RESUMO
BACKGROUND: Developmental ontogeny of neonatal thrombopoiesis retains characteristics that are distinct from adults although molecular mechanisms remain unestablished. METHODS: We applied multiparameter quantitative platelet responses with integrated ribosome profiling/transcriptomic studies to better define gene/pathway perturbations regulating the neonatal-to-adult transition. A bioinformatics pipeline was developed to identify stable, neonatal-restricted platelet biomarkers for clinical application. RESULTS: Cord blood (CB) platelets retained the capacity for linear agonist-receptor coupling linked to phosphatidylserine (PS) exposure and α-granule release, although a restricted block in cross-agonist activation pathways was evident. Functional immaturity of synergistic signaling pathways was due to younger ontogenetic age and singular underdevelopment of the protein secretory gene network, with reciprocal expansion of developmental pathways (E2F, G2M checkpoint, c-Myc) important for megakaryocytopoiesis. Genetic perturbations regulating vesicle transport and fusion (TOM1L1, VAMP3, SNAP23, and DNM1L) and PS exposure and procoagulant activity (CLCN3) were the most significant, providing a molecular explanation for globally attenuated responses. Integrated transcriptomic and ribosomal footprints identified highly abundant (ribosome-protected) DEFA3 (encoding human defensin neutrophil peptide 3) and HBG1 as stable biomarkers of neonatal thrombopoiesis. Studies comparing CB- or adult-derived megakaryocytopoiesis confirmed inducible and abundant DEFA3 antigenic expression in CB megakaryocytes, ~3.5-fold greater than in leukocytes (the most abundant source in humans). An initial feasibility cohort of at-risk pregnancies manifested by maternal/fetal hemorrhage (chimerism) were applied for detection and validation of platelet HBG1 and DEFA3 as neonatal thrombopoiesis markers, most consistent for HBG1, which displayed gestational age-dependent expression. CONCLUSIONS: These studies establish an ontogenetically divergent stage of neonatal thrombopoiesis, and provide initial feasibility studies to track disordered fetal-to-adult megakaryocytopoiesis in vivo.
Assuntos
Plaquetas , Fosfatidilserinas , Recém-Nascido , Gravidez , Feminino , Humanos , Plaquetas/metabolismo , Fosfatidilserinas/metabolismo , Proteína 3 Associada à Membrana da Vesícula/metabolismo , Trombopoese/genética , Megacariócitos/metabolismo , Peptídeos/metabolismo , Defensinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismoRESUMO
The relationship between plaque morphology, cerebral micro-embolic signals (MES) and platelet biomarkers in carotid stenosis patients warrants investigation.We combined data from two prospective, observational studies to assess carotid plaque morphology and relationship with cerebral MES and platelet biomarkers in patients with recently symptomatic (≤4 weeks of transient ischaemic attack (TIA)/ischaemic stroke) versus asymptomatic carotid stenosis. Plaque morphology on ultrasound was graded with Grey-Scale Median (GSM) and Gray-Weale (GW) scoring. Bilateral transcranial Doppler ultrasound classified patients as 'MES+ve' or 'MES-ve'. Full blood counts were analysed and flow cytometry quantified CD62P and CD63 expression, leucocyte-platelet complexes and reticulated platelets.Data from 42 recently symptomatic carotid stenosis patients were compared with those from 36 asymptomatic patients. There were no differences in median GSM scores between symptomatic and asymptomatic patients (25 vs. 30; P = 0.31) or between MES+ve vs. MES-ve symptomatic patients (36 vs. 25; P = 0.09). Symptomatic patients with GSM-echodense plaques (GSM ≥25) had higher platelet counts (228 vs. 191 × 109/L), neutrophil-platelet (3.3 vs. 2.7%), monocyte-platelet (6.3 vs. 4.55%) and lymphocyte-platelet complexes (2.91 vs. 2.53%) than 'asymptomatic patients with GSM-echodense plaques' (P ≤ 0.03).Recently, symptomatic carotid stenosis patients with 'GSM-echodense plaques' have enhanced platelet production/secretion/activation compared with their asymptomatic counterparts. Simultaneous assessment with neurovascular imaging and platelet biomarkers may aid risk-stratification in carotid stenosis.