Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(26): e2305378120, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37339221

RESUMO

Hydrogen peroxide (H2O2) is an important green oxidant in the field of sewage treatment, and how to improve its activation efficiency and generate free radicals with stronger oxidation performance is a key issue in current research. Herein, we synthesized a Cu-doped α-Fe2O3 catalyst (7% Cu-Fe2O3) for activation of H2O2 under visible light for degradation of organic pollutants. The introduction of a Cu dopant changed the d-band center of Fe closer to the Fermi level, which enhanced the adsorption and activation of the Fe site for H2O2, and the cleavage pathway of H2O2 changed from heterolytic cleavage to homolytic cleavage, thereby improving the selectivity of •OH generation. In addition, Cu doping also promoted the light absorption ability of α-Fe2O3 and the separation of hole-electron pairs, which enhanced its photocatalytic activities. Benefiting from the high selectivity of •OH, 7% Cu-Fe2O3 exhibited efficient degradation activities against ciprofloxacin, the degradation rate was 3.6 times as much as that of α-Fe2O3, and it had good degradation efficiency for a variety of organic pollutants.

2.
Small ; : e2402748, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898734

RESUMO

Defect engineering is considered as a flexible and effective mean to improve the performance of Fenton-like reactions. Herein, a simple method is employed to synthesize Co3O4 catalysts with Co-O vacancy pairs (VP) for peroxymonosulfate (PMS) activation. Multi-scaled characterization, experimental, and simulation results jointly revealed that the cation vacancies-VCo contributed to enhanced conductivity and anion vacancies-VO provided a new active center for the 1O2 generation. Co3O4-VP can optimize the O 2p and Co 3d bands with the strong assistance of synergistic double vacancies to reduce the reaction energy barrier of the "PMS → Co(IV) = O → 1O2" pathway, ultimately triggering the stable transition of mechanism. Co3O4-VP catalysts with radical-nonradical collaborative mechanism achieve the synchronous improvement of activity and stability, and have good environmental robustness to favor water decontamination applications. This result highlights the possibility of utilizing anion and cation vacancy engineering strategies to rational design Co3O4-based materials widely used in catalytic reactions.

3.
Small ; : e2404622, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058229

RESUMO

Inspired by natural photosynthesis, the visible-light-driven Z-scheme system is very effective and promising for boosting photocatalytic hydrogen production and pollutant degradation. Here, a synergistic Z-scheme photocatalyst is constructed by coupling ReS2 nanosheet and ZnIn2S4 nanoflower and the experimental evidence for this direct Z-scheme heterostructure is provided by X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and electron paramagnetic resonance. Consequently, such a unique nanostructure makes this Z-scheme heterostructure exhibit 23.7 times higher photocatalytic hydrogen production than that of ZnIn2S4 nanoflower. Moreover, the ZnIn2S4/ReS2 photocatalyst is also very stable for photocatalytic hydrogen evolution, almost without activity decay even storing for two weeks. Besides, this Z-scheme heterostructure also exhibits superior photocatalytic degradation rates of methylene blue (1.7 × 10-2 min-1) and mitoxantrone (4.2 × 10-3 min-1) than that of ZnIn2S4 photocatalyst. The ultraviolet-visible absorption spectra, transient photocurrent spectra, open-circuit potential measurement, and electrochemical impedance spectroscopy reveal that the superior photocatalytic performance of ZnIn2S4/ReS2 heterostructure is mostly attributed to its broad and strong visible-light absorption, effective separation of charge carrier, and improved redox ability. This work provides a promising nanostructure design of a visible-light-driven Z-scheme heterostructure to simultaneously promote photocatalytic reduction and oxidation activity.

4.
Chemistry ; 30(24): e202304337, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38373023

RESUMO

The Fenton reaction refers to the reaction in which ferrous ions (Fe2+) produce hydroxyl radicals and other reactive oxidizing substances by decomposing hydrogen peroxide (H2O2). This paper reviews the mechanism, application system, and materials employed in the Fenton reaction including conventional homogeneous and non-homogeneous Fenton reactions as well as photo-, electrically-, ultrasonically-, and piezoelectrically-triggered Fenton reactions, and summarizes the applications in the degradation of soil oil pollutions, landfill leachate, textile wastewater, and antibiotics from a practical point of view. The mineralization paths of typical pollutant are elucidated with relevant case studies. The paper concludes with a summary and outlook of the further development of Fenton-like reactions.

5.
Photochem Photobiol Sci ; 23(6): 1143-1153, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38748080

RESUMO

Epoxiconazole (EPO) is classified as a persistent organic pollutant due to its ability to persist in the environment for prolonged periods. Its degradation is pivotal in mitigating its environmental impact. This investigation focuses on assessing the degradation of EPO using various methodologies, namely Fenton, photo-Fenton, solar photo-Fenton, and solar photolysis, conducted in both Milli-Q water and groundwater. These experiments encompassed evaluations at both the standard pH typically used in photo-Fenton reactions and the natural pH levels inherent to the respective aqueous environments. Additionally, EPO degradation products were analyzed after a 60-min reaction. Notably, in systems utilizing groundwater, the inclusion of additional iron was unnecessary, as the naturally occurring iron content in the groundwater facilitated the intended processes. Specifically, in Milli-Q water, solar photo-Fenton demonstrated an EPO degradation efficiency of 97%. Furthermore, the substitution of Milli-Q water with groundwater in Fenton-like processes did not significantly affect the efficacy of EPO degradation. These findings underscore the potential of solar photo-Fenton as an economically viable and environmentally sustainable strategy for EPO degradation.

6.
Environ Sci Technol ; 58(27): 11869-11886, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38940189

RESUMO

Developing efficient technologies to eliminate or degrade contaminants is paramount for environmental protection. Biocatalytic decontamination offers distinct advantages in terms of selectivity and efficiency; however, it still remains challenging when applied in complex environmental matrices. The main challenge originates from the instability and difficult-to-separate attributes of fragile enzymes, which also results in issues of compromised activity, poor reusability, low cost-effectiveness, etc. One viable solution to harness biocatalysis in complex environments is known as enzyme immobilization, where a flexible enzyme is tightly fixed in a solid carrier. In the case where a reticular crystal is utilized as the support, it is feasible to engineer next-generation biohybrid catalysts functional in complicated environmental media. This can be interpreted by three aspects: (1) the highly crystalline skeleton can shield the immobilized enzyme against external stressors. (2) The porous network ensures the high accessibility of the interior enzyme for catalytic decontamination. And (3) the adjustable and unambiguous structure of the reticular framework favors in-depth understanding of the interfacial interaction between the framework and enzyme, which can in turn guide us in designing highly active biocomposites. This Review aims to introduce this emerging biocatalysis technology for environmental decontamination involving pollutant degradation and greenhouse gas (carbon dioxide) conversion, with emphasis on the enzyme immobilization protocols and diverse catalysis principles including single enzyme catalysis, catalysis involving enzyme cascades, and photoenzyme-coupled catalysis. Additionally, the remaining challenges and forward-looking directions in this field are discussed. We believe that this Review may offer a useful biocatalytic technology to contribute to environmental decontamination in a green and sustainable manner and will inspire more researchers at the intersection of the environment science, biochemistry, and materials science communities to co-solve environmental problems.


Assuntos
Enzimas Imobilizadas , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Porosidade , Biocatálise , Poluentes Ambientais/química
7.
Environ Sci Technol ; 58(24): 10623-10631, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38781516

RESUMO

Iron minerals are widespread in earth's surface water and soil. Recent studies have revealed that under sunlight irradiation, iron minerals are photoactive on producing reactive oxygen species (ROS), a group of key species in regulating elemental cycling, microbe inactivation, and pollutant degradation. In nature, iron minerals exhibit varying crystallinity under different hydrogeological conditions. While crystallinity is a known key parameter determining the overall activity of iron minerals, the impact of iron mineral crystallinity on photochemical ROS production remains unknown. Here, we assessed the photochemical ROS production from ferrihydrites with different degrees of crystallinity. All examined ferrihydrites demonstrated photoactivity under irradiation, resulting in the generation of hydrogen peroxide (H2O2) and hydroxyl radical (•OH). The photochemical ROS production from ferrihydrites increased with decreasing ferrihydrite crystallinity. The crystallinity-dependent photochemical •OH production was primarily attributed to conduction band reduction reactions, with the reduction of O2 by conduction band electrons being the rate-limiting key process. Conversely, the crystallinity of iron minerals had a negligible influence on photon-to-electron conversion efficiency or surface Fenton-like activity. The difference in ROS productions led to a discrepant degradation efficiency of organic pollutants on iron mineral surfaces. Our study provides valuable insights into the crystallinity-dependent ROS productions from iron minerals in natural systems, emphasizing the significance of iron mineral photochemistry in natural sites with abundant lower-crystallinity iron minerals such as wetland water and surface soils.


Assuntos
Ferro , Minerais , Espécies Reativas de Oxigênio , Ferro/química , Espécies Reativas de Oxigênio/química , Minerais/química , Radical Hidroxila/química , Peróxido de Hidrogênio/química
8.
Environ Res ; 243: 117851, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38065386

RESUMO

A simple, efficient and low energy-consuming process available to generate resultful radicals from PMS for organic pollutants removal had been employed in this study. Slag had been used as the activator for organic pollutants degradation under slag/PMS advanced oxidation process. In this work, effects of slag with or without pretreatment on pollutant removal were studied and radical species generated by slag were measured. Calcination pretreatment is one efficient method to enhance the degradation efficiency significantly. Due to Fe3O4 and Fe2O3 became the dominant phases after calcination, it was about 8.6-flods increasing after comparing the pollutant removal efficiency for different slag/PMS system with calcination pretreatment or not. Organic pollutant neither degraded in PMS system at 25 °C nor being absorbed by slag system for 60 min. On the contrary, up to 90% pollutant concentration reduction achieved in the slag/PMS process. During this process, both •OH and SO4•- had been detected once slag and PMS interaction in wastewater. Through the free radicals quenching tests,•OH should be the key free radical in this advanced oxidation process for the organic pollutant removal under this alkaline condition. In general, organic degradation rate was determined by the slag dosage, and the maximum degradation efficiency was mainly controlled by the PMS usage. This work is expected to broaden the high-value reutilization way for industrial solid waste.


Assuntos
Poluentes Ambientais , Resíduos Sólidos , Peróxidos , Oxirredução
9.
Environ Res ; 260: 119610, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39004393

RESUMO

Photocatalysis has been widely used as one of the most promising approaches to remove various pollutants in liquid or gas phases during the last decade. The main emphasis of the study is on the synergy of vacancy engineering and heterojunction formation, two widely used modifying approaches, to significantly alter photocatalytic performance. The vacancy-induced Ag2CO3/BiOBr/WO3-x heterojunction system has been fabricated using a co-precipitation technique to efficiently abate methylene blue (MB) dye and doxycycline (DC) antibiotic. The as-fabricated Ag2CO3/BiOBr/WO3-x heterojunction system displayed improved optoelectronic characteristic features because of the rational combination of dual charge transferal route and defect modulation. The Ag2CO3/BiOBr/WO3-x system possessed 97% and 74% photodegradation efficacy for MB and DC, respectively, with better charge isolation and migration efficacy. The ternary photocatalyst possessed a multi-fold increase in the reaction rate for both MB and DC, i.e., 0.021 and 0.0078 min-1, respectively, compared to pristine counterparts. Additionally, more insightful deductions about the photodegradation routes were made possible by the structural investigations of MB and DC using density functional theory (DFT) simulations. This study advances the understanding of the mechanisms forming visible light active dual Z-scheme heterojunction for effective environmental remediation.


Assuntos
Poluentes Químicos da Água , Poluentes Químicos da Água/química , Catálise , Teoria da Densidade Funcional , Bismuto/química , Tungstênio/química , Fotólise , Óxidos/química , Azul de Metileno/química , Compostos de Prata/química
10.
J Environ Manage ; 370: 122403, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39244933

RESUMO

This study focuses on developing a g-C3N4/Sb2S3 heterojunction photocatalyst with different g-C3N4 to Sb2S3 weight ratios (1:1, 1:3, and 3:1) for degrading tetracycline (TC) pollutants. The 1:3 ratio (13 GS) exhibited optimal photocatalytic performance, achieving 99% TC degradation under sunlight within 120 min, compared to 78.4% under visible light and 38% under UV light. The 13 GS catalyst demonstrated strong reusability, maintaining 80% degradation efficiency after six cycles. Scavenger experiments identified hydroxyl radicals as crucial for TC degradation, with DMSO reducing activity by 30%. The photocatalyst also showed high hydrogen production with an apparent quantum efficiency (AQE) of 19.8% under standard conditions, and improved AQE in acidic (23%) and basic (22.7%) conditions, and with CH3OH (23.2%). This g-C3N4/Sb2S3 heterojunction offers a promising solution for degrading toxic contaminants and has the potential for solar-powered applications.

11.
Environ Geochem Health ; 46(2): 30, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38227286

RESUMO

The removal of color-causing compounds from wastewater is a significant challenge that industries encounter due to their toxic, carcinogenic, and harmful properties. Despite the extensive research and development of various techniques with the objective of effectively degrading color pollutants, the challenge still persists. This paper introduces a simple technique for producing iron oxide nanoparticles (Fe2O3 NPs) using orange fruit peel for sustainable dye degradation in aqueous environment. The observation of color change and the measurement of UV-visible absorbance at 240 nm provided a confirmation for the development of Fe2O3 NPs. Transmission electron microscopy examination demonstrated that the Fe2O3 NPs have an agglomerated distribution and forming spherical structures with size ranging from 25-80 nm. Energy-dispersive X-ray spectroscopy analysis supported the existence of Fe and O. Fourier transform infrared spectroscopy conducted to investigate the involvement of orange peel extract in the reduction, capping, and synthesis of Fe2O3 NPs from the precursor salt. Fe2O3 NPs showed a photocatalytic remediation of 97%, for methylene blue under visible light irradiation. Additionally, prepared NPs exhibited concentration depended biofilm inhibition action against E. coli and S. aureus. In conclusion, Fe2O3 NPs can efficiently purify water and suppress pathogens due to their strong degrading activity, reusability, and biofilm inhibition property.


Assuntos
Poluentes Ambientais , Águas Residuárias , Escherichia coli , Frutas , Staphylococcus aureus , Nanopartículas Magnéticas de Óxido de Ferro , Extratos Vegetais
12.
Environ Monit Assess ; 196(3): 307, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38407658

RESUMO

As the initial stage of the sewage treatment system, the degradation of pollutants inevitably involves an entropy change process. Microorganisms play a vital role, where they interact with pollutants and constantly adjust own ecosystem. However, there is a lack of research on the entropy change and external dissipation processes within the sewer system. In this study, considering the characteristics of microbial population changes in the biofilm within the urban sewage pipe network, entropy theory is applied to characterize the attributes of different microorganisms. Through revealing the entropy change of the microbial population and chemical composition, a coupling relationship between the functional bacteria diversity, organic substances composition, and external dissipation in the pipeline network is proposed. The results show that the changes of nutrient availability, microbial community structure, and environmental conditions all affect the changes of information entropy in the sewer network. This study is critical for assessing the understanding of ecological dynamics and energy flows within these systems and can help researchers and operation managers develop strategies to optimize wastewater treatment processes, mitigate environmental impacts, and promote sustainable management practices.


Assuntos
Ecossistema , Poluentes Ambientais , Entropia , Esgotos , Monitoramento Ambiental
13.
Small ; 19(52): e2304818, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37635126

RESUMO

Nanozyme activity relies on surface electron transfer processes. Notably, the piezoelectric effect plays a vital role in influencing nanozyme activity by generating positive and negative charges on piezoelectric materials' surfaces. This article comprehensively reviews the potential mechanisms and practical applications of regulating nanozyme activity through the piezoelectric effect. The article first elucidates how the piezoelectric effect enables nanozymes to exhibit catalytic activity. It is highlighted that the positive and negative charges produced by this effect directly participate in redox reactions, leading to the conversion of materials from an inactive to an active state. Moreover, the piezoelectric field generated can enhance nanozyme activity by accelerating electron transfer rates or reducing binding energy between nanozymes and substrates. Practical applications of piezoelectric nanozymes are explored in the subsequent section, including water pollutant degradation, bacterial disinfection, biological detection, and tumor therapy, which demonstrate the versatile potentials of the piezoelectric effect in nanozyme applications. The review concludes by emphasizing the need for further research into the catalytic mechanisms of piezoelectric nanozymes, suggesting expanding the scope of catalytic types and exploring new application areas. Furthermore, the promising direction of synergistic catalytic therapy is discussed as an inspiring avenue for future research.


Assuntos
Desinfecção , Catálise
14.
Small ; 19(24): e2208012, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36899451

RESUMO

Acetamide- or formamide-assisted in situ strategy is designed to synthesize carbon atom self-doped g-C3 N4 (AHCNx ) or nitrogen vacancy-modified g-C3 N4 (FHCNx ). Different from the direct copolymerization route that suffers from the problem of mismatched physical properties of acetamide (or formamide) with urea, the synthesis of AHCNx (or FHCNx ) starts from a crucial preorganization step of acetamide (or formamide) with urea via freeze drying-hydrothermal treatment so that the chemical structures as well as C-doping level in AHCNx and N-vacancy concentration in FHCNx can be precisely regulated. By using various structural characterization methods, well-defined AHCNx and FHCNx structures are proposed. At the optimal C-doping level in AHCNx or N-vacancy concentration in FHCNx , both AHCNx and FHCNx exhibit remarkably improved visible-light photocatalytic performance in oxidation of emerging organic pollutants (acetaminophen and methylparaben) and reduction of proton to H2 in comparison of unmodified g-C3 N4 . Combination of the experimental results with theoretical calculations, it is confirmed that AHCNx and FHCNx show different charge separation and transfer mechanisms, while the enhanced visible-light harvesting capacity and the localized charge distributions on HOMO and LUMO are responsible for this excellent photocatalytic redox performance of AHCNx and FHCNx .

15.
Photochem Photobiol Sci ; 22(12): 2827-2837, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37839053

RESUMO

Flavin mononucleotide (FMN) is a dye belonging to the flavin family. These dyes produce photosensitized degradation of organic compounds via reaction with the excited states of the dye or with reactive oxygen species photogenerated from the triplet of the dye. This article presents a new polymeric dye (FMN-CS) composed of the photosensitizer FMN covalently bonded to chitosan polysaccharide (CS). FMN-CS obtained has a molecular weight of 230 × 103 g mol-1 and a deacetylation degree of 74.8%. The polymeric dye is an environmentally friendly polymer with spectroscopic and physicochemical properties similar to those of FMN and CS, respectively. Moreover, under sunlight, it is capable of generating 1O2 with a quantum yield of 0.31. FMN-CS, like CS, is insoluble in basic media. This allows easy recovery of the polymeric dye once the photosensitized process has been carried out and makes FMN-CS a suitable photosensitizer for the degradation of pollutants in contaminated waters. To evaluate whether FMN-CS may be used for pollutant degradation, the photosensitized degradation of two trihydroxybenzenes by FMN-CS was studied.


Assuntos
Quitosana , Fármacos Fotossensibilizantes , Fármacos Fotossensibilizantes/química , Mononucleotídeo de Flavina/química , Flavinas/química , Espécies Reativas de Oxigênio
16.
Environ Sci Technol ; 57(23): 8610-8616, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37226678

RESUMO

The hydroxyl radical (•OH) is a potent oxidant and key reactive species in mediating element cycles and pollutant dynamics in the natural environment. The natural source of •OH is historically linked to photochemical processes (e.g., photoactivation of natural organic matter or iron minerals) or redox chemical processes (e.g., reaction of microbe-excreted or reduced iron/natural organic matter/sulfide-released electrons with O2 in soils and sediments). This study revealed a ubiquitous source of •OH production via water vapor condensation on iron mineral surfaces. Distinct •OH productions (15-478 nM via water vapor condensation) were observed on all investigated iron minerals of abundant natural occurrence (i.e., goethite, hematite, and magnetite). The spontaneous •OH productions were triggered by contact electrification and Fenton-like activation of hydrogen peroxide (H2O2) at the water-iron mineral interface. Those •OH drove efficient transformation of organic pollutants associated on iron mineral surfaces. After 240 cycles of water vapor condensation and evaporation, bisphenol A and carbamazepine degraded by 25%-100% and 16%-51%, respectively, forming •OH-mediated arene/alkene hydroxylation products. Our findings largely broaden the natural source of •OH. Given the ubiquitous existence of iron minerals on Earth's surface, those newly discovered •OH could play a role in the transformation of pollutants and organic carbon associated with iron mineral surfaces.


Assuntos
Poluentes Ambientais , Ferro , Radical Hidroxila , Vapor , Peróxido de Hidrogênio , Minerais , Oxirredução
17.
Environ Res ; 236(Pt 1): 116702, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37490976

RESUMO

Environmental pollution and energy crisis have recently become one of the major global concerns. Insincere discharge of massive amount of organic and inorganic wastes into the aqueous bodies causes serious impact on our environment. However, these organic substances are significant sources of carbon and energy that could be sustainably utilized rather than being discarded. Photocatalytic fuel cell (PFC) is a smart and novel energy conversion device that has the ability to achieve dual benefits: degrading the organic contaminants and simultaneously generating electricity, thereby helping in environmental remediation. This article presents a detailed study of the recent advancements in the development of PFC systems and focuses on the fundamental working principles of PFCs. The degradation of various common organic and inorganic contaminants including dyes and antibiotics with simultaneous power generation and hydrogen evolution has been outlined. The impact of various operational factors on the PFC activity has also been briefly discussed. Moreover, it provides an overview of the design guidelines of the different PFC systems that has been developed recently. It also includes a mention of the materials employed for the construction of the photo electrodes and highlights the major limitations and relevant research scopes that are anticipated to be of interest in the days to come. The review is intended to serve as a handy resource for researchers and budding scientists opting to work in this area of PFC devices.


Assuntos
Poluentes Ambientais , Eletricidade , Águas Residuárias , Carbono , Poluição Ambiental
18.
Environ Res ; 233: 116459, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37356535

RESUMO

The recent expeditious industrialization and urbanization showcase the increasing need for renewable and non-renewable energy and the severe environmental crisis. In this regard, numerous 2-dimensional (2D) nanomaterials have been developed as a facile approach to meet the futuristic energy essentials and to resolve the crisis. In contrast, the newly explored 2D MXenes (transition metal carbide/nitrides/carbonitride) have been employed as an intriguing material for various environmental applications. This development is accredited to their unique properties, which include a vast surface area, strong electrical conductivity, fascinating photophysical properties, high mechanical properties, stability in an aqueous medium, high hydrophilicity, biocompatibility, ease of functionalization, and excellent thermal properties. MXenes act as a potential candidate in water desalination, energy storage devices such as electrodes of Li-ion batteries and pseudo capacitors, hydrogen production, sensors, and wastewater treatment. This review article deliberates the synthesis of MXene and nanocomposites of MXene and their photo-catalytic actions against various toxic pollutants such as organic dyes and heavy metals in wastewater. This review also precises the various preparation methods of MXene-based photocatalyst and the enhanced photocatalytic activity of MXene and MXene-based nanocomposites in wastewater treatment. Also, it details the attempts made to improve the photocatalytic activity of MXene-based nanocomposites in terms of their structural compositions. In addition, the merits and demerits of the MXene-based photocatalysts are deliberated, which may pave the way for future research in this arena.


Assuntos
Poluentes Ambientais , Nanocompostos , Corantes , Fontes de Energia Elétrica
19.
Environ Res ; 223: 115475, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36773635

RESUMO

Anaerobic baffled reactor (ABR) is widely used in rural sewage treatment due to its unique structure, strong impact load resistance, and low energy consumption. However, there is a lack of research on pollutant degradation patterns and microbial community succession patterns in each compartment of ABR. In this study, a packed anaerobic baffled reactor (PABR) was constructed. The effects of T and HRT on the pollutant removal performance of PABR were investigated, and the pollutant degradation and microbial community succession in different compartments of PABR were studied. The results show that the removal rates of COD, NH4+-N, and TN of PABR can reach 85.54 ± 1.08%, 16.94 ± 1.01%, and 5.64 ± 1.18% respectively, and PABR has a good pollutant removal effect. With the extension of HRT, the COD removal rate of PABR increases steadily, and the NH4+-N and TN removal rate of PABR increases to a certain extent. The recommended HRT is 72 h. T has a significant impact on the COD removal effect of PABR. The increase of T in a certain range is conducive to the removal of pollutants by PABR. The COD removal rate of PABR decreases gradually along the flow direction, and the removal of organic matter is mainly concentrated in the first compartment. PABR has good removal capacity for CODss and better nitrogen removal capacity compared with traditional ABR. The richness and diversity of the microbial community in PABR increased gradually along the flow direction. The bacterial species in each compartment were similar but the proportion was different, showing the characteristics of multi-stage and separated phase operation. This study provides a new reference for the application of ABR in rural sewage treatment.


Assuntos
Poluentes Ambientais , Águas Residuárias , Anaerobiose , Esgotos , Reatores Biológicos/microbiologia , Eliminação de Resíduos Líquidos/métodos
20.
Molecules ; 28(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36985599

RESUMO

ReS2-based heterostructures, which involve the coupling of a narrow band-gap semiconductor ReS2 with other wide band-gap semiconductors, have shown promising performance in energy conversion and environmental pollution protection in recent years. This review focuses on the preparation methods, encompassing hydrothermal, chemical vapor deposition, and exfoliation techniques, as well as achievements in correlated applications of ReS2-based heterostructures, including type-I, type-II heterostructures, and Z-scheme heterostructures for hydrogen evolution, reduction of CO2, and degradation of pollutants. We believe that this review provides an overview of the most recent advances to guide further research and development of ReS2-based heterostructures for photocatalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA