Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Sci ; 134(1)2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33419950

RESUMO

Dynamic assembly and remodeling of actin is critical for many cellular processes during development and stress adaptation. In filamentous fungi and budding yeast, actin cables align in a polarized manner along the mother-to-daughter cell axis, and are essential for the establishment and maintenance of polarity; moreover, they rapidly remodel in response to environmental cues to achieve an optimal system response. A formin at the tip region within a macromolecular complex, called the polarisome, is responsible for driving actin cable polymerization during polarity establishment. This polarisome undergoes dynamic assembly through spatial and temporally regulated interactions between its components. Understanding this process is important to comprehend the tuneable activities of the formin-centered nucleation core, which are regulated through divergent molecular interactions and assembly modes within the polarisome. In this Review, we focus on how intrinsically disordered regions (IDRs) orchestrate the condensation of the polarisome components and the dynamic assembly of the complex. In addition, we address how these components are dynamically distributed in and out of the assembly zone, thereby regulating polarized growth. We also discuss the potential mechanical feedback mechanisms by which the force-induced actin polymerization at the tip of the budding yeast regulates the assembly and function of the polarisome.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Actinas/genética , Polaridade Celular , Fungos , Proteínas dos Microfilamentos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
2.
Fungal Genet Biol ; 168: 103824, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37454888

RESUMO

In filamentous fungi, the hypha orientation is essential for polarized growth and morphogenesis. The ability to re-orient tip growth in response to environmental cues is critical for the colony survival. Therefore, hyphal tip orientation and tip extension are distinct mechanisms that operate in parallel during filamentous growth. In yeast, the axial growth orientation requires a pathway regulated by Rsr1p/Bud1p, a Ras-like GTPase protein, which determines the axial budding pattern. However, in filamentous fungi the function of the Rsr1/Bud1p gene (krev-1 homolog) has not been completely characterized. In this work, we characterized the phenotype of a homokaryon mutant Bud1p orthologous in Neurospora crassa (△bud-1) and tagged BUD-1 with the green fluorescent protein (GFP) to determine its localization and cell dynamics under confocal microscopy. During spore germination BUD-1 was localized at specific points along the plasma membrane and during germ tube emergence it was located at the tip of the germ tubes. In mature hyphae BUD-1 continued to be located at the cell tip and was also present at sites of branch emergence and at the time of septum formation. The △bud-1 mutant showed a delayed germination, and the orientation of hyphae was somewhat disrupted. Also, the hypha diameter was reduced approximately 37 % with respect to the wild type. The lack of BUD-1 affected the Spitzenkörper (Spk) formation, trajectory, the localization of polarisome components BNI-1 and SPA-2, and the actin cytoskeleton polarization. The results presented here suggest that BUD-1 participates in the establishment of a new polarity axis. It may also mediate the delivery of secretory vesicles for the efficient construction of new plasma membrane and cell wall.


Assuntos
Neurospora crassa , Esporos Fúngicos/genética , Esporos Fúngicos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Hifas
3.
J Biol Chem ; 295(44): 14840-14854, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-32848016

RESUMO

Candida albicans is a dimorphic fungus that converts from a yeast form to a hyphae form during infection. This switch requires the formation of actin cable to coordinate polarized cell growth. It's known that nucleation of this cable requires a multiprotein complex localized at the tip called the polarisome, but the mechanisms underpinning this process were unclear. Here, we found that C. albicans Aip5, a homolog of polarisome component ScAip5 in Saccharomyces cerevisiae that nucleates actin polymerization and synergizes with the formin ScBni1, regulates actin assembly and hyphae growth synergistically with other polarisome proteins Bni1, Bud6, and Spa2. The C terminus of Aip5 binds directly to G-actin, Bni1, and the C-terminal of Bud6, which form the core of the nucleation complex to polymerize F-actin. Based on insights from structural biology and molecular dynamic simulations, we propose a possible complex conformation of the actin nucleation core, which provides cooperative positioning and supports the synergistic actin nucleation activity of a tri-protein complex Bni1-Bud6-Aip5. Together with known interactions of Bni1 with Bud6 and Aip5 in S. cerevisiae, our findings unravel molecular mechanisms of C. albicans by which the tri-protein complex coordinates the actin nucleation in actin cable assembly and hyphal growth, which is likely a conserved mechanism in different filamentous fungi and yeast.


Assuntos
Actinas/metabolismo , Candida albicans/crescimento & desenvolvimento , Candida albicans/metabolismo , Proteínas Fúngicas/metabolismo , Polimerização
4.
New Phytol ; 229(3): 1665-1683, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32978966

RESUMO

In filamentous fungi, hyphal growth depends on the continuous delivery of vesicles to the growing tips. It is unclear how fast-growing hyphae coordinate simultaneous cell extension and expansion in the tip cells. We have functionally characterized 12 TBC (Tre-2/Bub2/Cdc16) domain-containing proteins in Fusarium graminearum. Among them, FgMsb3 is found to regulate hyphal tip expansion and to be required for pathogenicity. The regulatory mechanism of FgMsb3 has been further investigated by genetic, high-resolution microscopy and high-throughput co-immunoprecipitation strategies. The FgMsb3 protein localizes at the polarisome and the hyphal apical dome (HAD) where it acts as a GTPase-activating protein for FgRab8 which is required for apical secretion-mediated growth and pathogenicity. Deletion of FgMSB3 causes excessive polarized trafficking but blocks the fusion of FgSnc1-associated vesicles to the plasma membrane. Moreover, we establish that FgSpa2 interacts with FgMsb3, enabling FgMsb3 tethering to the polarisome. Loss of FgSpa2 or other polarisome components (FgBud6 and FgPea2) causes complete shifting of FgMsb3 to the HAD and this affects the polarized growth and pathogenicity of the fungus. In summary, we conclude that FgSpa2 regulates FgMsb3-FgRab8 cascade and this is crucial for creating a steady-state equilibrium that maintains continuous polarized growth and contributes to the pathogenicity of F. graminearum.


Assuntos
Fusarium , Proteínas Fúngicas , Hifas , Esporos Fúngicos , Virulência
5.
Int J Mol Sci ; 22(8)2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33917059

RESUMO

Tubules of the endoplasmic reticulum (ER) spread into the buds of yeast by an actin-based mechanism and, upon entry, become attached to the polarisome, a proteinaceous micro-compartment below the tip of the bud. The minimal tether between polarisome and cortical ER is formed by a protein complex consisting of Epo1, a member of the polarisome, Scs2, a membrane protein of the ER and Cdc42 guanosine triphosphatase-activating protein Bem3. Here, we report the crystal structure of a complex between Epo1 and Bem3. In addition, we characterize through the hydrogen/deuterium (H/D) exchange assay the interface between Scs2 and Epo1. Our findings provide a first structural insight into the molecular architecture of the link between cortical ER and the polarisome.


Assuntos
Proteínas de Transporte/química , Proteínas Ativadoras de GTPase/química , Modelos Moleculares , Complexos Multiproteicos/química , Conformação Proteica , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae , Sequência de Aminoácidos , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Ligação Proteica , Multimerização Proteica , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade
6.
Fungal Genet Biol ; 128: 49-59, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30959095

RESUMO

In fungal hyphae multiple protein complexes assemble at sites of apical growth to maintain cell polarity. The polarisome, which in Saccharomyces cerevisiae consists of Spa2, Pea2, Bud6 and Bni1 is described as a small network of functionally related proteins that regulate polarized growth. In yeast Msb3 and Msb4 are considered polarisome components since both proteins interact directly with Spa2 and are involved in Bni1-nucleated actin assembly in vivo. Additionally they regulate exocytosis through their GAP activity towards Sec4 and perhaps other Rab GTPases. In filamentous fungi the role of these proteins has not been investigated, and in the genome of Neurospora crassa only the gene gyp-3 (NCU04514) was found to correlate with MSB3 and MSB4 of S. cerevisiae. Therefore in this work the role of GYP-3 and its relationship with the polarisome in N. crassa was analyzed. The results show that GYP-3 is required for normal colony development and cell morphology since the Δgyp-3 strain displayed a substantial reduction in colony diameter and hyphae showed a distorted morphology expressed as a general pattern of bulging areas in the distal region and hyphae were thinner at the active growing zone. The lack of GYP-3 had no effects on the localization of the polarisome components SPA-2 and BNI-1. Likewise, GYP-3 was not necessary for the normal localization of the F-actin population, however the dynamics of the Spitzenkörper (Spk) and the actin population at the apical region seemed to be destabilized. Additionally, the lack of GYP-3 strongly affects the localization and dynamics of SEC-4; which no longer accumulates at the tip of hyphae. The results presented here strongly suggest that GYP-3 is not part of the polarisome; however it requires the scaffold protein SPA-2 for arriving at the tip of hyphae. Although GYP-3 is not essential for cell survival, it has an important role in maintaining normal cell growth and morphology in N. crassa.


Assuntos
Polaridade Celular/genética , Proteínas Fúngicas/genética , Morfogênese , Neurospora crassa/crescimento & desenvolvimento , Neurospora crassa/genética , Actinas/metabolismo , Proteínas do Citoesqueleto , Hifas/genética , Hifas/crescimento & desenvolvimento
7.
Med Mycol ; 55(4): 445-452, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27664992

RESUMO

Aspergillus fumigatus is the most common airborne pathogen causing fatal mycoses in immunocompromised patients. During the first 8 hours of development A. fumigatus conidia break dormancy, expand isotopically, establish an axis of polarity, and begin to extend germ tubes in a polar manner. The transition from isotropic to polar growth is critical for tissue invasion and pathogenesis. In the current work, we used two-color microarrays to examine the A. fumigatus transcriptome during early development, focusing on the isotropic to polar switch. The most highly regulated transcripts in the isotropic to polar switch did not include known polarity genes. Transcripts encoding the Cdc42 module, polarisome components, and septins, known to be critical players in polarity, showed relatively steady levels during the isotropic to polar switch. Indeed, these transcripts were present in dormant conidia, and their levels changed little from dormancy through germ tube emergence. Not only did the isotropic to polar switch show little change in the expression of key polarity genes of the Cdc42 module, polarisome, and septins, it also showed the lowest overall levels of both up- and downregulation in early development.


Assuntos
Aspergillus fumigatus/crescimento & desenvolvimento , Aspergillus fumigatus/genética , Perfilação da Expressão Gênica , Complexos Multienzimáticos/análise , Septinas/biossíntese , Proteína cdc42 de Ligação ao GTP/biossíntese , Análise em Microsséries , Complexos Multienzimáticos/genética , Septinas/genética
8.
Curr Genet ; 62(2): 343-6, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26762634

RESUMO

The exocyst is an octameric complex that orchestrates the docking and tethering of vesicles to the plasma membrane during exocytosis and is fundamental for key biological processes including growth and establishment of cell polarity. Although components of the exocyst are well conserved among fungi, the specific functions of each component of the exocyst complex unique to Candida albicans biology and pathogenesis are not fully understood. This commentary describes recent findings regarding the role of exocyst subunits Sec6 and Sec15 in C. albicans filamentation and virulence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA