression network of plaque-induced genes (PIGs) involving the complement system, oxidative stress, lysosomes, and inflammation is prominent in the later phase of the disease. We confirm the majority of the observed alterations at the cellular level using in situ sequencing on mouse and human brain sections. Genome-wide spatial transcriptomics analysis provides an unprecedented approach to untangle the dysregulated cellular network in the vicinity of pathogenic hallmarks of AD and other brain diseases.
Assuntos
Doença de Alzheimer/patologia , Análise de Sequência de DNA/métodos , Transcriptoma , Doença de Alzheimer/genética , Amiloide/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas do Sistema Complemento/genética , Proteínas do Sistema Complemento/metabolismo , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Lisossomos/genética , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Bainha de Mielina/genética , Bainha de Mielina/metabolismo , Estresse Oxidativo/genéticaRESUMO
Complement factor H (CFH) negatively regulates consumption of complement component 3 (C3), thereby restricting complement activation. Genetic variants in CFH predispose to chronic inflammatory disease. Here, we examined the impact of CFH on atherosclerosis development. In a mouse model of atherosclerosis, CFH deficiency limited plaque necrosis in a C3-dependent manner. Deletion of CFH in monocyte-derived inflammatory macrophages propagated uncontrolled cell-autonomous C3 consumption without downstream C5 activation and heightened efferocytotic capacity. Among leukocytes, Cfh expression was restricted to monocytes and macrophages, increased during inflammation, and coincided with the accumulation of intracellular C3. Macrophage-derived CFH was sufficient to dampen resolution of inflammation, and hematopoietic deletion of CFH in atherosclerosis-prone mice promoted lesional efferocytosis and reduced plaque size. Furthermore, we identified monocyte-derived inflammatory macrophages expressing C3 and CFH in human atherosclerotic plaques. Our findings reveal a regulatory axis wherein CFH controls intracellular C3 levels of macrophages in a cell-autonomous manner, evidencing the importance of on-site complement regulation in the pathogenesis of inflammatory diseases.
Assuntos
Aterosclerose , Complemento C3 , Animais , Humanos , Camundongos , Aterosclerose/metabolismo , Complemento C3/genética , Complemento C3/metabolismo , Fator H do Complemento/genética , Fator H do Complemento/metabolismo , Inflamação , Macrófagos/metabolismoRESUMO
Genetic association studies have demonstrated the critical involvement of the microglial immune response in Alzheimer's disease (AD) pathogenesis. Phospholipase C-gamma-2 (PLCG2) is selectively expressed by microglia and functions in many immune receptor signaling pathways. In AD, PLCG2 is induced uniquely in plaque-associated microglia. A genetic variant of PLCG2, PLCG2P522R, is a mild hypermorph that attenuates AD risk. Here, we identified a loss-of-function PLCG2 variant, PLCG2M28L, that confers an increased AD risk. PLCG2P522R attenuated disease in an amyloidogenic murine AD model, whereas PLCG2M28L exacerbated the plaque burden associated with altered phagocytosis and Aß clearance. The variants bidirectionally modulated disease pathology by inducing distinct transcriptional programs that identified microglial subpopulations associated with protective or detrimental phenotypes. These findings identify PLCG2M28L as a potential AD risk variant and demonstrate that PLCG2 variants can differentially orchestrate microglial responses in AD pathogenesis that can be therapeutically targeted.
Assuntos
Doença de Alzheimer , Animais , Camundongos , Doença de Alzheimer/genética , Estudos de Associação Genética , Microglia , Fagocitose/genética , Fenótipo , Placa Amiloide , Fosfolipase C gama/metabolismoRESUMO
Disease-associated variants identified from genome-wide association studies (GWASs) frequently map to non-coding areas of the genome such as introns and intergenic regions. An exclusive reliance on gene-agnostic methods of genomic investigation could limit the identification of relevant genes associated with polygenic diseases such as Alzheimer disease (AD). To overcome such potential restriction, we developed a gene-constrained analytical method that considers only moderate- and high-risk variants that affect gene coding sequences. We report here the application of this approach to publicly available datasets containing 181,388 individuals without and with AD and the resulting identification of 660 genes potentially linked to the higher AD prevalence among Africans/African Americans. By integration with transcriptome analysis of 23 brain regions from 2,728 AD case-control samples, we concentrated on nine genes that potentially enhance the risk of AD: AACS, GNB5, GNS, HIPK3, MED13, SHC2, SLC22A5, VPS35, and ZNF398. GNB5, the fifth member of the heterotrimeric G protein beta family encoding Gß5, is primarily expressed in neurons and is essential for normal neuronal development in mouse brain. Homozygous or compound heterozygous loss of function of GNB5 in humans has previously been associated with a syndrome of developmental delay, cognitive impairment, and cardiac arrhythmia. In validation experiments, we confirmed that Gnb5 heterozygosity enhanced the formation of both amyloid plaques and neurofibrillary tangles in the brains of AD model mice. These results suggest that gene-constrained analysis can complement the power of GWASs in the identification of AD-associated genes and may be more broadly applicable to other polygenic diseases.
Assuntos
Doença de Alzheimer , Subunidades beta da Proteína de Ligação ao GTP , Camundongos , Humanos , Animais , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Estudo de Associação Genômica Ampla , Emaranhados Neurofibrilares/metabolismo , Fenótipo , Genômica , Peptídeos beta-Amiloides/genética , Encéfalo/metabolismo , Membro 5 da Família 22 de Carreadores de Soluto/genética , Membro 5 da Família 22 de Carreadores de Soluto/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades beta da Proteína de Ligação ao GTP/metabolismoRESUMO
Appearance of plaques on a bacterial lawn is a sign of successive rounds of bacteriophage infection. Yet, mechanisms evolved by bacteria to limit plaque spread have been hardly explored. Here, we investigated the dynamics of plaque development by lytic phages infecting the bacterium Bacillus subtilis. We report that plaque expansion is followed by a constriction phase owing to bacterial growth into the plaque zone. This phenomenon exposed an adaptive process, herein termed "phage tolerance response", elicited by non-infected bacteria upon sensing infection of their neighbors. The temporary phage tolerance is executed by the stress-response RNA polymerase sigma factor σX (SigX). Artificial expression of SigX prior to phage attack largely eliminates infection. SigX tolerance is primarily conferred by activation of the dlt operon, encoding enzymes that catalyze D-alanylation of cell wall teichoic acid polymers, the major attachment sites for phages infecting Gram-positive bacteria. D-alanylation impedes phage binding and hence infection, thus enabling the uninfected bacteria to form a protective shield opposing phage spread.
Assuntos
Bacillus subtilis/virologia , Bacteriófagos/patogenicidade , Interações Hospedeiro-Patógeno , Bacillus subtilis/metabolismo , Óperon , Fator sigma/metabolismoRESUMO
BACKGROUND: Atherosclerotic plaques form unevenly due to disturbed blood flow, causing localized endothelial cell (EC) dysfunction. Obesity exacerbates this process, but the underlying molecular mechanisms are unclear. The transcription factor EPAS1 (HIF2A) has regulatory roles in endothelium, but its involvement in atherosclerosis remains unexplored. This study investigates the potential interplay between EPAS1, obesity, and atherosclerosis. METHODS: Responses to shear stress were analyzed using cultured porcine aortic EC exposed to flow in vitro coupled with metabolic and molecular analyses and by en face immunostaining of murine aortic EC exposed to disturbed flow in vivo. Obesity and dyslipidemia were induced in mice via exposure to a high-fat diet or through Leptin gene deletion. The role of Epas1 in atherosclerosis was evaluated by inducible endothelial Epas1 deletion, followed by hypercholesterolemia induction (adeno-associated virus-PCSK9 [proprotein convertase subtilisin/kexin type 9]; high-fat diet). RESULTS: En face staining revealed EPAS1 enrichment at sites of disturbed blood flow that are prone to atherosclerosis initiation. Obese mice exhibited substantial reduction in endothelial EPAS1 expression. Sulforaphane, a compound with known atheroprotective effects, restored EPAS1 expression and concurrently reduced plasma triglyceride levels in obese mice. Consistently, triglyceride derivatives (free fatty acids) suppressed EPAS1 in cultured EC by upregulating the negative regulator PHD2. Clinical observations revealed that reduced serum EPAS1 correlated with increased endothelial PHD2 and PHD3 in obese individuals. Functionally, endothelial EPAS1 deletion increased lesion formation in hypercholesterolemic mice, indicating an atheroprotective function. Mechanistic insights revealed that EPAS1 protects arteries by maintaining endothelial proliferation by positively regulating the expression of the fatty acid-handling molecules CD36 (cluster of differentiation 36) and LIPG (endothelial type lipase G) to increase fatty acid beta-oxidation. CONCLUSIONS: Endothelial EPAS1 attenuates atherosclerosis at sites of disturbed flow by maintaining EC proliferation via fatty acid uptake and metabolism. This endothelial repair pathway is inhibited in obesity, suggesting a novel triglyceride-PHD2 modulation pathway suppressing EPAS1 expression. These findings have implications for therapeutic strategies addressing vascular dysfunction in obesity.
Assuntos
Aterosclerose , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Células Endoteliais , Ácidos Graxos , Obesidade , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Aterosclerose/metabolismo , Aterosclerose/genética , Aterosclerose/patologia , Camundongos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Obesidade/metabolismo , Obesidade/genética , Células Cultivadas , Ácidos Graxos/metabolismo , Camundongos Endogâmicos C57BL , Suínos , Masculino , Dieta Hiperlipídica , Endotélio Vascular/metabolismo , Endotélio Vascular/patologiaRESUMO
BACKGROUND: Studies of the neurovascular contribution to dementia have largely focused on cerebral small vessel disease (CSVD), but the role of intracranial atherosclerotic disease (ICAD) remains unknown in the general population. The objective of this study was to determine the risk of incident dementia from ICAD after adjusting for CSVD and cardiovascular risk factors in a US community-based cohort. METHODS: We acquired brain magnetic resonance imaging examinations from 2011 through 2013 in 1980 Black and White participants in the ARIC study (Atherosclerosis Risk in Communities), a prospective cohort conducted in 4 US communities. Magnetic resonance imaging examinations included high-resolution vessel wall magnetic resonance imaging and magnetic resonance angiography to identify ICAD. Of these participants, 1590 without dementia, without missing covariates, and with adequate magnetic resonance image quality were followed through 2019 for incident dementia. Associations between ICAD and incident dementia were assessed using Cox proportional hazard ratios adjusted for CSVD (characterized by white matter hyperintensities, lacunar infarctions, and microhemorrhages), APOE4 genotype (apolipoprotein E gene ε4), and cardiovascular risk factors. RESULTS: The mean age (SD) of study participants was 77.4 (5.2) years. ICAD was detected in 34.6% of participants. After a median follow-up of 5.6 years, 286 participants developed dementia. Compared with participants without ICAD, the fully adjusted hazard ratios (95% CIs) for incident dementia in participants with any ICAD, with ICAD only causing stenosis ≤50%, and with ICAD causing stenosis >50% in ≥1 vessel were 1.57 (1.17-2.11), 1.41 (1.02-1.95), and 1.94 (1.32-2.84), respectively. ICAD was associated with dementia even among participants with low white matter hyperintensities burden, a marker of CSVD. CONCLUSIONS: ICAD was associated with an increased risk of incident dementia, independent of CSVD, APOE4 genotype, and cardiovascular risk factors. The increased risk of dementia was evident even among participants with low CSVD burden, a group less likely to be affected by vascular dementia, and in participants with ICAD causing only low-grade stenosis. Our results suggest that ICAD may partially mediate the effect that cardiovascular risk factors have on the brain leading to dementia. Both ICAD and CSVD must be considered to understand the vascular contributions to cognitive decline.
Assuntos
Demência , Arteriosclerose Intracraniana , Humanos , Masculino , Feminino , Idoso , Demência/epidemiologia , Demência/etiologia , Arteriosclerose Intracraniana/epidemiologia , Arteriosclerose Intracraniana/diagnóstico por imagem , Fatores de Risco , Incidência , Estudos Prospectivos , Imageamento por Ressonância Magnética , Idoso de 80 Anos ou mais , Estados Unidos/epidemiologiaRESUMO
Coronary artery calcification (CAC) accompanies the development of advanced atherosclerosis. Its role in atherosclerosis holds great interest because the presence and burden of coronary calcification provide direct evidence of the presence and extent of coronary artery disease; furthermore, CAC predicts future events independently of concomitant conventional cardiovascular risk factors and to a greater extent than any other noninvasive biomarker of this disease. Nevertheless, the relationship between CAC and the susceptibility of a plaque to provoke a thrombotic event remains incompletely understood. This review summarizes the current understanding and literature on CAC. It outlines the pathophysiology of CAC and reviews laboratory, histopathological, and genetic studies, as well as imaging findings, to characterize different types of calcification and to elucidate their implications. Some patterns of calcification such as microcalcification portend increased risk of rupture and cardiovascular events and may improve prognosis assessment noninvasively. However, contemporary computed tomography cannot assess early microcalcification. Limited spatial resolution and blooming artifacts may hinder estimation of degree of coronary artery stenosis. Technical advances such as photon counting detectors and combination with nuclear approaches (eg, NaF imaging) promise to improve the performance of cardiac computed tomography. These innovations may speed achieving the ultimate goal of providing noninvasively specific and clinically actionable information.
Assuntos
Aterosclerose , Calcinose , Doença da Artéria Coronariana , Calcificação Vascular , Humanos , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/complicações , Vasos Coronários/diagnóstico por imagem , Vasos Coronários/patologia , Angiografia Coronária/métodos , Medição de Risco , Aterosclerose/patologia , Calcinose/diagnóstico por imagem , Calcinose/patologia , Calcificação Vascular/patologia , Fatores de RiscoRESUMO
To streamline standard virological assays, we developed a suite of nine fluorescent or bioluminescent replication competent human species C5 adenovirus reporter viruses that mimic their parental wild-type counterpart. These reporter viruses provide a rapid and quantitative readout of various aspects of viral infection and replication based on EGFP, mCherry, or NanoLuc measurement. Moreover, they permit real-time non-invasive measures of viral load, replication dynamics, and infection kinetics over the entire course of infection, allowing measurements that were not previously possible. This suite of replication competent reporter viruses increases the ease, speed, and adaptability of standard assays and has the potential to accelerate multiple areas of human adenovirus research.IMPORTANCEIn this work, we developed a versatile toolbox of nine HAdV-C5 reporter viruses and validated their functions in cell culture. These reporter viruses provide a rapid and quantitative readout of various aspects of viral infection and replication based on EGFP, mCherry, or NanoLuc measurement. The utility of these reporter viruses could also be extended for use in 3D cell culture, organoids, live cell imaging, or animal models, and provides a conceptual framework for the development of new reporter viruses representing other clinically relevant HAdV species.
Assuntos
Adenovírus Humanos , Genes Reporter , Humanos , Infecções por Adenovirus Humanos/virologia , Adenovírus Humanos/genética , Adenovírus Humanos/fisiologia , Linhagem Celular , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Carga Viral , Replicação ViralRESUMO
Atherosclerosis is a leading cause of cardiovascular diseases (CVDs), often resulting in major adverse cardiovascular events (MACEs), such as myocardial infarction and stroke due to the rupture or erosion of vulnerable plaques. Ferroptosis, an iron-dependent form of cell death, has been implicated in the development of atherosclerosis. Despite its involvement in CVDs, the specific role of ferroptosis in atherosclerotic plaque stability remains unclear. In this study, we confirmed the presence of ferroptosis in unstable atherosclerotic plaques and demonstrated that the ferroptosis inhibitor ferrostatin-1 (Fer-1) stabilizes atherosclerotic plaques in apolipoprotein E knockout (Apoe-/-) mice. Using bioinformatic analysis combining RNA sequencing (RNA-seq) with single-cell RNA sequencing (scRNA-seq), we identified Yes-associated protein 1 (YAP1) as a potential key regulator of ferroptosis in vascular smooth muscle cells (VSMCs) of unstable plaques. In vitro, we found that YAP1 protects against oxidized low-density lipoprotein (oxLDL)-induced ferroptosis in VSMCs. Mechanistically, YAP1 exerts its anti-ferroptosis effects by regulating the expression of glutaminase 1 (GLS1) to promote the synthesis of glutamate (Glu) and glutathione (GSH). These findings establish a novel mechanism where the inhibition of ferroptosis promotes the stabilization of atherosclerotic plaques through the YAP1/GLS1 axis, attenuating VSMC ferroptosis. Thus, targeting the YAP1/GLS1 axis to suppress VSMC ferroptosis may represent a novel strategy for preventing and treating unstable atherosclerotic plaques.
Assuntos
Ferroptose , Músculo Liso Vascular , Placa Aterosclerótica , Proteínas de Sinalização YAP , Animais , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Camundongos , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Proteínas de Sinalização YAP/metabolismo , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Aterosclerose/metabolismo , Aterosclerose/patologia , Aterosclerose/genética , Camundongos Knockout , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Fenilenodiaminas/farmacologia , Cicloexilaminas/farmacologia , Apolipoproteínas E/metabolismo , Apolipoproteínas E/genéticaRESUMO
Coronary plaque rupture remains the prominent mechanism of myocardial infarction. Accurate identification of rupture-prone plaque may improve clinical management. This study assessed the discriminatory performance of electrochemical impedance spectroscopy (EIS) in human cardiac explants to detect high-risk atherosclerotic features that portend rupture risk. In this single-center, prospective study, n = 26 cardiac explants were collected for EIS interrogation of the three major coronary arteries. Vessels in which advancement of the EIS catheter without iatrogenic plaque disruption was rendered impossible were not assessed. N = 61 vessels underwent EIS measurement and histological analyses. Plaques were dichotomized according to previously established high rupture-risk parameter thresholds. Diagnostic performance was determined via receiver operating characteristic areas-under-the-curve (AUC). Necrotic cores were identified in n = 19 vessels (median area 1.53 mm2) with a median fibrous cap thickness of 62 µm. Impedance was significantly greater in plaques with necrotic core area ≥1.75 mm2 versus <1.75 mm2 (19.8 ± 4.4 kΩ vs. 7.2 ± 1.0 kΩ, p = .019), fibrous cap thickness ≤65 µm versus >65 µm (19.1 ± 3.5 kΩ vs. 6.5 ± 0.9 kΩ, p = .004), and ≥20 macrophages per 0.3 mm-diameter high-power field (HPF) versus <20 macrophages per HPF (19.8 ± 4.1 kΩ vs. 10.2 ± 0.9 kΩ, p = .002). Impedance identified necrotic core area ≥1.75 mm2, fibrous cap thickness ≤65 µm, and ≥20 macrophages per HPF with AUCs of 0.889 (95% CI: 0.716-1.000) (p = .013), 0.852 (0.646-1.000) (p = .025), and 0.835 (0.577-1.000) (p = .028), respectively. Further, phase delay discriminated severe stenosis (≥70%) with an AUC of 0.767 (0.573-0.962) (p = .035). EIS discriminates high-risk atherosclerotic features that portend plaque rupture in human coronary artery disease and may serve as a complementary modality for angiography-guided atherosclerosis evaluation.
Assuntos
Doença da Artéria Coronariana , Vasos Coronários , Espectroscopia Dielétrica , Placa Aterosclerótica , Humanos , Doença da Artéria Coronariana/patologia , Espectroscopia Dielétrica/métodos , Masculino , Feminino , Placa Aterosclerótica/patologia , Placa Aterosclerótica/diagnóstico por imagem , Pessoa de Meia-Idade , Estudos Prospectivos , Idoso , Vasos Coronários/patologia , Aterosclerose/patologia , Fatores de RiscoRESUMO
BACKGROUND: Plaque composition and wall shear stress (WSS) magnitude act as well-established players in coronary plaque progression. However, WSS magnitude per se does not completely capture the mechanical stimulus to which the endothelium is subjected, since endothelial cells experience changes in the WSS spatiotemporal configuration on the luminal surface. This study explores WSS profile and lipid content signatures of plaque progression to identify novel biomarkers of coronary atherosclerosis. METHODS: Thirty-seven patients with acute coronary syndrome underwent coronary computed tomography angiography, near-infrared spectroscopy intravascular ultrasound, and optical coherence tomography of at least 1 nonculprit vessel at baseline and 1-year follow-up. Baseline coronary artery geometries were reconstructed from intravascular ultrasound and coronary computed tomography angiography and combined with flow information to perform computational fluid dynamics simulations to assess the time-averaged WSS magnitude (TAWSS) and the variability in the contraction/expansion action exerted by WSS on the endothelium, quantifiable in terms of topological shear variation index (TSVI). Plaque progression was measured as intravascular ultrasound-derived percentage plaque atheroma volume change at 1-year follow-up. Plaque composition information was extracted from near-infrared spectroscopy and optical coherence tomography. RESULTS: Exposure to high TSVI and low TAWSS was associated with higher plaque progression (4.00±0.69% and 3.60±0.62%, respectively). Plaque composition acted synergistically with TSVI or TAWSS, resulting in the highest plaque progression (≥5.90%) at locations where lipid-rich plaque is exposed to high TSVI or low TAWSS. CONCLUSIONS: Luminal exposure to high TSVI, solely or combined with a lipid-rich plaque phenotype, is associated with enhanced plaque progression at 1-year follow-up. Where plaque progression occurred, low TAWSS was also observed. These findings suggest TSVI, in addition to low TAWSS, as a potential biomechanical predictor for plaque progression, showing promise for clinical translation to improve patient prognosis.
Assuntos
Doença da Artéria Coronariana , Placa Aterosclerótica , Humanos , Vasos Coronários/diagnóstico por imagem , Células Endoteliais , Doença da Artéria Coronariana/diagnóstico por imagem , Angiografia por Tomografia Computadorizada , Lipídeos , Estresse Mecânico , Angiografia CoronáriaRESUMO
BACKGROUND: While it has been hypothesized that high plaque stress and strain may be related to plaque rupture, its direct verification using in vivo coronary plaque rupture data and full 3-dimensional fluid-structure interaction models is lacking in the current literature due to difficulty in obtaining in vivo plaque rupture imaging data from patients with acute coronary syndrome. This case-control study aims to use high-resolution optical coherence tomography-verified in vivo plaque rupture data and 3-dimensional fluid-structure interaction models to seek direct evidence for the high plaque stress/strain hypothesis. METHODS: In vivo coronary plaque optical coherence tomography data (5 ruptured plaques, 5 no-rupture plaques) were acquired from patients using a protocol approved by the local institutional review board with informed consent obtained. The ruptured caps were reconstructed to their prerupture morphology using neighboring plaque cap and vessel geometries. Optical coherence tomography-based 3-dimensional fluid-structure interaction models were constructed to obtain plaque stress, strain, and flow shear stress data for comparative analysis. The rank-sum test in the nonparametric test was used for statistical analysis. RESULTS: Our results showed that the average maximum cap stress and strain values of ruptured plaques were 142% (457.70 versus 189.22 kPa; P=0.0278) and 48% (0.2267 versus 0.1527 kPa; P=0.0476) higher than that for no-rupture plaques, respectively. The mean values of maximum flow shear stresses for ruptured and no-rupture plaques were 145.02 dyn/cm2 and 81.92 dyn/cm2 (P=0.1111), respectively. However, the flow shear stress difference was not statistically significant. CONCLUSIONS: This preliminary case-control study showed that the ruptured plaque group had higher mean maximum stress and strain values. Due to our small study size, larger scale studies are needed to further validate our findings.
Assuntos
Doença da Artéria Coronariana , Vasos Coronários , Placa Aterosclerótica , Estresse Mecânico , Tomografia de Coerência Óptica , Humanos , Vasos Coronários/diagnóstico por imagem , Vasos Coronários/fisiopatologia , Vasos Coronários/patologia , Ruptura Espontânea , Estudos de Casos e Controles , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/fisiopatologia , Masculino , Feminino , Pessoa de Meia-Idade , Modelos Cardiovasculares , Idoso , Valor Preditivo dos Testes , Síndrome Coronariana Aguda/diagnóstico por imagem , Síndrome Coronariana Aguda/fisiopatologia , Síndrome Coronariana Aguda/etiologiaRESUMO
BACKGROUND: The metabolic alterations occurring within the arterial architecture during atherosclerosis development remain poorly understood, let alone those particular to each arterial tunica. We aimed first to identify, in a spatially resolved manner, the specific metabolic changes in plaque, media, adventitia, and cardiac tissue between control and atherosclerotic murine aortas. Second, we assessed their translatability to human tissue and plasma for cardiovascular risk estimation. METHODS: In this observational study, mass spectrometry imaging (MSI) was applied to identify region-specific metabolic differences between atherosclerotic (n=11) and control (n=11) aortas from low-density lipoprotein receptor-deficient mice, via histology-guided virtual microdissection. Early and advanced plaques were compared within the same atherosclerotic animals. Progression metabolites were further analyzed by MSI in 9 human atherosclerotic carotids and by targeted mass spectrometry in human plasma from subjects with elective coronary artery bypass grafting (cardiovascular risk group, n=27) and a control group (n=27). RESULTS: MSI identified 362 local metabolic alterations in atherosclerotic mice (log2 fold-change ≥1.5; P≤0.05). The lipid composition of cardiac tissue is altered during atherosclerosis development and presents a generalized accumulation of glycerophospholipids, except for lysolipids. Lysolipids (among other glycerophospholipids) were found at elevated levels in all 3 arterial layers of atherosclerotic aortas. LPC(18:0) (lysophosphatidylcholine; P=0.024) and LPA(18:1) (lysophosphatidic acid; P=0.025) were found to be significantly elevated in advanced plaques as compared with mouse-matched early plaques. Higher levels of both lipid species were also observed in fibrosis-rich areas of advanced- versus early-stage human samples. They were found to be significantly reduced in human plasma from subjects with elective coronary artery bypass grafting (P<0.001 and P=0.031, respectively), with LPC(18:0) showing significant association with cardiovascular risk (odds ratio, 0.479 [95% CI, 0.225-0.883]; P=0.032) and diagnostic potential (area under the curve, 0.778 [95% CI, 0.638-0.917]). CONCLUSIONS: An altered phospholipid metabolism occurs in atherosclerosis, affecting both the aorta and the adjacent heart tissue. Plaque-progression lipids LPC(18:0) and LPA(18:1), as identified by MSI on tissue, reflect cardiovascular risk in human plasma.
Assuntos
Doenças da Aorta , Aterosclerose , Doenças Cardiovasculares , Placa Aterosclerótica , Humanos , Animais , Camundongos , Placa Aterosclerótica/metabolismo , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/metabolismo , Fatores de Risco , Aterosclerose/diagnóstico , Aterosclerose/metabolismo , Aorta/diagnóstico por imagem , Aorta/metabolismo , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Glicerofosfolipídeos/metabolismo , Fatores de Risco de Doenças CardíacasRESUMO
Amyloid beta (Aß) peptides, which aggregate to form neocortical plaques in Alzheimer's disease, exist in states that range from soluble monomers and oligomers/protofibrils to insoluble fibrillar amyloid. The present study evaluated the effects of mAb158, a mouse monoclonal antibody version of lecanemab that preferentially binds to soluble Aß protofibrils, in aged transgenic mice (Tg2576) with Aß pathology. Female Tg2576 mice (12 months old) received weekly intraperitoneal mAb158 (35 mg/kg) or vehicle for 4 weeks or for 18 weeks, with or without a subsequent 12-week off-treatment period. Aß protofibril levels were significantly lower in mAb158-treated animals at both 4 and 18 weeks, while longer treatment duration (18 weeks) was required to observe significantly lower Aß42 levels in insoluble brain fractions and lower Aß plaque load. Following the off-treatment period, comparison of the vehicle- and mAb158-treated mice demonstrated that the Aß protofibril levels, insoluble Aß42 levels and Aß plaque load remained significantly lower in mAb158-treated animals, as compared with age-matched controls. However, there was a significant increase of brain accumulation of both the Aß protofibril levels, insoluble Aß42 levels and Aß plaque load after treatment cessation. Thus, repeated mAb158 treatment of aged Tg2576 mice first reduced Aß protofibril levels within 4 weeks of treatment, which then was followed by a reduction of amyloid plaque pathology within 18 weeks of treatment. These effects were maintained 12 weeks after the final dose, indicating that mAb158 had a disease-modifying effect on the Aß pathology in this mouse model. In addition, brain accumulation of both Aß protofibril levels and amyloid pathology progressed after discontinuation of the treatment which supports the importance of continued treatment with mAb158 to maintain the effects on Aß pathology.
Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Anticorpos Monoclonais , Camundongos Transgênicos , Placa Amiloide , Animais , Peptídeos beta-Amiloides/metabolismo , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/tratamento farmacológico , Feminino , Placa Amiloide/metabolismo , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , EnvelhecimentoRESUMO
The leading cause of heart disease in developed countries is coronary atherosclerosis, which is not simply a result of ageing but a chronic inflammatory process that can lead to acute clinical events upon atherosclerotic plaque rupture or erosion and arterial thrombus formation. The composition and location of atherosclerotic plaques determine the phenotype of the lesion and whether it is more likely to rupture or to erode. Although plaque rupture and erosion both initiate platelet activation on the exposed vascular surface, the contribution of platelets to thrombus formation differs between the two phenotypes. In this review, plaque phenotype is discussed in relation to thrombus composition, and an overview of important mediators (haemodynamics, matrix components, and soluble factors) in plaque-induced platelet activation is given. As thrombus formation on disrupted plaques does not necessarily result in complete vessel occlusion, plaque healing can occur. Therefore, the latest findings on plaque healing and the potential role of platelets in this process are summarized. Finally, the clinical need for more effective antithrombotic agents is highlighted.
Assuntos
Doença da Artéria Coronariana , Placa Aterosclerótica , Trombose , Humanos , Placa Aterosclerótica/patologia , Doença da Artéria Coronariana/complicações , Plaquetas , Ruptura Espontânea/complicações , Trombose/etiologia , BiologiaRESUMO
BACKGROUND AND AIMS: The aim of this study was to determine the prognostic value of coronary computed tomography angiography (CCTA)-derived atherosclerotic plaque analysis in ISCHEMIA. METHODS: Atherosclerosis imaging quantitative computed tomography (AI-QCT) was performed on all available baseline CCTAs to quantify plaque volume, composition, and distribution. Multivariable Cox regression was used to examine the association between baseline risk factors (age, sex, smoking, diabetes, hypertension, ejection fraction, prior coronary disease, estimated glomerular filtration rate, and statin use), number of diseased vessels, atherosclerotic plaque characteristics determined by AI-QCT, and a composite primary outcome of cardiovascular death or myocardial infarction over a median follow-up of 3.3 (interquartile range 2.2-4.4) years. The predictive value of plaque quantification over risk factors was compared in an area under the curve (AUC) analysis. RESULTS: Analysable CCTA data were available from 3711 participants (mean age 64 years, 21% female, 79% multivessel coronary artery disease). Amongst the AI-QCT variables, total plaque volume was most strongly associated with the primary outcome (adjusted hazard ratio 1.56, 95% confidence interval 1.25-1.97 per interquartile range increase [559 mm3]; P = .001). The addition of AI-QCT plaque quantification and characterization to baseline risk factors improved the model's predictive value for the primary outcome at 6 months (AUC 0.688 vs. 0.637; P = .006), at 2 years (AUC 0.660 vs. 0.617; P = .003), and at 4 years of follow-up (AUC 0.654 vs. 0.608; P = .002). The findings were similar for the other reported outcomes. CONCLUSIONS: In ISCHEMIA, total plaque volume was associated with cardiovascular death or myocardial infarction. In this highly diseased, high-risk population, enhanced assessment of atherosclerotic burden using AI-QCT-derived measures of plaque volume and composition modestly improved event prediction.
Assuntos
Angiografia por Tomografia Computadorizada , Angiografia Coronária , Doença da Artéria Coronariana , Placa Aterosclerótica , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Placa Aterosclerótica/diagnóstico por imagem , Angiografia Coronária/métodos , Doença da Artéria Coronariana/diagnóstico por imagem , Idoso , Prognóstico , Fatores de Risco de Doenças Cardíacas , Fatores de Risco , Infarto do Miocárdio/epidemiologia , Infarto do Miocárdio/etiologia , Isquemia MiocárdicaRESUMO
BACKGROUND: Cutavirus (CuV) is associated with mycosis fungoides; however, the CuV status in parapsoriasis en plaques (PP), a premalignant inflammatory condition of mycosis fungoides, has not been fully delineated. METHODS: Fifty-five Japanese patients with chronic inflammatory skin diseases, including 13 patients with PP, were studied. RESULTS: CuV DNA was detected significantly more frequently in biopsies of the lesional skin from patients with PP (38%; 4 of 13) than in those from patients with other inflammatory skin diseases (2%; 1 of 42; P = .009). All CuV-positive PP cases were of the large-plaque parapsoriasis (LPP) subtype. The viral loads ranged from 83 450 to 2 164 170 copies/103 cells. We recovered near-full-length CuV sequences from the CuV-positive LPP biopsies, all of which were of the Japanese/Asian genotype. The CuV genome appeared to be present within lymphoid cells infiltrating the epidermis and dermis. CuV NS1 and VP1 gene transcripts were also detected in the affected tissues. CONCLUSIONS: The detection of high levels of CuV DNA with the expression of viral mRNA suggests a potential role for CuV in the pathogenesis of LPP, making it necessary to study further the impact of CuV, especially regarding the viral genotype, on the outcomes of patients with CuV-positive LPP.
Assuntos
Micose Fungoide , Parapsoríase , Humanos , Micose Fungoide/virologia , Micose Fungoide/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Parapsoríase/virologia , Parapsoríase/patologia , Adulto , DNA Viral/genética , Pele/patologia , Pele/virologia , Carga Viral , Japão , Idoso de 80 Anos ou mais , Biópsia , Neoplasias Cutâneas/virologia , Neoplasias Cutâneas/patologia , Lesões Pré-Cancerosas/virologia , Lesões Pré-Cancerosas/patologia , Vírus de DNA/genética , Vírus de DNA/isolamento & purificação , Vírus de DNA/classificaçãoRESUMO
BACKGROUND: The relationship of microbiota composition dynamics and the progression of subclinical atherosclerosis in people with HIV (PWH) remains unknown. METHODS: 96-week, prospective, longitudinal study in virologically-suppressed PWH. Carotid intima-media thickness (cIMT) measurements and stool samples were obtained at baseline, 48-week and 96-week visits. cIMT progression was defined as an increase >10% and/or detection of new carotid plaque. To profile the gut microbiome, amplification and sequencing of 16S ribosomal-RNA (V3-V4 variable regions) were carried out following the Illumina protocol. Sequencing was performed with MiSeq platform. RESULTS: 191, 190 and 167 patients had available fecal samples for microbiome analysis at the baseline, 48- and 96-week visits, respectively. 87 (43%) participants showed atherosclerosis progression, and 54 (26.7%) presented new carotid plaque. No significant differences were observed in adjusted α-diversity indices between groups defined by cIMT progression. Beta-diversity determined through principal coordinate analysis distances showed that the groups exhibited distinct microbial profiles (PERMANOVA p-value = 0.03). Longitudinal analysis with ANCOM-BC2 adjusted for traditional cardiovascular risk factors, MSM and nadir CD4 count revealed that cIMT progression was consistently associated with Agathobacter and Ruminococcus_2, while non-progression was consistently associated with Prevotella_7. CONCLUSION: Progression of atherosclerosis in PWH might be associated with distinctive signatures in the gut microbiota.
RESUMO
Coronary atherosclerosis is caused by plaque build-up, with lipids playing a pivotal role in its progression. However, lipid composition and distribution within coronary atherosclerosis remain unknown. This study aims to characterize lipids and investigate differences in lipid composition across disease stages to aid in the understanding of disease progression. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) was used to visualize lipid distributions in coronary artery sections (n = 17) from hypercholesterolemic swine. We performed histology on consecutive sections to classify the artery segments and to investigate colocalization between lipids and histological regions of interest in advanced plaque, including necrotic core and inflammatory cells. Segments were classified as healthy (n = 6), mild (n = 6), and advanced disease (n = 5) artery segments. Multivariate data analysis was employed to find differences in lipid composition between the segment types, and the lipids' spatial distribution was investigated using non-negative matrix factorization (NMF). Through this process, MALDI-MSI detected 473 lipid-related features. NMF clustering described three components in positive ionization mode: triacylglycerides (TAG), phosphatidylcholines (PC), and cholesterol species. In negative ionization mode, two components were identified: one driven by phosphatidylinositol(PI)(38:4), and one driven by ceramide-phosphoethanolamine(36:1). Multivariate data analysis showed the association between advanced disease and specific lipid signatures like PC(O-40:5) and cholesterylester(CE)(18:2). Ether-linked phospholipids and LysoPC species were found to colocalize with necrotic core, and mostly CE, ceramide, and PI species colocalized with inflammatory cells. This study, therefore, uncovers distinct lipid signatures correlated with plaque development and their colocalization with necrotic core and inflammatory cells, enhancing our understanding of coronary atherosclerosis progression.