Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; : e2400479, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39122476

RESUMO

Efficient cathode interfacial layers (CILs) have become a crucial component of organic solar cells (OSCs). Charge extraction barriers, interfacial trap states, and significant transport resistance may be induced due to the unfavorable cathode interlayer, limiting the device performance. In this study, poly(4-vinylpyridine) is used as the CIL for OSCs, and a new type of CIL named P4VP-I is synthesized through the quaternization strategy. Compared to P4VP, P4VP-I CIL exhibits enhanced conductivity and optimized work function. OSCs employing the P4VP-I ETL demonstrate prolonged carrier lifetime, suppressed charge recombination, and achieve higher power conversion efficiencies (PCE) than the commonly used ETLs such as PFN-Br and Phen-NaDPO.

2.
Chemistry ; 25(71): 16377-16381, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31631457

RESUMO

Fabricating three-dimensional (3D) hierarchical noble-metal particles by spontaneous redox reactions between graphene and noble-metal salts still remains a great challenge. Herein, the fact that graphene oxide (GO) itself acts as both a platform for grafting polymer brushes and a reducing agent to reduce [Ag(NH3 )2 ]+ ions is taken advantages of. 3D flower-like Ag mesoparticles (Ag mesoflowers, Ag MFs) with tunable size and shapes can spontaneous grow on poly(4-vinylpyridine) brushes-grafted-graphene oxide (P4VP-g-GO) films in Ag(NH3 )2 OH solution without the use of any additional reducing agent. The residual Ag(NH3 )2 OH on 3D Ag MFs surface can be further reduced by NaBH4 , causing abundant nanoporosities over the entire Ag MFs. The resulting Ag nanoporous MFs (Ag NMFs) with larger surface-to-volume ratio and higher nanoscale roughness exhibit ultrasensitivity in surface-enhanced Raman spectroscopy (SERS) detection, and the detection limit for 4-aminothiophenol is as low as 10-13 m.

3.
Des Monomers Polym ; 20(1): 406-418, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29491812

RESUMO

Sharply thermo- and pH-responsive pentablock terpolymer with a core-shell-corona structure was prepared by RAFT polymerization of N-isopropylacrylamide and methacrylic acid monomers using PEG-based benzoate-type of RAFT agent. The PEG-based RAFT agent could be easily synthesized by dihydroxyl-capped PEG with 4-cyano-4-(thiobenzoyl) sulfanylpentanoic acids, using esterification reaction. This pentablock terpolymer was characterized by 1H NMR, FT-IR, and GPC. The PDI was obtained by GPC, indicating that the molecular weight distribution was narrow and the polymerization was well controlled. The thermo- and pH-responsive micellization of the pentablock terpolymer in aqueous solution was investigated using fluorescence spectroscopy technique, UV-vis transmittance, and TEM. The LCST of pentablock terpolymer increased (over 50 °C) compared to the NIPAM homopolymer (~32 °C), due to the incorporation of the hydrophilic PEG and PMA blocks in pentablock terpolymer (PNIPAM block as the core, PEG the block and the hydrophilic PMA block as the shell and the corona). Also, pH-dependent phase transition behavior shows at a pH value of about ~5.8, according to pKa of MAA. Thus, in acidic solution at room temperature, the pentablock terpolymer self-assembled to form core-shell-corona micelles, with the hydrophobic PMA block as the core, the PNIPAM block and the hydrophilic PEG block as the shell and the corona, respectively.

4.
J Hazard Mater ; 476: 135097, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970975

RESUMO

Antimony is a highly poisonous pollutant that needs to be removed from water to ensured safety. In this work, we have fabricated a novel adsorbent, the ferric-manganese oxide (FeMnOx) nanoparticles embedded cellulose nanocrystal-based polymer hydrogel (FeMnOx @CNC-g-PAA/qP4VP, denoted as FMO@CPqP), specifically engineered for the remediation of antimony-laden water. Comprehensive evaluations have been conducted to investigate the efficacy of the FMO@CPqP hydrogel in removal of antimony from water. The hydrogel exhibits superior affinity for antimony, with maximum adsorption capacities of 276.1 mg/g for Sb(III) and 286.8 mg/g for Sb(V). The adsorptive dynamics, governed by the kinetics and isotherm analyses, elucidate that the immobilization of both Sb(III) and Sb(V) is facilitated through a homogeneous and monolayer chemisorption mechanism. The hydrogel has a three-dimensional interconnected porous structure and exhibits good swelling behavior, which facilitates the rapid absorption of antimony ions by this high surface area hydrogel into the channels. Furthermore, various effects, including the oxidation and inner-sphere coordination mediated by FeMnOx NPs and the electrostatic attractions of the quaternized P4VP chains, promote the immobilization of antimony species. Owing to its high removal efficiency, stability and reusability, the FMO@CPqP hydrogel emerges as an exemplary candidate for the removal of antimony contaminants in water treatment processes.

5.
Carbohydr Polym ; 331: 121855, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38388053

RESUMO

A cellulose nanocrystal (CNC) polymer hydrogel containing magnetic iron oxide nanorods (Fe3O4NRs) was prepared for As(III) removal in water. Systematic studies on the performance of these prepared CNC-based composite hydrogels for the removal of As(III) have been undertaken. The maximum adsorption capacity of the CNC-g-PAA/qP4VP (CPqP) hydrogel was 241.3 mg/g. After introduction of Fe3O4NRs in the hydrogel, the maximum adsorption capacity of the resulting Fe3O4NRs@CNC-g-PAA/qP4VP (FN@CPqP) hydrogel was further improved to 263.0 mg/g. The high adsorption performance can be attributed to the facts that the 3D interconnected porous network of the hydrogel allows As species to easily enter into the hydrogel, the quaternized P4VP chains provides more adsorption sites, Fe3O4NRs uniformly distributed in the internal cavity of the hydrogel significantly reduces the nanoparticle aggregation. The adsorption kinetics indicated that the adsorption of arsenic by the hydrogel was mainly chemisorption. The isotherm analysis revealed that the adsorption of arsenic by the hydrogel was principally monolayer adsorption on a homogeneous surface. Moreover, the as-prepared CNC-based polymer hydrogels exhibited good stability and reusability with negligible performance loss after five adsorption-desorption cycles. The novel FN@CPqP hydrogel demonstrates great potential as a cost-effective adsorbent for the removal of arsenic contaminants from wastewater.

6.
Sci Total Environ ; 929: 172546, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38636858

RESUMO

Micro-pollutants (specifically antibiotics and personal care products) and potential bacterial contamination pose a severe threat to human health and marine life. The study derives indigenous novel fibrous hydrophobic nanocomposite, efficient in decontaminating the micro-pollutants (tetracycline (TC) and bisphenol A (BPA)) and potential pathogens (S. pyogenes and E. coli) from aqueous wastes. A facile method synthesizes the fibrous attapulgite (ATP)- poly(4-vinylpyridine-co-styrene) (PVP) framework decorated in situ with the Ag0 nanoparticles (ATP@PVP/Ag0). A greener method using the Artocarpus heterophyllus leaf extract derives the Ag0(NPs). Various analytical methods extensively characterize the materials. A comprehensive study that includes pH, concentration, background electrolytes, and ionic strength reveals the sorptive removal insights of TC and BPA utilizing the ATP@PVP solid. The elimination of tetracycline (TC) and bisphenol A (BPA) agrees well with the pseudo-second-order kinetics. The pH 3.07 and 6.06 favor removing TC and BPA with the capacity of 10.86 mg/g and 17.36 mg/g at 25 °C. The hydrogen bonding and hydrophobic interactions predominate the sorption mechanism, and the material shows remarkable stability and reusability in repeated sorption/desorption operations. Similarly, the natural water implications and flow-bed system show fair applicability of solid in decontaminating the TC and BPA in an aqueous medium. Further, the material ATP@PVP/Ag0 exhibits very high inhibition of potential pathogens S. pyogenes and E. coli and optimizes the solid dose and solution pH.


Assuntos
Compostos Benzidrílicos , Nanocompostos , Fenóis , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Fenóis/análise , Interações Hidrofóbicas e Hidrofílicas , Tetraciclina/química , Eliminação de Resíduos Líquidos/métodos , Bactérias , Águas Residuárias/química , Águas Residuárias/microbiologia , Escherichia coli
7.
ACS Appl Mater Interfaces ; 14(40): 45263-45271, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36166505

RESUMO

Developing active and selective catalysts that convert CO2 into valuable products remains a critical challenge for further application of the electrochemical CO2 reduction reaction (CO2RR). Catalytic tuning with organic additives/films has emerged as a promising strategy to tune CO2RR activity and selectivity. Herein, we report a facile method to significantly change CO2RR selectivity and activity of copper and gold electrodes. We found improved selectivity toward HCOOH at low overpotentials on both polycrystalline Cu and Au electrodes after chemical modification with a poly(4-vinylpyridine) (P4VP) layer. In situ attenuated total reflection surface-enhanced infrared reflection-adsorption spectroscopy and contact angle measurements indicate that the hydrophobic nature of the P4VP layer limits mass transport of HCO3- and H2O, whereas it has little influence on CO2 mass transport. Moreover, the early onset of HCOOH formation and the enhanced formation of HCOOH over CO suggest that P4VP modification promotes a surface hydride mechanism for HCOOH formation on both electrodes.

8.
Polymers (Basel) ; 14(4)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35215717

RESUMO

A series of N-methyl quaternized derivatives of poly(4-vinylpyridine) (PVP) were synthesized in high yields with different degrees of quaternization, obtained by varying the methyl iodide molar ratio and affording products with unexplored optical and solvation properties. The impact of quaternization on the physicochemical properties of the copolymers, and notably the solvation properties, was further studied. The structure of the synthesized polymers and the quaternization degrees were determined by infrared and nuclear magnetic spectroscopies, while their thermal characteristics were studied by differential scanning calorimetry and their thermal stability and degradation by thermogravimetric analysis (TG-DTA). Attention was given to their optical properties, where UV-Vis and diffuse reflectance spectroscopy (DRS) measurements were carried out. The optical band gap of the polymers was calculated and correlated with the degree of quaternization. The study was further orientated towards the solvation properties of the polymers in binary solvent mixtures that strongly depend on the degree of quaternization, enabling a better understanding of the key polymer (solute)-solvent interactions. The assessment of the underlying solvation phenomena was performed in a system of different ratios of DMSO/H2O and the solvatochromic indicator used was Reichardt's dye. Solvent polarity parameters have a significant effect on the visible spectra of the nitrogen quaternization of PVP studied in this work and a detailed path towards this assessment is presented.

9.
Adv Sci (Weinh) ; 9(25): e2202394, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35780503

RESUMO

Mesoporous carbon microparticles (MCMPs) with anisotropic shapes and ordered structures are attractive materials that remain challenging to access. In this study, a facile yet versatile route is developed to prepare anisotropic MCMPs by combining neutral interface-guided 3D confined self-assembly (3D-CSA) of block copolymer (BCP) with a self-templated direct carbonization strategy. This route enables pre-engineering BCP into microparticles with oblate shape and hexagonal packing cylindrical mesostructures, followed by selective crosslinking and decorating of their continuous phase with functional species (such as platinum nanoparticles, Pt NPs) via in situ growth. To realize uniform in situ growth, a "guest exchange" strategy is proposed to make room for functional species and a pre-crosslinking strategy is developed to preserve the structural stability of preformed BCP microparticles during infiltration. Finally, Pt NP-loaded MCMPs are derived from the continuous phase of BCP microparticles through selective self-templated direct carbonization without using any external carbon source. This study introduces an effective concept to obtain functional species-loaded and N-doped MCMPs with oblate shape and almost hexagonal structure (p6mm), which would find important applications in fuel cells, separation, and heterogeneous catalysis.


Assuntos
Carbono , Nanopartículas Metálicas , Carbono/química , Catálise , Nanopartículas Metálicas/química , Platina/química , Polímeros/química
10.
Membranes (Basel) ; 12(4)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35448332

RESUMO

Water electrolysis (WE) is a highly promising approach to producing clean hydrogen. Medium-temperature WE (100-350 °C) can improve the energy efficiency and utilize the low-grade water vapor. Therefore, a high-temperature proton-conductive membrane is desirable to realize the medium-temperature WE. Here, we present a polyvinyl chloride (PVC)-poly(4vinylpyridine) (P4VP) hybrid membrane by a simple cross-linking of PVC and P4VP. The pyridine groups of P4VP promote the loading rate of phosphoric acid, which delivers the proton conductivity of the PVC-P4VP membrane. The optimized PVC-P4VP membrane with a 1:2 content ratio offers the maximum proton conductivity of 4.3 × 10-2 S cm-1 at 180 °C and a reliable conductivity stability in 200 h at 160 °C. The PVC-P4VP membrane electrode is covered by an IrO2 anode, and a Pt/C cathode delivers not only the high water electrolytic reactivity at 100-180 °C but also the stable WE stability at 180 °C.

11.
Anal Chim Acta ; 1147: 99-107, 2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33485588

RESUMO

Single-walled carbon nanotube-based field effect transistors (SWCNT-FETs) are ideal candidates for fabricating sensors and have been widely used for chemical sensing applications. SWCNT-FETs have low selectivity because of the environmentally sensitive electronic properties of SWCNTs, and SWCNT-FETs also show a high noise signal and poor sensitivity because of charge trapping from Si-OH hydration of the SiO2/Si substrate on the SWCNTs. Herein, poly (4-vinylpyridine) (P4VP) was used for noncovalent attachment to SWCNTs and selective binding to copper ions (Cu2+). Importantly, the introduction of a hafnium-oxide (HfO2) layer through atomic layer deposition (ALD) overcame the charge trapping by SiO2 hydration and remarkably decreased the interference signal. The sensitivity of the P4VP/SWCNT/HfO2-FET sensor for Cu2+ was 7.9 µA µM-1, which was approximately 100 times higher than that of the P4VP/SWCNT/SiO2-FET sensor, and its limit of detection (LOD) was as low as 33 pmol L-1. Thus, the P4VP/SWCNT/HfO2-FET sensor is a promising candidate for the development of Cu2+-selective sensors and can be designed for the large-scale manufacturing of custom-made sensors in the future.

12.
Int J Biol Macromol ; 147: 809-820, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31751709

RESUMO

Polyelectrolyte multilayer (PEC) films of sodium alginate (Na-Alg) and poly(4-vinylpyridine) (P4VP) were prepared and were loaded with an antibacterial agent, ciprofloxacin HCl (CIP.HCl) aiming to design new hydrophilic films with controlled physicochemical properties and drug release behaviour that may find application as components of transdermal drug delivery systems. The PEC films were characterized by SEM, XRD, TGA, AFM and FTIR spectroscopy. The hydrophilicity of the PEC films was examined by using contact angle measurement. The number of layers and the nature of the outer layer affect the physicochemical characteristics, CIP.HCl loading and release behaviour of the films. The three layer film PEC-3, which is composed of Na-Alg outer layer deposited on a P4VP/Na-Alg double layer, is characterized by the lowest roughness (Rq = 16.3 nm) and the most hydrophilic surface with a contact angle value of 38.1° among all other films. Its crystallinity index is 0.36, and starts to degrade at 195 °C. It exhibits 130-135% equilibrium swelling capacity in acid buffer and water respectively. PEC-3 is the film with the highest drug loading capacity and drug loading efficiency values of 3.51% and 87% respectively. A cumulative drug release of 65% is obtained from PEC-3 within 24 h in pH = 1.2 buffer solution.


Assuntos
Alginatos , Ciprofloxacina , Membranas Artificiais , Polivinil , Alginatos/química , Alginatos/farmacocinética , Alginatos/farmacologia , Ciprofloxacina/química , Ciprofloxacina/farmacocinética , Preparações de Ação Retardada/síntese química , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Polieletrólitos/síntese química , Polieletrólitos/química , Polieletrólitos/farmacocinética , Polieletrólitos/farmacologia , Polivinil/química , Polivinil/farmacocinética , Polivinil/farmacologia
13.
ACS Nano ; 14(11): 15227-15240, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33174725

RESUMO

We study the nonequilibrium diffusive release of electroneutral molecular cargo encapsulated inside hollow hydrogel nanoparticles. We propose a theoretical model that includes osmotic, steric, and short-range polymer-cargo attractions to determine the effective cargo-hydrogel interaction, ueff*, and the effective diffusion coefficient of the cargo inside the polymer network, Deff*. Using dynamical density functional theory (DDFT), we investigate the scaling of the characteristic release time, τ1/2, with the key parameters involved in the process, namely, ueff*, Deff*, and the swelling ratio. This effort represents a full study of the problem, covering a broad range of cargo sizes and providing predictions for repulsive and attractive polymer shells. Our calculations show that the release time through repulsive polymer networks scales with q2eßueff*/Deff* for ßueff* ≫ 1. In this case, the cargo molecules are excluded from the shell of the hydrogel. For attractive shells, the polymer retains the cargo molecules on its internal surface and its interior, and the release time grows exponentially with the attraction strength. The DDFT calculations are compared to an analytical model for the mean first passage time, which provides an excellent quantitative description of the kinetics for both repulsive and attractive shells without fitting parameters. Finally, we apply the method to reproduce experimental results on the release of paclitaxel from hollow poly(4-vinylpyridine) nanoparticles and find that the slow release of the drug can be explained in terms of the strong binding attraction between the drug and the polymer.

14.
Comb Chem High Throughput Screen ; 23(2): 119-125, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32003667

RESUMO

OBJECTIVE: Herein, a novel heterogeneous catalytic system constructed of iron oxide and palladium nanoparticles is presented. Firstly, a convenient synthetic pathway for the preparation of this catalytic system is introduced, then the application of the fabricated nanocomposite in the Pd-catalyzed C─C coupling reactions is monitored. High reaction yields (98%) have been obtained in short reaction time, by using this catalytic system. MATERIALS AND METHODS: Fe3O4/P4VP-Pd catalytic system was fabricated via an in situ method by 4- vinylpyridine (4-VP). In this regard, all the essential structural analyses such as FT-IR, EDX, VSM, and TGA have been performed on the Fe3O4/P4VP-Pd catalytic system to investigate its properties. The spherical morphology of the NPs and their uniform size have also been studied by the SEM method. Further, the reaction progress was controlled by thin-layer chromatography. Finally, NMR analysis was used to identify the synthesized biphenyl pharmaceutical derivatives. RESULTS: High efficiency of this catalytic system has been precisely investigated and the optimal conditions were determined. The catalytic process is carried out in 20 min, under mild conditions (room temperature). Then, the purification process is easily performed via magnetic separation of the catalyst NPs. After completion of the synthesis reaction, the NPs were collected, washed, and reused several times. CONCLUSION: Among recently reported heterogeneous catalytic systems, Fe3O4/P4VP-Pd is recommended due to its high catalytic performance, convenience of the preparation process, excellent biocompatibility, economic benefits, and well reusability. Overall, in order to save time in the complex synthetic processes and also prevent using so many chemical reagents and solvents for the purification process, the presented catalytic system could be suitable for scaling up and applying for the industrial applications.


Assuntos
Complexos de Coordenação/química , Desenho de Fármacos , Nanopartículas de Magnetita/química , Nanocompostos/química , Paládio/química , Polímeros/síntese química , Catálise , Estrutura Molecular , Tamanho da Partícula , Polímeros/química , Propriedades de Superfície
15.
ACS Appl Mater Interfaces ; 11(27): 24560-24570, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31250630

RESUMO

The recovery of precious metals like palladium (Pd) from secondary resources has enormous economic benefits and is in favor of resource reuse. In this work, we prepared a high efficiency pyridine-functionalized reduced graphene oxide (rGO) adsorbent for selective separation of Pd(II) from simulated electronic waste leachate, by one-pot γ-ray radiation-induced simultaneous grafting polymerization (RIGP) of 4-vinylpyridine (4VP) from graphene oxide (GO) and reduction of GO. The poly(4-vinylpyridine)-grafted reduced graphene oxide (rGO-g-P4VP) exhibits fast adsorption kinetics and high maximum adsorption capacity. The adsorption capacity is 105 mg g-1 in the first minute and reaches equilibrium within 120 min. The adsorption process follows the Langmuir model, from which the maximum adsorption capacity of Pd(II) is estimated to be 177 mg g-1. We also proved that the adsorption mechanism of Pd(II) on rGO-g-P4VP involves both ion exchange and coordination adsorption by XPS analysis. Most importantly, the loss of oxygen-containing groups due to reduction of GO not only facilitates the separation of adsorbent from aqueous solution but also reduces the electrostatic repulsion toward Pd(II)Cl42- in hydrochloric acid solution, leading to a higher adsorption selectivity of Pd(II) over some common metal cations in electronic waste including Fe(III), Cu(II), and Al(III) compared with poly(4-vinylpyridine)-grafted graphene oxide (GO-g-P4VP) prepared by atom transfer radical polymerization. Other precious metals like Pt(IV) and Au(III) can also be recovered easily and selectively by rGO-g-P4VP. This work demonstrates that rGO-g-P4VP prepared by the facile RIGP is a promising adsorbent for recovery of precious metals from secondary resources like electronic waste leachate.

16.
Nanomaterials (Basel) ; 9(12)2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31816812

RESUMO

New pH-sensitive polystyrene, PS, and poly(4-vinylpyridine), P4-VP, nanospheres were prepared by using surfactant-free method based on soft microgels (Mickering emulsion). The formation of stable Mickering cyclohexane/water emulsions was investigated by using soft microgel particles of poly(acrylamide), PAAm, poly(2-acrylamido-2-methylpropane sulfonic acid), PAMPS, and sodium salt of PAMPS, PAMPS-Na, as stabilizers. The dynamic light scattering (DLS), optical microscopy, and scanning electron microscopy (SEM) were used to investigate the optimum conditions and effects of surrounding solutions on the microgels characteristics and their corresponding Mickering emulsions. The cyclohexane/water Mickering emulsions stabilized by softer and neutral charged microgels were considerably more stable under the same conditions. Furthermore, the stimuli-responsive properties of PAMPS microgel stabilized cyclohexane/water Mickering emulsions suggest the potential utility in the preparation of PS and P4-VP nanospheres. The effects of pH changes on the morphology, particle sizes, and surface charges of PS and P4-VP microgels were evaluated to prove the pH-sensitivity of the prepared nanospheres.

17.
Polymers (Basel) ; 11(1)2019 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-30960146

RESUMO

The thermal and electrical properties of a polymer nanocomposite are highly dependent on the dispersion of the CNT filler in the polymer matrix. Non-covalent functionalisation with a PVP polymer is an excellent driving force towards an effective dispersion of MWNTs in the polymer matrix. It is shown that the PVP molecular weight plays a key role in the non-covalent functionalisation of MWNT and its effect on the thermal and electrical properties of the polymer nanocomposite is reported herein. The dispersion and crystallisation behaviour of the composite are also evaluated by a combination of scanning electron microscopy (SEM) and differential scanning calorimetry (DSC).

18.
Materials (Basel) ; 12(2)2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-30641894

RESUMO

The prevalence of emerging organic contaminants (EOCs) in ground and surface water has sparked the search for more effective methods to remove EOCs from the environment. In pursuit of a solution for this environmental concern, herein we present the development of reusable films based on cellulose nanofibers (CNFs) and the block copolymer, poly(4-vinylpyridine-b-ethylene oxide) (P4VP-PEO) to adsorb sulfamethoxazole (SMX) as an EOC model compound. We hypothesize that the adsorption of SMX was achieved mainly by π-π interactions between the pyridine functionalities of the block copolymer and the electron deficient phenyl group of the SMX. Preceding preparation of the films, CNFs were modified with the alkoxysilane trimethoxy(2-phenylethyl)silane (TMPES) to increase their stability in aqueous solution. After the addition of P4VP-PEO, the process was completed by filtration followed by oven-drying. XPS and FTIR were employed to confirm the addition of TMPES and P4VP-PEO, respectively. Adsorption batch experiments were performed in aqueous solutions of SMX at a neutral pH, obtaining adsorptions of up to 0.014 mmol/g in a moderate time of 60 min. For the reusability tests, films were immersed in ethanol 95 wt.% to elude the adsorbed SMX, rinsed with deionized (DI) water, and dried at room temperature to be reused in a new adsorption cycle. We found that this new composite material could be reused several times with negligible loss of adsorption capacity. The films presented have been shown to be of substantial importance for water remediation as they find direct application in the adsorption of electron deficient aromatic compounds and are reusable.

19.
Carbohydr Polym ; 182: 61-68, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29279126

RESUMO

pH-responsive poly(4-vinylpyridine) (P4VP) grafted cellulose nanocrystals (P4VP-g-CNC) were prepared by Surface-Initiated Atom Transfer Radical Polymerization (SI-ATRP) and subsequently used to stabilize gold nanoparticles (Au NPs) as efficient and recyclable nanocatalysts for the reduction of 4-nitrophenol (4NP). The presence of P4VP brushes on the CNC surface controlled the growth of Au NPs yielding smaller averaged diameter compared to Au NPs deposited directly on pristine CNC. The catalytic performances of pristine Au NPs, Au@CNC and Au@P4VP-g-CNC were compared by measuring the turnover frequency (TOF) for the catalytic reduction of 4NP. Compared to pristine Au NPs, the catalytic activity of Au@CNC and Au@P4VP-g-CNC were 10 and 24 times better. Moreover, the Au@P4VP-g-CNC material could be recovered via flocculation at pH>5, and the recycled nanocatalyst remained highly active.


Assuntos
Celulose/química , Ouro/química , Nanopartículas Metálicas/química , Nanopartículas/química , Polivinil/química , Catálise , Estrutura Molecular
20.
J Chromatogr A ; 1572: 119-127, 2018 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30173935

RESUMO

A novel poly(4-vinylpyridine) based stationary phase was investigated for its performance under supercritical fluid chromatography (SFC) mode. Due to its unique structure, this stationary phase has high molecular planarity recognition ability for aromatic samples possessing the same number of aromatic rings and π-electrons. Taking advantage of the planarity recognition ability observed, separations of structurally similar polycyclic aromatic hydrocarbons and steroids were achieved. This novel stationary phase afforded good peak symmetry for both acidic and basic active pharmaceutical ingredients even when excluding the use of additives such as acids, bases, and salts. These findings may be attributed to the polymeric pyridyl groups covalently-attached on silica gel, which will effectively shield the undesirable interaction between residual silanol groups on the surface and the analytes. Moreover, the properties of pyridyl group on the selector can be reversibly tuned to cationic pyridinium form by eluting trifluoroacetic acid containing modifier. Column robustness toward cycle durability testing was also confirmed.


Assuntos
Cromatografia com Fluido Supercrítico/métodos , Hidrocarbonetos Policíclicos Aromáticos/isolamento & purificação , Polivinil/química , Esteroides/isolamento & purificação , Hidrocarbonetos Policíclicos Aromáticos/química , Reprodutibilidade dos Testes , Sílica Gel/química , Esteroides/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA