Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(21): 6362-6368, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38752764

RESUMO

Plasmonic nanoantennas have proven to be efficient transducers of electromagnetic to mechanical energy and vice versa. The sudden thermal expansion of these structures after an ultrafast optical pulsed excitation leads to the emission of hypersonic acoustic waves to the supporting substrate, which can be detected by another antenna that acts as a high-sensitivity mechanical probe due to the strong modulation of its optical response. Here, we propose and experimentally demonstrate a nanoscale acoustic lens comprised of 11 gold nanodisks whose collective oscillation at gigahertz frequencies gives rise to an interference pattern that results in a diffraction-limited surface acoustic beam of about 340 nm width, with an amplitude contrast of 60%. Via spatially decoupled pump-probe experiments, we were able to map the radiated acoustic energy in the proximity of the focal area, obtaining a very good agreement with the continuum elastic theory.

2.
Nano Lett ; 22(24): 9914-9919, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36480926

RESUMO

Plasmonic gratings are simple and effective platforms for nonlinear signal generation since they provide a well-defined momentum for photon-plasmon coupling and local hot spots for frequency conversion. Here, a plasmonic azimuthally chirped grating (ACG), which provides spatially resolved broadband momentum for photon-plasmon coupling, was exploited to investigate the plasmonic enhancement effect in two nonlinear optical processes, namely two-photon photoluminescence (TPPL) and second harmonic generation (SHG). The spatial distributions of the nonlinear signals were determined experimentally by hyperspectral mapping with ultrashort pulsed excitation. The experimental spatial distributions of nonlinear signals agree very well with the analytical prediction based on photon-plasmon coupling with the momentum of the ACG, revealing the "antenna" function of the grating in plasmonic nonlinear signal generation. This work highlights the importance of the antenna effect of the gratings for nonlinear signal generation and provides insight into the enhancement mechanism of plasmonic gratings in addition to local hot spot engineering.

3.
Sensors (Basel) ; 22(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36236435

RESUMO

Optical wireless transmission has recently become a major cutting-edge alternative for on-chip/inter-chip communications with higher transmission speeds and improved power efficiency. Plasmonic nanoantennas, the building blocks of this new nanoscale communication paradigm, require precise design to have directional radiation and improved communication ranges. Particular interest has been paid to plasmonic Yagi-Uda, i.e., the optical analog of the conventional Radio Frequency (RF) Yagi-Uda design, which may allow directional radiation of plasmonic fields. However, in contrast to the RF model, an overall design strategy for the directional and optimized front-to-back ratio of the radiated far-field patterns is lacking. In this work, a guide for the optimized design of Yagi-Uda plasmonic nanoantennas is shown. In particular, five different design conditions are used to study the effects of sizes and spacing between the constituent parts (made of Au). Importantly, it is numerically demonstrated (using the scattered fields) that closely spaced nanoantenna elements are not appropriated for directional light-to-plasmon conversion/radiation. In contrast, if the elements of the nanoantenna are widely spaced, the structure behaves like a one-dimensional array of nanodipoles, producing a funnel-like radiation pattern (not suitable for on-chip wireless optical transmission). Therefore, based on the results here, it can be concluded that the constituent metallic rib lengths must be optimized to exhibit the resonance at the working wavelength, whilst their separations should follow the relation λeff/π, where λeff indicates the effective wavelength scaling for plasmonic nanostructures.


Assuntos
Nanoestruturas , Ressonância de Plasmônio de Superfície , Nanoestruturas/química , Ressonância de Plasmônio de Superfície/métodos
4.
Nano Lett ; 19(2): 1242-1250, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30602118

RESUMO

Optical metasurfaces have emerged as a new generation of building blocks for multifunctional optics. Design and realization of metasurface elements place ever-increasing demands on accurate assessment of phase alterations introduced by complex nanoantenna arrays, a process referred to as quantitative phase imaging. Despite considerable effort, the widefield (nonscanning) phase imaging that would approach resolution limits of optical microscopy and indicate the response of a single nanoantenna still remains a challenge. Here, we report on a new strategy in incoherent holographic imaging of metasurfaces, in which unprecedented spatial resolution and light sensitivity are achieved by taking full advantage of the polarization selective control of light through the geometric (Pancharatnam-Berry) phase. The measurement is carried out in an inherently stable common-path setup composed of a standard optical microscope and an add-on imaging module. Phase information is acquired from the mutual coherence function attainable in records created in broadband spatially incoherent light by the self-interference of scattered and leakage light coming from the metasurface. In calibration measurements, the phase was mapped with the precision and spatial background noise better than 0.01 and 0.05 rad, respectively. The imaging excels at the high spatial resolution that was demonstrated experimentally by the precise amplitude and phase restoration of vortex metalenses and a metasurface grating with 833 lines/mm. Thanks to superior light sensitivity of the method, we demonstrated for the first time to our knowledge the widefield measurement of the phase altered by a single nanoantenna while maintaining the precision well below 0.15 rad.

5.
Nano Lett ; 18(11): 7038-7044, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30336056

RESUMO

By enhancing the photoluminescence from aligned seven-atom wide armchair-edge graphene nanoribbons using plasmonic nanoantennas, we are able to observe blinking of the emission. The on- and off-times of the blinking follow power law statistics. In time-resolved spectra, we observe spectral diffusion. These findings together are a strong indication of the emission originating from a single quantum emitter. The room temperature photoluminescence displays a narrow spectral width of less than 50 meV, which is significantly smaller than the previously observed ensemble line width of 0.8 eV. From spectral time traces, we identify three optical transitions, which are energetically situated below the lowest bulk excitonic state E11 of the nanoribbons. We attribute the emission to transitions involving Tamm states localized at the end of the nanoribbon. The photoluminescence from a single ribbon is strongly enhanced when its end is in the antenna hot spot resulting in the observed single molecule characteristics of the emission. Our findings illustrate the essential role of the end termination of graphene nanoribbons in light emission and allow us to construct a model for photoluminescence from nanoribbons.

6.
Nano Lett ; 18(6): 3481-3487, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29701991

RESUMO

Electric and magnetic optical fields carry the same amount of energy. Nevertheless, the efficiency with which matter interacts with electric optical fields is commonly accepted to be at least 4 orders of magnitude higher than with magnetic optical fields. Here, we experimentally demonstrate that properly designed photonic nanoantennas can selectively manipulate the magnetic versus electric emission of luminescent nanocrystals. In particular, we show selective enhancement of magnetic emission from trivalent europium-doped nanoparticles in the vicinity of a nanoantenna tailored to exhibit a magnetic resonance. Specifically, by controlling the spatial coupling between emitters and an individual nanoresonator located at the edge of a near-field optical scanning tip, we record with nanoscale precision local distributions of both magnetic and electric radiative local densities of states (LDOS). The map of the radiative LDOS reveals the modification of both the magnetic and electric quantum environments induced by the presence of the nanoantenna. This manipulation and enhancement of magnetic light-matter interaction by means of nanoantennas opens up new possibilities for the research fields of optoelectronics, chiral optics, nonlinear and nano-optics, spintronics, and metamaterials, among others.

7.
Nano Lett ; 17(4): 2265-2272, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28306262

RESUMO

Plasmonic antennas and planar structures have been undergoing intensive developments in order to control the scattering and absorption of light. One specific class, extrinsic chiral surfaces, that does not possess 2-fold rotational symmetry exhibits strong asymmetric transmission for different circular polarizations under obliquely incident illumination. In this work, we show that the design of those surfaces can be optimized with complex multipolar resonances in order to twist the fluorescence emission from nearby molecules. While this emission is usually dipolar and linearly polarized, the interaction with these resonances twists it into a multipolar radiation pattern with opposite helicity in different directions. The proposed structure maximizes this effect and provides control over the polarization of light. Splitting of left- and right-handed circularly polarized light is experimentally obtained in the backward direction. These results highlight the intricate interplay between the near-field absorption and the far-field scattering of a plasmonic nanostructure and are further used for modifying the emission of incoherent quantum sources. Our finding can potentially lead to the development of polarization- and angle-resolved ultracompact optical devices.

8.
Nano Lett ; 15(5): 3410-9, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25915173

RESUMO

Electromagnetic field localization in nanoantennas is one of the leitmotivs that drives the development of plasmonics. The near-fields in these plasmonic nanoantennas are commonly addressed theoretically within classical frameworks that neglect atomic-scale features. This approach is often appropriate since the irregularities produced at the atomic scale are typically hidden in far-field optical spectroscopies. However, a variety of physical and chemical processes rely on the fine distribution of the local fields at this ultraconfined scale. We use time-dependent density functional theory and perform atomistic quantum mechanical calculations of the optical response of plasmonic nanoparticles, and their dimers, characterized by the presence of crystallographic planes, facets, vertices, and steps. Using sodium clusters as an example, we show that the atomistic details of the nanoparticles morphologies determine the presence of subnanometric near-field hot spots that are further enhanced by the action of the underlying nanometric plasmonic fields. This situation is analogue to a self-similar nanoantenna cascade effect, scaled down to atomic dimensions, and it provides new insights into the limits of field enhancement and confinement, with important implications in the optical resolution of field-enhanced spectroscopies and microscopies.

9.
Small ; 11(36): 4632-7, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26114644

RESUMO

Out-of-plane plasmonic nanoantennas protruding from the substrate are exploited to perform very sensitive surface enhanced Raman scattering analysis of living cells. Cells cultured on three-dimensional surfaces exhibit tight adhesion with nanoantenna tips where the plasmonic hot-spot resides. This fact provides observable cell adhesion sites combined with high plasmonic enhancement, resulting in an ideal system for Raman investigation of cell membranes.


Assuntos
Nanoestruturas , Análise Espectral Raman/métodos , Actinas/química , Animais , Adesão Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Proliferação de Células , Sobrevivência Celular , Campos Eletromagnéticos , Ouro/química , Nanopartículas Metálicas , Camundongos , Microscopia Confocal , Microscopia Eletrônica de Varredura , Células NIH 3T3 , Nanotecnologia , Tamanho da Partícula , Prata/química , Software , Espectroscopia de Luz Próxima ao Infravermelho , Ressonância de Plasmônio de Superfície
10.
Adv Mater ; 35(32): e2301787, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37204145

RESUMO

Tailoring light-matter interactions via plasmonic nanoantennas (PNAs) has emerged as a breakthrough technology for spectroscopic applications. The detuning between molecular vibrations and plasmonic resonances, as a fundamental and inevitable optical phenomenon in light-matter interactions, reduces the interaction efficiency, resulting in a weak molecule sensing signal at the strong detuning state. Here, it is demonstrated that the low interaction efficiency from detuning can be tackled by overcoupled PNAs (OC-PNAs) with a high ratio of the radiative to intrinsic loss rates, which can be used for ultrasensitive spectroscopy at strong plasmonic-molecular detuning. In OC-PNAs, the ultrasensitive molecule signals are achieved within a wavelength detuning range of 248 cm-1 , which is 173 cm-1 wider than previous works. Meanwhile, the OC-PNAs are immune to the distortion of molecular signals and maintain a lineshape consistent with the molecular signature fingerprint. This strategy allows a single device to enhance and capture the full and complex fingerprint vibrations in the mid-infrared range. In the proof-of-concept demonstration, 13 kinds of molecules with some vibration fingerprints strongly detuning by the OC-PNAs are identified with 100% accuracy with the assistance of machine-learning algorithms. This work gains new insights into detuning-state nanophotonics for potential applications including spectroscopy and sensors.

11.
Adv Mater ; 34(13): e2107172, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35064601

RESUMO

Nanostructures of conventional metals offer manipulation of light at the nanoscale but are largely limited to static behavior due to fixed material properties. To develop the next frontier of dynamic nano-optics and metasurfaces, this study utilizes the redox-tunable optical properties of conducting polymers, as recently shown to be capable of sustaining plasmons in their most conducting oxidized state. Electrically tunable conducting polymer nano-optical antennas are presented, using nanodisks of poly(3,4-ethylenedioxythiophene:sulfate) (PEDOT:Sulf) as a model system. In addition to repeated on/off switching of the polymeric nanoantennas, the concept enables gradual electrical tuning of the nano-optical response, which was found to be related to the modulation of both density and mobility of the mobile polaronic charge carriers in the polymer. The resonance position of the PEDOT:Sulf nanoantennas can be conveniently controlled by disk size, here reported down to a wavelength of around 1270 nm. The presented concept may be used for electrically tunable metasurfaces, with tunable farfield as well as nearfield. The work thereby opens for applications ranging from tunable flat meta-optics to adaptable smart windows.

12.
ACS Nano ; 16(1): 386-393, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34962766

RESUMO

The inverse Faraday effect allows the generation of stationary magnetic fields through optical excitation only. This light-matter interaction in metals results from creating drift currents via nonlinear forces that light applies to the conduction electrons. Here, we describe the theory underlying the generation of drift currents in metals, particularly its application to photonic nanostructures using numerical simulations. We demonstrate that a gold photonic nanoantenna, optimized by a genetic algorithm, allows, under high excitation power, to maximize the drift currents and generate a pulse of stationary magnetic fields in the tesla range. This intense magnetic field, confined at the nanoscale and for a few femtoseconds, results from annular optical confinement and not from the creation of a single optical hot spot. Moreover, by controlling the incident polarization state, we demonstrate the orientation control of the created magnetic field and its reversal on demand. Finally, the stationary magnetic field's temporal behavior and the drift currents associated with it reveal the subcycle nature of this light-matter interaction. The manipulation of drift currents by a plasmonic nanostructure for the generation of stationary magnetic field pulses finds applications in the ultrafast control of magnetic domains with applications not only in data storage technologies but also in research fields such as magnetic trapping, magnetic skyrmion, magnetic circular dichroism, to spin control, spin precession, spin currents, and spin-waves, among others.

13.
ACS Appl Mater Interfaces ; 13(20): 24024-24031, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33990134

RESUMO

Quasi-three-dimensionally designed metal-dielectric hybrid nanoantennas have provided a unique capability to control light at the nanoscale beyond the diffraction limit, which has enabled powerful optical manipulation techniques. However, the fabrication of these nanoantennas has largely relied on the use of nanolithography techniques that are time- and cost-consuming, impeding their application in wide-ranging use. Herein, we report a versatile methodology enabling the repetitive replication of these nanoantennas from their silicon molds with tailored optical features for infrared bandpass filtering. Comprehensive experimental and computational analyses revealed the underlying mechanism of this methodology and also provided a technical guideline for pragmatic translation into infrared filters in multispectral imaging.

14.
ACS Nano ; 15(1): 809-818, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33356140

RESUMO

Well-designed plasmonic nanostructures can mediate far and near optical fields and thereby enhance light-matter interactions. To obtain the best overall enhancement, structural parameters need to be carefully tuned to obtain the largest enhancement at the input and output frequencies. This is, however, challenging for nonlinear light-matter interactions involving multiple frequencies because obtaining the full picture of structure-dependent enhancement at individual frequencies is not easy. In this work, we introduce the platform of plasmonic Doppler grating (PDG) to experimentally investigate the enhancement effect of plasmonic gratings in the input and output beams of nonlinear surface-enhanced coherent anti-Stokes Raman scattering (SECARS). PDGs are designable azimuthally chirped gratings that provide broadband and spatially dispersed plasmonic enhancement. Therefore, they offer the opportunity to observe and compare the overall enhancement from different combinations of enhancement in individual input and output beams. We first confirm PDG's capability of spatially separating the input and output enhancement in linear surface-enhanced fluorescence and Raman scattering. We then investigate spatially resolved enhancement in nonlinear SECARS, where coherent interaction of the pump, Stokes, and anti-Stokes beams is enhanced by the plasmonic gratings. By mapping the SECARS signal and analyzing the azimuthal angle-dependent intensity, we characterize the enhancement at individual frequencies. Together with theoretical analysis, we show that while simultaneous enhancement in the input and output beams is important for SECARS, the enhancement in the pump and anti-Stokes beams plays a more critical role in the overall enhancement than that in the Stokes beam. This work provides an insight into the enhancement mechanism of plasmon-enhanced spectroscopy, which is important for the design and optimization of plasmonic gratings. The PDG platform may also be applied to study enhancement mechanisms in other nonlinear light-matter interactions or the impact of plasmonic gratings on the fluorescence lifetime.

15.
ACS Nano ; 14(6): 7666-7672, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32438800

RESUMO

The strongly enhanced and confined subwavelength optical fields near plasmonic nanoantennas have been extensively studied not only for the fundamental understanding of light-matter interactions at the nanoscale but also for their emerging practical application in enhanced second harmonic generation, improved inelastic electron tunneling, harvesting solar energy, and photocatalysis. However, owing to the deep subwavelength nature of plasmonic field confinement, conventional optical imaging techniques are incapable of characterizing the optical performance of these plasmonic nanoantennas. Here, we demonstrate super-resolution imaging of ∼20 nm optical field confinement by monitoring randomly moving dye molecules near plasmonic nanoantennas. This Brownian optical microscopy is especially suitable for plasmonic field characterization because of its capabilities for polarization sensitive wide-field super-resolution imaging.

16.
ACS Appl Mater Interfaces ; 12(9): 11155-11162, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32049480

RESUMO

Capabilities of highly sensitive surface-enhanced infrared absorption (SEIRA) spectroscopy are demonstrated by exploiting large-area templates (cm2) based on self-organized (SO) nanorod antennas. We engineered highly dense arrays of gold nanorod antennas featuring polarization-sensitive localized plasmon resonances, tunable over a broadband near- and mid-infrared (IR) spectrum, in overlap with the so-called "functional group" window. We demonstrate polarization-sensitive SEIRA activity, homogeneous over macroscopic areas and stable in time, by exploiting prototype self-assembled monolayers of IR-active octadecanthiol (ODT) molecules. The strong coupling between the plasmonic excitation and molecular stretching modes gives rise to characteristic Fano resonances in SEIRA. The SO engineering of the active hotspots in the arrays allows us to achieve signal amplitude improved up to 5.7%. This figure is competitive to the response of lithographic nanoantennas and is stable when the optical excitation spot varies from the micro- to macroscale, thus enabling highly sensitive SEIRA spectroscopy with cost-effective nanosensor devices.

17.
ACS Nano ; 11(8): 8034-8046, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28693314

RESUMO

Here we report an infrared plasmonic nanosensor for label-free, sensitive, specific, and quantitative identification of nanometer-sized molecules. The device design is based on vertically coupled complementary antennas (VCCAs) with densely patterned hot-spots. The elevated metallic nanobars and complementary nanoslits in the substrate strongly couple at vertical nanogaps between them, resulting in dual-mode sensing dependent on the light polarization parallel or perpendicular to the nanobars. We demonstrate experimentally that a monolayer of octadecanethiol (ODT) molecules (thickness 2.5 nm) leads to significant antenna resonance wavelength shift over 136 nm in the parallel mode, corresponding to 7.5 nm for each carbon atom in the molecular chain or 54 nm for each nanometer in analyte thickness. Additionally, all four characteristic vibrational fingerprint signals, including the weak CH3 modes, are clearly delineated experimentally in both sensing modes. Such a dual-mode sensing with a broad wavelength design range (2.5 to 4.5 µm) is potentially useful for multianalyte detection. Additionally, we create a mathematical algorithm to design gold nanoparticles on VCCA sensors in simulation with their morphologies statistically identical to those in experiments and systematically investigate the impact of the nanoparticle morphology on the nanosensor performance. The nanoparticles form dense hot-spots, promote molecular adsorption, enhance near-field intensity 103 to 104 times, and improve ODT refractometric and fingerprint sensitivities. Our VCCA sensor structure offers a great design flexibility, dual-mode operation, and high detection sensitivity, making it feasible for broad applications from biomarker detection to environment monitoring and energy harvesting.

18.
ACS Appl Mater Interfaces ; 8(10): 6629-38, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26824254

RESUMO

We report on the surface-enhanced Raman scattering (SERS) efficiency of self-organized arrays of Au nanocrescents confined on monolayers of polystyrene nanospheres. A dichroic SERS emission in the visible spectrum is observed due to the selective excitation of a localized surface plasmon (LSP) resonance along the "short axis" of the Au nanocrescents. Under these conditions SERS signal amplifications in the range of 10(3) have been observed with respect to a flat reference Au film. The far field and near field plasmonic response of Au nanocrescent arrays have been investigated as a function of the metal dose deposited onto the polymeric spheres. In this way, we show the possibility of simply tailoring the SERS emission by engineering the morphology of the plasmonic nanocrescents. We highlight the SERS activity of chains of satellite nanoclusters that decorate the border of each connected crescent and sustain isotropic high energy LSP resonances in the visible spectrum.

19.
ACS Nano ; 10(12): 11266-11279, 2016 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-28024347

RESUMO

Homodimers of noble metal nanocubes form model plasmonic systems where the localized plasmon resonances sustained by each particle not only hybridize but also coexist with excitations of a different nature: surface plasmon polaritons confined within the Fabry-Perot cavity delimited by facing cube surfaces (i.e., gap plasmons). Destructive interference in the strong coupling between one of these highly localized modes and the highly radiating longitudinal dipolar plasmon of the dimer is responsible for the formation of a Fano resonance profile and the opening of a spectral window of anomalous transparency for the exciting light. We report on the clear experimental evidence of this effect in the case of 50 nm silver and 160 nm gold nanocube dimers studied by spatial modulation spectroscopy at the single particle level. A numerical study based on a plasmon mode analysis leads us to unambiguously identify the main cavity mode involved in this process and especially the major role played by its symmetry. The Fano depletion dip is red-shifted when the gap size is decreasing. It is also blue-shifted and all the more pronounced that the cube edge rounding is large. Combining nanopatch antenna and plasmon hybridization descriptions, we quantify the key role of the face-to-face distance and the cube edge morphology on the spectral profile of the transparency dip.

20.
ACS Nano ; 10(3): 3389-97, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26854880

RESUMO

Chiral plasmonic nanoantennas manifest a strong asymmetric response to circularly polarized light. Particularly, the geometric handedness of a plasmonic structure can alter the circular polarization state of light emitted from nearby sources, leading to a spin-dependent emission direction. In past experiments, these effects have been attributed entirely to the localized plasmonic resonances of single antennas. In this work, we demonstrate that, when chiral nanoparticles are arranged in diffractive arrays, lattice resonances play a primary role in determining the spin-dependent emission of light. We fabricate 2D diffractive arrays of planar chiral metallic nanoparticles embedded in a light-emitting dye-doped slab. By measuring the polarized photoluminescence enhancement, we show that the geometric chirality of the array's unit cell induces a preferential circular polarization, and that both the localized surface plasmon resonance and the delocalized hybrid plasmonic-photonic mode contribute to this phenomenon. By further mapping the angle-resolved degree of circular polarization, we demonstrate that strong chiral dissymmetries are mainly localized at the narrow emission directions of the surface lattice resonances. We validate these results against a coupled dipole model calculation, which correctly reproduces the main features. Our findings demonstrate that, in diffractive arrays, lattice resonances play a primary role into the light spin-orbit effect, introducing a highly nontrivial behavior in the angular spectra.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA