Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artif Organs ; 44(5): 465-472, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31853998

RESUMO

Pump thrombosis potential exists in most blood pumps and limits their clinical use. To improve the pump thrombosis performance of blood pumps, a method for emulating the platelet deposition on the flow passage component surfaces inside blood pumps was presented and tested. The method emulates the blood platelet deposition, employing laser-induced fluorescence tracing technology. The blood pump was rotated in a mock circulation loop with deionized water filled with fluorescent particles. The component surfaces were then explored via laser. The fluorescent particles were induced by laser and imaged in a charge-coupled device (CCD) camera to show the distribution of fluorescent particles gathering on the blood pump component surfaces. The activated platelet deposition was emulated by fluorescent particle gathering. The experiment showed obvious particle gathering on the interface surfaces and cross-sectional surface (perpendicular to the flow). This platelet deposition estimation (PDE) method can be easily incorporated in the in vitro testing phase to analyze and decrease a pump's thrombosis potential before animal experimentation, thereby reducing the cost of blood pump development. This methodology of emulating blood platelet deposition indicates its potential for improving flow passage component structure and reducing device thrombosis of blood pumps.


Assuntos
Plaquetas , Coração Auxiliar/efeitos adversos , Trombose/etiologia , Humanos , Estresse Mecânico
2.
Ann Biomed Eng ; 52(8): 2076-2087, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38679660

RESUMO

The unacceptably high stroke rate associated with HeartMate 3 ventricular assist device (VAD) without signs of adherent pump thrombosis is hypothesized to be the result of the emboli produced by the inflow cannula, that are ingested and ejected from the pump. This in vitro and numerical study aimed to emulate the surface features and supraphysiological shear of a ventricular cannula to provide insight into their effect on thrombogenesis. Human whole blood was perfused at calibrated flow rates in a microfluidic channel to achieve shear rates 1000-7500 s-1, comparable to that experienced on the cannula. The channel contained periodic teeth representative of the rough sintered surface of the HeartMate 3 cannula. The deposition of fluorescently labeled platelets was visualized in real time and analyzed with a custom entity tracking algorithm. Numerical simulations of a multi-constituent thrombosis model were performed to simulate laminar blood flow in the channel. The sustained growth of adherent platelets was observed in all shear conditions ( p <  0.05). However, the greatest deposition was observed at the lower shear rates. The location of deposition with respect to the microfluidic teeth was also found to vary with shear rate. This was confirmed by CFD simulation. The entity tracking algorithm revealed the spatial variation of instances of embolic events. This result suggests that the sintered surface of the ventricular cannula may engender unstable thrombi with a greater likelihood of embolization at supraphysiological shear rates.


Assuntos
Cânula , Simulação por Computador , Trombose , Humanos , Coração Auxiliar , Modelos Cardiovasculares , Plaquetas/metabolismo
3.
J Biomech ; 121: 110397, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-33845357

RESUMO

Thromboembolic complications remain a central issue in management of patients on mechanical circulatory support. Despite the best practices employed in design and manufacturing of modern ventricular assist devices, complexity and modular nature of these systems often introduces internal steps and crevices in the flow path which can serve as nidus for thrombus formation. Thrombotic potential is influenced by multiple factors including the characteristics of the flow and surface chemistry of the biomaterial. This study explored these elements in the setting of blood flow over a micro-crevice using a multi-constituent numerical model of thrombosis. The simulations reproduced the platelet deposition patterns observed experimentally and elucidated the role of flow, shear rate, and surface chemistry in shaping the deposition. The results offer insights for design and operation of blood-contacting devices.


Assuntos
Coração Auxiliar , Tromboembolia , Trombose , Plaquetas , Coração Auxiliar/efeitos adversos , Hemodinâmica , Humanos , Estresse Mecânico , Trombose/etiologia
4.
Biomaterials ; 192: 226-234, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30458358

RESUMO

The inner surfaces of arteries and veins are naturally anti-thrombogenic, whereas synthetic materials placed in blood contact commonly experience thrombotic deposition that can lead to device failure or clinical complications. Presented here is a bioinspired strategy for self-cleaning anti-thrombotic surfaces using actuating surface topography. As a first test, wrinkled polydimethylsiloxane planar surfaces are constructed that can repeatedly transition between smooth and wrinkled states. When placed in contact with blood, these surfaces display markedly less platelet deposition than control samples. Second, for the specific application of prosthetic vascular grafts, the potential of using pulse pressure, i.e. the continual variation of blood pressure between systole and diastole, to drive topographic actuation was investigated. Soft cylindrical tubes with a luminal surface that transitioned between smooth and wrinkled states were constructed. Upon exposure to blood under continual pressure pulsation, these cylindrical tubes also showed reduced platelet deposition versus control samples under the same fluctuating pressure conditions. In both planar and cylindrical cases, significant reductions in thrombotic deposition were observed, even when the wrinkles had wavelengths of several tens of µm, far larger than individual platelets. We speculate that the observed thrombo-resistance behavior is attributable to a biofilm delamination process in which the bending energy within the biofilm overcomes interfacial adhesion. This novel strategy to reduce thrombotic deposition may be applicable to several types of medical devices placed into the circulatory system, particularly vascular grafts.


Assuntos
Materiais Biocompatíveis/química , Prótese Vascular/efeitos adversos , Dimetilpolisiloxanos/química , Trombose/etiologia , Desenho de Equipamento , Humanos , Adesividade Plaquetária , Fluxo Pulsátil , Propriedades de Superfície , Trombose/prevenção & controle
5.
ACS Appl Bio Mater ; 2(9): 3706-3721, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-35021344

RESUMO

Vascular grafts are used as vascular access for hemodialysis, the most common renal replacement therapy to artificially clean blood waste after kidney malfunction. Despite that they are widely used in clinical practice, upon implantation, synthetic vasculars show complications such as thrombogenesis, reduced patency rates, low blood pressure, or even complete collapse. In this study, a C-shaped vascular graft was manufactured with small intestinal submucosa (SIS) and modified on the surface and the bulk of the material via conjugation of polyethylene glycol (PEG) to obtain a biocompatible and less thrombogenic vascular graft than the commercially available polytetrafluoroethylene (ePTFE) vascular grafts. Molecular weight and concentration of PEG molecules were systematically varied to gain insights into the underlying structure-function relationships. We analyzed the chemical, thermal, and mechanical properties of vascular grafts modified with 6 equiv of SIS-PEG 400 as well as cytotoxicity and in vitro platelet deposition. Immune response, patency rates, and extent of regeneration were also tested in vivo with the aid of swine animal models. Results showed that the conjugation levels achieved were sufficient to improve graft compliance, therefore approaching that of native vessels, while platelet deposition was altered leading to a 95% reduction compared with pristine SIS and 92% with respect to ePTFE. H&E staining on explanted samples corroborated SIS-PEG 400 biocompatibility and the ability to promote regeneration. The obtained results set solid foundations for the rational design and manufacture of a regenerative, small diameter vascular graft model and introduce an alternative to ePTFE vascular grafts for hemodialysis access.

6.
Front Physiol ; 9: 1128, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30177886

RESUMO

Cardio/cerebrovascular diseases (CVD) have become one of the major health issue in our societies. Recent studies show the existing clinical tests to detect CVD are ineffectual as they do not consider different stages of platelet activation or the molecular dynamics involved in platelet interactions. Further they are also incapable to consider inter-individual variability. A physical description of platelets deposition was introduced recently in Chopard et al. (2017), by integrating fundamental understandings of how platelets interact in a numerical model, parameterized by five parameters. These parameters specify the deposition process and are relevant for a biomedical understanding of the phenomena. One of the main intuition is that these parameters are precisely the information needed for a pathological test identifying CVD captured and that they capture the inter-individual variability. Following this intuition, here we devise a Bayesian inferential scheme for estimation of these parameters, using experimental observations, at different time intervals, on the average size of the aggregation clusters, their number per mm2, the number of platelets, and the ones activated per µâ„“ still in suspension. As the likelihood function of the numerical model is intractable due to the complex stochastic nature of the model, we use a likelihood-free inference scheme approximate Bayesian computation (ABC) to calibrate the parameters in a data-driven manner. As ABC requires the generation of many pseudo-data by expensive simulation runs, we use a high performance computing (HPC) framework for ABC to make the inference possible for this model. We consider a collective dataset of seven volunteers and use this inference scheme to get an approximate posterior distribution and the Bayes estimate of these five parameters. The mean posterior prediction of platelet deposition pattern matches the experimental dataset closely with a tight posterior prediction error margin, justifying our main intuition and providing a methodology to infer these parameters given patient data. The present approach can be used to build a new generation of personalized platelet functionality tests for CVD detection, using numerical modeling of platelet deposition, Bayesian uncertainty quantification, and High performance computing.

7.
R Soc Open Sci ; 4(4): 170219, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28484643

RESUMO

The early stages of clot formation in blood vessels involve platelet adhesion-aggregation. Although these mechanisms have been extensively studied, gaps in their understanding still persist. We have performed detailed in vitro experiments, using the well-known Impact-R device, and developed a numerical model to better describe and understand this phenomenon. Unlike previous studies, we took into account the differential role of pre-activated and non-activated platelets, as well as the three-dimensional nature of the aggregation process. Our investigation reveals that blood albumin is a major parameter limiting platelet aggregate formation in our experiment. Simulations are in very good agreement with observations and provide quantitative estimates of the adhesion and aggregation rates that are hard to measure experimentally. They also provide a value of the effective diffusion of platelets in blood subject to the shear rate produced by the Impact-R.

8.
Biorheology ; 51(1): 3-14, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24598379

RESUMO

Platelet aggregation and thrombus formation at the site of injury is a dynamic process that involves the continuous addition of new platelets as well as thrombus rupture. In the early stages of hemostasis (within minutes after vessel injury) this process can be visualized by transfusing fluorescently labeled human platelets and observing their deposition and detachment. These two counterbalancing events help the developing thrombus reach a steady-state morphology, where it is large enough to cover the injured vessel surface but not too large to form a severe thrombotic occlusion. In this study, the spatial and temporal aspects of early stage thrombus dynamics which result from laser-induced injury on arterioles of cremaster muscle in the humanized mouse were visualized using fluorescent microscopy. It was found that rolling platelets show preference for the upstream region while tethering/detaching platelets were primarily found downstream. It was also determined that the platelet deposition rate is relatively steady, whereas the effective thrombus coverage area does not increase at a constant rate. By introducing a new method to graphically represent the real time in vivo physiological shear stress environment, we conclude that the thrombus continuously changes shape by regional growth and decay, and neither dominates in the high shear stress region.


Assuntos
Plaquetas/fisiologia , Agregação Plaquetária/fisiologia , Trombose/patologia , Animais , Modelos Animais de Doenças , Humanos , Terapia com Luz de Baixa Intensidade , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA