Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(23): e2310353, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38150652

RESUMO

Integrating the plasmonic chirality with excellent catalytic activities in plasmonic hybrid nanostructures provides a promising strategy to realize the chiral nanocatalysis toward many chemical reactions. However, the controllable synthesis of catalytically active chiral plasmonic nanoparticles with tailored geometries and compositions remains a significant challenge. Here it is demonstrated that chiral Au-Pd alloy nanorods with tunable optical chirality and catalytically active surfaces can be achieved by a seed-mediated coreduction growth method. Through manipulating the chiral inducers, Au nanorods selectively transform into two different intrinsically chiral Au-Pd alloy nanorods with distinct geometric chirality and tunable optical chirality. By further adjusting several key synthetic parameters, the optical chirality, composition, and geometry of the chiral Au-Pd nanorods are fine-tailored. More importantly, the chiral Au-Pd alloy nanorods exhibit appealing chiral catalytic activities as well as polarization-dependent plasmon-enhanced nanozyme catalytic activity, which has great potential for chiral nanocatalysis and plasmon-induced chiral photochemistry.

2.
Nano Lett ; 23(20): 9428-9436, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37823692

RESUMO

Chiral plexcitons, produced by the strong interaction between plasmonic nanocavities and chiral molecules, can provide a promising direction for controlling chiroptical responses on the nanoscale. Here, we reveal the chiral origin and electromagnetic hybridization process in chiral strongly coupled systems. The mechanism and unique advantages of chiral plexcitons for fine-tuning circular dichroism (CD) responses are demonstrated, providing a rule for controlling chiral light-matter interactions in complex chiral nanosystems. Furthermore, we experimentally demonstrate the fine-tuning of chiral plexcitons in hybrid systems consisting of plasmonic nanoparticles and chiral J-aggregates. Continuous and precise tuning of the CD resonance positions was successfully achieved in a given structure. Compared with the previous work, the CD spectral tuning accuracy has been improved by an order of magnitude, which can reach the level of 1 nm. Our findings provide a feasible strategy and theoretical basis for accurately controlling chirality in multiple dimensions.

3.
Nano Lett ; 23(21): 9880-9886, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37877612

RESUMO

The bottom-up production of chiral gold nanomaterials holds great potential for the advancement of biosensing and nano-optics, among other applications. Reproducible preparations of colloidal nanomaterials with chiral morphology have been reported, using cosurfactants or chiral inducers such as thiolated amino acids. However, the underlying growth mechanisms for these nanomaterials remain insufficiently understood. We introduce herein a purposely devised chiral inducer, a cysteine modified with a hydrophobic chain, as a versatile chiral inducer. The amphiphilic and chiral features of this molecule provide control over the chiral morphology and the chiroptical signature of the obtained nanoparticles by simply varying the concentration of chiral inducer. These results are supported by circular dichroism and electromagnetic modeling as well as electron tomography to analyze structural evolution at the facet scale. Our observations suggest complex roles for the factors involved in chiral synthesis: the chemical nature of the chiral inducers and the influence of cosurfactants.

4.
Angew Chem Int Ed Engl ; 62(52): e202312615, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37945530

RESUMO

Chiral plasmonic nanoparticles have attracted much attention because of their strong chiroptical responses and broad scientific applications. However, the types of chiral plasmonic nanoparticles have remained limited. Herein we report on a new type of chiral nanoparticle, chiral Au nanorod (NR) with five-fold rotational symmetry, which is synthesized using chiral molecules. Three different types of Au seeds (Au elongated nanodecahedrons, nanodecahedrons, and nanobipyramids) are used to study the growth behaviors. Different synthesis parameters, including the chiral molecules, surfactant, reductant, seeds, and Au precursor, are systematically varied to optimize the chiroptical responses of the chiral Au NRs. The chiral scattering measurements on the individual chiral Au NRs and their dimers are performed. Intriguingly, the chiroptical signals of the individual chiral Au NRs and their end-to-end dimers are similar, while those of the side-by-side dimers are largely reduced. Theoretical calculations and numerical simulations reveal that the different chiroptical responses of the chiral NR dimers are originated from the coupling effect between the plasmon resonance modes. Our study enriches chiral plasmonic nanoparticles and provides valuable insight for the design of plasmonic nanostructures with desired chiroptical properties.

5.
Proc Natl Acad Sci U S A ; 115(13): 3225-3230, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29531058

RESUMO

Amyloid fibrils, which are closely associated with various neurodegenerative diseases, are the final products in many protein aggregation pathways. The identification of fibrils at low concentration is, therefore, pivotal in disease diagnosis and development of therapeutic strategies. We report a methodology for the specific identification of amyloid fibrils using chiroptical effects in plasmonic nanoparticles. The formation of amyloid fibrils based on α-synuclein was probed using gold nanorods, which showed no apparent interaction with monomeric proteins but effective adsorption onto fibril structures via noncovalent interactions. The amyloid structure drives a helical nanorod arrangement, resulting in intense optical activity at the surface plasmon resonance wavelengths. This sensing technique was successfully applied to human brain homogenates of patients affected by Parkinson's disease, wherein protein fibrils related to the disease were identified through chiral signals from Au nanorods in the visible and near IR, whereas healthy brain samples did not exhibit any meaningful optical activity. The technique was additionally extended to the specific detection of infectious amyloids formed by prion proteins, thereby confirming the wide potential of the technique. The intense chiral response driven by strong dipolar coupling in helical Au nanorod arrangements allowed us to detect amyloid fibrils down to nanomolar concentrations.


Assuntos
Amiloide/análise , Amiloide/química , Nanotubos/química , Doença de Parkinson/patologia , alfa-Sinucleína/química , Idoso , Amiloide/ultraestrutura , Encéfalo/patologia , Dicroísmo Circular , Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Feminino , Ouro/química , Humanos , Corpos de Lewy/patologia , Príons/análise , Príons/genética , Ressonância de Plasmônio de Superfície , alfa-Sinucleína/genética
6.
Angew Chem Int Ed Engl ; 59(35): 15038-15042, 2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32406595

RESUMO

Self-assembled plasmonic logic gates that read DNA molecules as input and return plasmonic chiroptical signals as outputs are reported. Such logic gates are achieved on a DNA-based platform that logically regulate the conformation of a chiral plasmonic nanostructure, upon specific input DNA strands and internal computing units. With systematical designs, a complete set of Boolean logical gates are realized. Intriguingly, the logic gates could be endowed with adaptiveness, so they can autonomously alter their logics when the environment changes. As a demonstration, a logic gate that performs AND function at body temperature while OR function at cold storage temperature is constructed. In addition, the plasmonic chiroptical output has three distinctive states, which makes a three-state molecular logic gate readily achievable on this platform. Such DNA-based plasmonic logic gates are envisioned to execute more complex tasks giving these unique characteristics.

7.
Angew Chem Int Ed Engl ; 57(33): 10544-10548, 2018 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-29885071

RESUMO

MicroRNAs (miRNAs), a kind of single-stranded small RNA molecules, play a crucial role in physiological and pathological processes in human beings. We describe here the detection of miRNA, by side-by-side self-assembly of plasmonic nanorod dimers in living cells, which gives rise to a distinct intense chiroplasmonic response and surface-enhanced Raman scattering (SERS). The dynamic assembly of chiral nanorods was confirmed by fluorescence resonance energy transfer (FRET), also in living cells. Our study provides insights into in situ self-assembly of plasmonic probes for the real-time measurement of biomarkers in living cells. This could improve the current understanding of cellular RNA-protein complexes, pharmaco-genomics, and genetic diagnosis and therapies.


Assuntos
MicroRNAs/química , Nanotubos/química , Acrilatos/química , Biomarcadores/metabolismo , Dimerização , Transferência Ressonante de Energia de Fluorescência , Ouro/química , Humanos , Células MCF-7 , Microscopia Confocal , Poliestirenos/química , Análise Espectral Raman , Estereoisomerismo
8.
Nano Lett ; 16(2): 1462-6, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26745446

RESUMO

Chirality is a highly important topic in modern chemistry, given the dramatically different pharmacological effects that enantiomers can have on the body. Chirality of natural molecules can be controlled by reconfiguration of molecular structures through external stimuli. Despite the rapid progress in plasmonics, active regulation of plasmonic chirality, particularly in the visible spectral range, still faces significant challenges. In this Letter, we demonstrate a new class of hybrid plasmonic metamolecules composed of magnesium and gold nanoparticles. The plasmonic chirality from such plasmonic metamolecules can be dynamically controlled by hydrogen in real time without introducing macroscopic structural reconfiguration. We experimentally investigate the switching dynamics of the hydrogen-regulated chiroptical response in the visible spectral range using circular dichroism spectroscopy. In addition, energy dispersive X-ray spectroscopy is used to examine the morphology changes of the magnesium particles through hydrogenation and dehydrogenation processes. Our study can enable plasmonic chiral platforms for a variety of gas detection schemes by exploiting the high sensitivity of circular dichroism spectroscopy.

9.
Angew Chem Int Ed Engl ; 56(9): 2361-2365, 2017 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-28102964

RESUMO

Supramolecular self-assembly is an important process that enables the conception of complex structures mimicking biological motifs. Herein, we constructed helical fibrils through chiral self-assembly of nucleobase-peptide conjugates (NPCs), where achiral nucleobases are helically displayed on the surface of fibrils, comparable to polymerized nucleic acids. Selective binding between DNA and the NPC fibrils was observed with fluorescence polarization. Taking advantage of metal-nucleobase recognition, we highlight the possibility of deposition/assembly of plasmonic nanoparticles onto the fibrillar constructs. In this approach, the supramolecular chirality of NPCs can be adaptively imparted to metallic nanoparticles, covering them to generate structures with plasmonic chirality that exhibit significantly improved colloidal stability. The self-assembly of rationally designed NPCs into nanohelices is a promising way to engineer complex, optically diverse nucleobase-derived nanomaterials.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Nanoestruturas/química , Ácidos Nucleicos/química , Peptídeos/química , Sítios de Ligação , Coloides/química , DNA/química , Modelos Moleculares , Nanoestruturas/ultraestrutura , Polimerização
10.
Adv Mater ; 36(13): e2310197, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37905376

RESUMO

Obtaining hierarchical structures with arbitrarily controlled chirality remains a challenge. Here, thin films featuring chiroptically bipolar patterns are produced by a device utilizing microscale photothermal re-melting of materials exhibiting chirality synchronization. This device operates autonomously, guided by an algorithm that facilitates the homochiral growth of supramolecular organic helices through controlling their re-melting. The chirality synchronization phenomena of constitutionally achiral molecules grants availability of both handednesses of the helices, enabling unrestricted chiral writing in the film. The collective chiroptical response of assembled molecules is utilised to guide the patterning process, creating a foundation for optically secured information. The established methodology enables achieving dissymmetry factor values for circular dichroism (CD) a magnitude higher than previously reported, as confirmed with state-of-the-art, synchrotron-based Mueller matrix polarimetry (MMP). Moreover, the developed method is extended to nanocomposites comprising gold nanoparticles, providing the opportunity to tune the CD toward the plasmonic region. This strategic application of photothermal processing, specifically laser-directed melting, uncovers the potential to broaden the selection of nanostructured materials with precisely designed functionalities for photonic applications.

11.
Adv Mater ; : e2306297, 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37572380

RESUMO

Intrinsically chiral plasmonic nanomaterials exhibit intriguing geometry-dependent chiroptical properties, which is due to the combination of plasmonic features with geometric chirality. Thus, chiral plasmonic nanomaterials have become promising candidates for applications in biosensing, asymmetric catalysis, biomedicine, photonics, etc. Recent advances in geometric control and optical tuning of intrinsically chiral plasmonic nanomaterials have further opened up a unique opportunity for their widespread applications in many emerging technological areas. Here, the recent developments in the geometric control of chiral plasmonic nanomaterials are reviewed with special attention given to the quantitative understanding of the chiroptical structure-property relationship. Several important optical spectroscopic tools for characterizing the optical chirality of plasmonic nanomaterials at both ensemble and single-particle levels are also discussed. Three emerging applications of chiral plasmonic nanomaterials, including enantioselective sensing, enantioselective catalysis, and biomedicine, are further highlighted. It is envisioned that these advanced studies in chiral plasmonic nanomaterials will pave the way toward the rational design of chiral nanomaterials with desired optical properties for diverse emerging technological applications.

12.
ACS Nano ; 16(12): 19789-19809, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36454684

RESUMO

Chiral Au nanorods (c-Au NRs) with diverse architectures constitute an interesting nanospecies in the field of chiral nanophotonics. The numerous possible plasmonic behaviors of Au NRs can be coupled with chirality to initiate, tune, and amplify their chiroptical response. Interdisciplinary technologies have boosted the development of fabrication and applications of c-Au NRs. Herein, we have focused on the role of chirality in c-Au NRs which helps to manipulate the light-matter interaction in nontraditional ways. A broad overview on the chirality origin, chirality transfer, chiroptical activities, artificially synthetic methodologies, and circularly polarized applications of c-Au NRs will be summarized and discussed. A deeper understanding of light-matter interaction in c-Au NRs will help to manipulate the chirality at the nanoscale, reveal the natural evolution process taking place, and set up a series of circularly polarized applications.

13.
ACS Nano ; 14(5): 6087-6096, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32374982

RESUMO

Noble metal nanostructures with plasmonic circular dichroism (PCD) have attracted interest, and a modulation of PCD is of great importance for their potential applications. Herein, we propose a supramolecular strategy for achieving dual thermal and photoswitchable PCD. When guanosine (G), deoxyguanosine (dG), and boric acid modified achiral gold nanorods (GNRs) were coassembled into a hydrogel, hybrid nanofibers with PCD were produced. When the hydrogel was heated, the nanofiber was disassembled and the PCD disappeared. As the hydrogel was thermally reversible, a thermo-controlled PCD could be realized. The hybrid hydrogel also showed photoswitchable PCD. When the gel was irradiated with an IR laser, the PCD disappeared. It can be restored by being placed at room temperature. Moreover, the hybrid gel was selectively responsive to the circularly polarized light (CPL). For (G/dG)-GNR hybrid assemblies, the R-CPL irradiation showed photothermal efficiency higher than that of L-CPL, which made it useful for an IR-irradiation-controlled release of drug molecules.

14.
ACS Nano ; 13(12): 13702-13708, 2019 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-31550129

RESUMO

Herein, we report self-assembled reconfigurable plasmonic diastereomers based on DNA nanotechnology. Up to three plasmonic chiral centers were organized by dynamic DNA origami platforms. Meanwhile, each chiral center could be individually controlled to switch between left-handed and right-handed states. Thus, complex and reconfigurable chiral plasmonic diastereomers with eight plasmonic stereoisomers were achieved, driven by programmed DNA reactions. With these plasmonic diastereomers, we demonstrated the existence of strong cross-talk near-field coupling among chiral centers, and the coupling of chiral centers could substantially contribute to the overall CD signals. Our work provides an important bottom-up approach for building complex and dynamic chiral plasmonics and for probing the interactions of plasmonic chiral centers.


Assuntos
DNA/química , Conformação de Ácido Nucleico , DNA/ultraestrutura , Ouro/química , Nanopartículas Metálicas/ultraestrutura , Estereoisomerismo
15.
Nanomaterials (Basel) ; 8(12)2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30513752

RESUMO

Gold nanocrystals have attracted considerable attention due to their excellent physical and chemical properties and their extensive applications in plasmonics, spectroscopy, biological detection, and nanoelectronics. Gold nanoparticles are able to be readily modified and arranged with DNA materials and protein molecules, as well as viruses. Particularly DNA materials with the advantages endowed by programmability, stability, specificity, and the capability to adapt to functionalization, have become the most promising candidates that are widely utilized for building plenty of discrete gold nanoarchitectures. This review highlights recent advances on the DNA-based assembly of gold nanostructures and especially emphasizes their resulted superior optical properties and principles, including plasmonic extinction, plasmonic chirality, surface enhanced fluorescence (SEF), and surface-enhanced Raman scattering (SERS).

16.
Materials (Basel) ; 11(8)2018 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-30049936

RESUMO

Sodium deoxycholate modified silver nanoparticles prepared in the presence of sodium deoxycholate as a chiral inducer exhibit plasmonic circular dichroism (CD) signals. The plasmon-induced chirality arises from the presence of chiral molecules (sodium deoxycholate) on the surface of Ag nanoparticles, which transfer their chiral properties to the visible wavelength range due to the Coulomb interactions between the chiral molecules and plasmonic nanoparticles. The prepared Ag nanoparticles (NPs) exhibit distinct line shapes of plasmonic CD, which can be tailored by varying the pH values of the solutions. A mechanism was proposed to explain the generation of the distinct plasmonic CD shapes, which indicated that the arrangements of chiral molecules in the plasmonic hot spots between Ag NPs are crucial for the induced plasmonic CD.

17.
ACS Appl Mater Interfaces ; 10(32): 26835-26840, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30073831

RESUMO

Templated by DNA origami, plasmonic gold nanorods (AuNRs) could be assembled into complex nanostructures with strong chiroptical activities. However, it is still not clear how the plasmonic chirality of a complex nanostructure matters with its daughter structural components. Here, we rationally design and fabricate a series of AuNR trimers and their daughter AuNR dimers. Strikingly, we corroborate by circular dichroism spectroscopy that the plasmonic chirality of asymmetrical AuNR trimers is a nearly perfect summation of the chiroptical response of all their constituent dimeric components. Our results provide fundamental insight into the origin of the plasmonic chirality of complex nanostructures.


Assuntos
Nanotubos , DNA , Ouro
18.
Adv Mater ; 29(16)2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28218431

RESUMO

Plasmonic motifs with precise surface recognition sites are crucial for assembling defined nanostructures with novel functionalities and properties. In this work, a unique and effective strategy is successfully developed to pattern DNA recognition sites in a helical arrangement around a gold nanorod (AuNR), and a new set of heterogeneous AuNR@AuNP plasmonic helices is fabricated by attaching complementary-DNA-modified gold nanoparticles (AuNPs) to the predesigned sites on the AuNR surface. AuNR is first assembled to one side of a bifacial rectangular DNA origami, where eight groups of capture strands are selectively patterned on the other side. The subsequently added link strands make the rectangular DNA origami roll up around the AuNR into a tubular shape, therefore giving birth to a chiral patterning of DNA recognition sites on the surface of AuNR. Following the hybridization with the AuNPs capped with the complementary strands to the capture strands on the DNA origami, left-handed and right-handed AuNR@AuNP helical superstructures are precisely formed by tuning the pattern of the recognition sites on the AuNR surface. Our strategy of nanoparticle surface patterning innovatively realizes hierarchical self-assembly of plasmonic superstructures with tunable chiroptical responses, and will certainly broaden the horizon of bottom-up construction of other functional nanoarchitectures with growing complexity.


Assuntos
Nanotubos , DNA , Ouro , Nanopartículas Metálicas , Nanoestruturas
19.
J Phys Chem Lett ; 4(4): 641-7, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-26281880

RESUMO

Organization of nanoparticles (NPs) of different materials into superstructures of higher complexity represents a key challenge in nanotechnology. Polymerase chain reaction (PCR) was used in this study to fabricate chains consisting of plasmonic NPs of different sizes, thus denoted heterochains. The NPs in such chains are connected by DNA oligomers, alternating in a sequence big-small-big-small-... and spanning lengths in the range of 40-300 nm by varying the number of PCR cycles. They display strong plasmonic chirality at 500-600 nm, the chiral activity revealing nonmonotonous dependence on the length of heterochains. We find the strength of surface-enhanced Raman scattering (SERS) to increase with chain length, while the chiral response initially increased and then decreased with the number of PCR cycles. The relationship between the optical properties of the heterochains and their structure/length is discussed. The length-dependent intense optical response of the plasmonic NP heterochains holds great potential for biosensing applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA