Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Yeast ; 41(6): 369-378, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38613186

RESUMO

Engineering Yarrowia lipolytica to produce astaxanthin provides a promising route. Here, Y. lipolytica M2 producing a titer of 181 mg/L astaxanthin was isolated by iterative atmospheric and room-temperature plasma mutagenesis and diphenylamine-mediated screening. Interestingly, a negative correlation was observed between cell biomass and astaxanthin production. To reveal the underlying mechanism, RNA-seq analysis of transcriptional changes was performed in high producer M2 and reference strain M1, and a total of 1379 differentially expressed genes were obtained. Data analysis revealed that carbon flux was elevated through lipid metabolism, acetyl-CoA and mevalonate supply, but restrained through central carbon metabolism in strain M2. Moreover, upregulation of other pathways such as ATP-binding cassette transporter and thiamine pyrophosphate possibly provided more cofactors for carotenoid hydroxylase and relieved cell membrane stress caused by astaxanthin insertion. These results suggest that balancing cell growth and astaxanthin production may be important to promote efficient biosynthesis of astaxanthin in Y. lipolytica.


Assuntos
Perfilação da Expressão Gênica , Xantofilas , Yarrowia , Yarrowia/genética , Yarrowia/metabolismo , Xantofilas/metabolismo , Engenharia Metabólica , Transcriptoma , Regulação Fúngica da Expressão Gênica , Redes e Vias Metabólicas/genética , Análise do Fluxo Metabólico , Metabolismo dos Lipídeos , Biomassa
2.
Arch Microbiol ; 206(9): 375, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39141138

RESUMO

Pullulan is a microbial exopolysaccharide produced by Aureobasidium spp. with excellent physical and chemical properties, resulting in great application value. In this study, a novel strain RM1603 of Aureobasidium pullulans with high pullulan production of 51.0 ± 1.0 g·L- 1 isolated from rhizosphere soil was subjected to atmospheric and room temperature plasma (ARTP) mutagenesis, followed by selection of mutants to obtain pullulan high-producing strains. Finally, two mutants Mu0816 and Mu1519 were obtained, with polysaccharide productions of 58.7 ± 0.8 and 60.0 ± 0.8 g∙L- 1 after 72-h fermentation, representing 15.1 and 17.6% increases compared with the original strain, respectively. Transcriptome analysis of the two mutants and the original strain revealed that the high expression of α/ß-hydrolase (ABHD), α-amylase (AMY1), and sugar porter family MFS transporters (SPF-MFS) in the mutants may be related to the synthesis and secretion of pullulan. These results demonstrated the effectiveness of ARTP mutagenesis in A. pullulans, providing a basis for the investigation of genes related to pullulan synthesis and secretion.


Assuntos
Aureobasidium , Fermentação , Perfilação da Expressão Gênica , Glucanos , Mutagênese , Glucanos/metabolismo , Aureobasidium/genética , Aureobasidium/metabolismo , alfa-Amilases/genética , alfa-Amilases/metabolismo , Mutação , Rizosfera , Microbiologia do Solo , Transcriptoma , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
3.
Front Nutr ; 9: 876649, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35558745

RESUMO

Thraustochytrids, such as Aurantiochytrium and Schizochytrium, have been shown as a promising sustainable alternative to fish oil due to its ability to accumulate a high level of docosahexaenoic acid (DHA) from its total fatty acids. However, the low DHA volumetric yield by most of the wild type (WT) strain of thraustochytrids which probably be caused by the low oxidative stress tolerance as well as a limited supply of key precursors for DHA biosynthesis has restricted its application for industrial application. Thus, to enhance the DHA production, we aimed to generate Aurantiochytrium SW1 mutant with high tolerance toward oxidative stress and high glucose-6 phosphate dehydrogenase (G6PDH) activities through strategic plasma mutagenesis coupled with chemical screening. The WT strain (Aurantiochytrium sp. SW1) was initially exposed to plasma radiation and was further challenged with zeocin and polydatin, generating a mutant (YHPM1) with a 30, 65, and 80% higher overall biomass, lipid, and DHA production in comparison with the parental strains, respectively. Further analysis showed that the superior growth, lipid, and DHA biosynthesis of the YHMP1 were attributed not only to the higher G6PDH and enzymes involved in the oxidative defense such as superoxide dismutase (SOD) and catalase (CAT) but also to other key metabolic enzymes involved in lipid biosynthesis. This study provides an effective approach in developing the Aurantiochytrium sp. mutant with superior DHA production capacity that has the potential for industrial applications.

4.
Bioengineered ; 12(1): 266-277, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33356788

RESUMO

Chitosan hydrolysis by chitosanase is one of the most effective methods to produce chitosan oligosaccharides. One of the prerequisites of enzyme fermentation production is to select and breed enzyme-producing cells with good performance. So in the process of fermentation production, the low yield of chitosanase cannot meet the current requirement. In this paper, a strain producing chitosanase was screened and identified, and a novel mutagenesis system (Atmospheric and Room Temperature Plasma (ARTP)) was selected to increase the yield of chitosanase. Then, the fermentation medium was optimized to further improve the enzyme activity of the strain. A strain of Bacillus cereus capable of producing chitosanase was screened and identified from soil samples. A mutant strain of B.cereus was obtained by Atmospheric and Room Temperature Plasma mutagenesis and bioscreening method, and chitosanase activity was 2.49 folds that of the original bacterium. After an optimized fermentation medium, the enzyme activity of the mutant strain was 1.47 folds that of the original bacterium. Combined with all the above optimization experiments, the enzyme activity of mutant strain increased by 3.66 times. The results showed that the Atmospheric and Room Temperature Plasma mutagenesis and bioscreening method could significantly increase the yield of chitosanase in B.cereus, and had little effect on the properties of the enzyme. These findings have potential applications in the mutagenesis of other enzyme-producing microorganisms.


Assuntos
Bacillus cereus , Proteínas de Bactérias , Glicosídeo Hidrolases , Mutagênese/genética , Bacillus cereus/enzimologia , Bacillus cereus/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Meios de Cultura , Estabilidade Enzimática , Fermentação , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Engenharia de Proteínas , Microbiologia do Solo
5.
Carbohydr Polym ; 189: 210-217, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29580401

RESUMO

Polymer sanxan is a novel microbial polysaccharide produced by Sphingomonas sanxanigenens NX02, which can produce poly-3-hydroxybutyrate (PHB) simultaneously. A strategy of combining rational and random gene manipulation was investigated to improve the yield of sanxan. Several crucial PHB biosynthesis genes were deleted through homologous recombination, then the PHB-deficient mutant was treated with plasma mutagenesis to obtain NXdP, an engineering strain. Ultimately, the yield of purified sanxan produced by strain NXdP increased from 14.88 ±â€¯0.83 g/L to 21.20 ±â€¯0.38 g/L in a 5 L bioreactor, while the cell dry weight (CDW) was decreased from 9.61 ±â€¯0.14 g/L to 3.12 ±â€¯0.15 g/L. The total precipitable material (crude sanxan) produced from NXdP showed higher zero-shear viscosity, light transmittance, and greater gel strength than that from NX02 due to the enhancement of its purity. The engineering strategies explored here are useful for engineering cell factories to produce other valuable metabolites.


Assuntos
Hidrogéis/química , Hidroxibutiratos/química , Poliésteres/química , Sphingomonas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA