Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 695
Filtrar
1.
Mol Pharm ; 21(4): 1609-1624, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38412451

RESUMO

Cannabidiol (CBD) is the most relevant nonpsychostimulant phytocompound found in Cannabis sativa. CBD has been extensively studied and has been proposed as a therapeutic candidate for neuroinflammation-related conditions. However, being a highly lipophilic drug, it has several drawbacks for pharmaceutical use, including low solubility and high permeability. Synthetic polymers can be used as drug delivery systems to improve CBD's stability, half-life, and biodistribution. Here, we propose using a synthetic polymer as a nanoparticulate vehicle for CBD (NPCBD) to overcome the pharmacological drawbacks of free drugs. We tested the NPCBD-engineered system in the context of ischemic events in a relevant oxygen and glucose deprivation (OGD) model in primary cortical cells (PCC). Moreover, we have characterized the inflammatory response of relevant cell types, such as THP-1 (human monocytes), HMC3 (human microglia), and PCC, to NPCBD and observed a shift in the inflammatory state of the treated cells after the ischemic event. In addition, NPCBD exhibited a promising ability to restore mitochondrial function after OGD insult in both HMC3 and PCC cells at low doses of 1 and 0.2 µM CBD. Taken together, these results suggest the potential for preclinical use.


Assuntos
Canabidiol , Humanos , Canabidiol/uso terapêutico , Canabidiol/farmacologia , Doenças Neuroinflamatórias , Distribuição Tecidual , Encéfalo , Oxigênio
2.
Cells Tissues Organs ; : 1-11, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38934132

RESUMO

INTRODUCTION: Localized delivery of angiogenesis-promoting factors such as small molecules, nucleic acids, peptides, and proteins to promote the repair and regeneration of damaged tissues remains a challenge in vascular tissue engineering. Current delivery methods such as direct administration of therapeutics can fail to maintain the necessary sustained release profile and often rely on supraphysiologic doses to achieve the desired therapeutic effect. By implementing a microparticle delivery system, localized delivery can be coupled with sustained and controlled release to mitigate the risks involved with the high dosages currently required from direct therapeutic administration. METHODS: For this purpose, poly(lactic-co-glycolic acid) (PLGA) microparticles were fabricated via anti-solvent microencapsulation and the loading, release, and delivery of model angiogenic molecules, specifically a small molecule, nucleic acid, and protein, were assessed in vitro using microvascular fragments (MVFs). RESULTS: The microencapsulation approach utilized enabled rapid spherical particle formation and encapsulation of model drugs of different sizes, all in one method. The addition of a fibrin scaffold, required for the culture of the MVFs, reduced the initial burst of model drugs observed in release profiles from PLGA alone. Lastly, in vitro studies using MVFs demonstrated that higher concentrations of microparticles led to greater co-localization of the model therapeutic (miRNA) with MVFs, which is vital for targeted delivery methods. It was also found that the biodistribution of miRNA using the delivered microparticle system was enhanced compared to direct administration. CONCLUSION: Overall, PLGA microparticles, formulated and loaded with model therapeutic compounds in one step, resulted in improved biodistribution in a model of the vasculature leading to a future in translational revascularization.

3.
Nanotechnology ; 36(1)2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39332438

RESUMO

Biomaterial-based implantable scaffolds capable of promoting physical and functional reconnection of injured spinal cord and nerves represent the latest frontier in neural tissue engineering. Here, we report the fabrication and characterization of self-standing, biocompatible and bioresorbable substrates endowed with both controlled nanotopography and electroactivity, intended for the design of transient implantable scaffolds for neural tissue engineering. In particular, we obtain conductive and nano-modulated poly(D,L-lactic acid) (PLA) and poly(lactic-co-glycolic acid) free-standing films by simply iterating a replica moulding process and coating the polymer with a thin layer of poly(3,4-ethylendioxythiophene) polystyrene sulfonate. The capability of the substrates to retain both surface patterning and electrical properties when exposed to a liquid environment has been evaluated by atomic force microscopy, electrochemical impedance spectroscopy and thermal characterizations. In particular, we show that PLA-based films maintain their surface nano-modulation for up to three weeks of exposure to a liquid environment, a time sufficient for promoting axonal anisotropic sprouting and growth during neuronal cell differentiation. In conclusion, the developed substrates represent a novel and easily-tunable platform to design bioresorbable implantable devices featuring both topographic and electrical cues.


Assuntos
Poliésteres , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Poliestirenos , Alicerces Teciduais , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Alicerces Teciduais/química , Poliésteres/química , Poliestirenos/química , Animais , Ácido Láctico/química , Materiais Biocompatíveis/química , Ácido Poliglicólico/química , Engenharia Tecidual/métodos , Propriedades de Superfície , Polímeros/química , Microscopia de Força Atômica , Condutividade Elétrica , Neurônios/citologia , Neurônios/fisiologia , Nanoestruturas/química , Ratos , Diferenciação Celular/efeitos dos fármacos
4.
Macromol Rapid Commun ; : e2400400, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981020

RESUMO

With the continuous development of preventive and therapeutic vaccines, traditional adjuvants cannot provide sufficient immune efficacy and it is of high necessity to develop safe and effective novel nanoparticle-based vaccine adjuvants. α-Tocopherol (TOC) is commonly used in oil-emulsion adjuvant systems as an immune enhancer, yet its bioavailability is limited by poor water solubility. This study aims to develop TOC-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (TOC-PLGA NPs) to explore the potential of TOC-PLGA NPs as a novel nanoparticle-immune adjuvant. TOC-PLGA NPs are prepared by a nanoprecipitation method and their physicochemical properties are characterized. It is shown that TOC-PLGA NPs are 110.8 nm, polydispersity index value of 0.042, and Zeta potential of -13.26 mV. The encapsulation efficiency and drug loading of NPs are 82.57% and 11.80%, respectively, and the cumulative release after 35 days of in vitro testing reaches 47%. Furthermore, TOC-PLGA NPs demonstrate a superior promotion effect on RAW 264.7 cell proliferation compared to PLGA NPs, being well phagocytosed and also promoting antigen uptake by macrophages. TOC-PLGA NPs can strongly upregulate the expression of co-stimulatory surface molecules and the secretion of cytokines. In conclusion, TOC-PLGA NPs can be a novel vaccine adjuvant with excellent biocompatibility and significant immune-enhancing activity.

5.
J Nanobiotechnology ; 22(1): 306, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825717

RESUMO

Targeted alpha therapy (TAT) relies on chemical affinity or active targeting using radioimmunoconjugates as strategies to deliver α-emitting radionuclides to cancerous tissue. These strategies can be affected by transmetalation of the parent radionuclide by competing ions in vivo and the bond-breaking recoil energy of decay daughters. The retention of α-emitting radionuclides and the dose delivered to cancer cells are influenced by these processes. Encapsulating α-emitting radionuclides within nanoparticles can help overcome many of these challenges. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles are a biodegradable and biocompatible delivery platform that has been used for drug delivery. In this study, PLGA nanoparticles are utilized for encapsulation and retention of actinium-225 ([225Ac]Ac3+). Encapsulation of [225Ac]Ac3+ within PLGA nanoparticles (Zave = 155.3 nm) was achieved by adapting a double-emulsion solvent evaporation method. The encapsulation efficiency was affected by both the solvent conditions and the chelation of [225Ac]Ac3+. Chelation of [225Ac]Ac3+ to a lipophilic 2,9-bis-lactam-1,10-phenanthroline ligand ([225Ac]AcBLPhen) significantly decreased its release (< 2%) and that of its decay daughters (< 50%) from PLGA nanoparticles. PLGA nanoparticles encapsulating [225Ac]AcBLPhen significantly increased the delivery of [225Ac]Ac3+ to murine (E0771) and human (MCF-7 and MDA-MB-231) breast cancer cells with a concomitant increase in cell death over free [225Ac]Ac3+ in solution. These results demonstrate that PLGA nanoparticles have potential as radionuclide delivery platforms for TAT to advance precision radiotherapy for cancer. In addition, this technology offers an alternative use for ligands with poor aqueous solubility, low stability, or low affinity, allowing them to be repurposed for TAT by encapsulation within PLGA nanoparticles.


Assuntos
Actínio , Nanopartículas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Actínio/química , Humanos , Linhagem Celular Tumoral , Animais , Partículas alfa/uso terapêutico , Camundongos , Feminino , Materiais Biocompatíveis/química , Neoplasias da Mama/tratamento farmacológico , Radioimunoterapia/métodos
6.
Exp Parasitol ; 265: 108811, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39111383

RESUMO

Alveolar echinococcosis (AE) is a severe disease caused by the infection with the larval stage of Echinococcus multilocularis, the metacestode. As there is no actual curative drug therapy, recommendations to manage AE patients are based on radical surgery and prophylactic administration of albendazole or mebendazole during 2 years to prevent relapses. There is an urgent need for new therapeutic strategies for the management of AE, as the drugs in use are only parasitostatic, and can induce toxicity. This study aimed at developing a drug delivery system for mefloquine, an antiparasitic compound which is highly active against E. multilocularis in vitro and in experimentally infected mice. We formulated mefloquine-loaded PLGA-PEG-COOH (poly-(lactic-co-glycolic acid)) nanoparticles that exhibit stable physical properties and mefloquine content. These nanoparticles crossed the outer acellular laminated layer of metacestodes in vitro and delivered their content to the inner germinal layer within less than 5 min. The in vitro anti-echinococcal activity of mefloquine was not altered during the formulation process. However, toxicity against hepatocytes was not reduced when compared to free mefloquine. Altogether, this study shows that mefloquine-loaded PLGA-PEG-COOH nanoparticles are promising candidates for drug delivery during AE treatment. However, strategies for direct parasite-specific targeting of these particles should be developed.


Assuntos
Echinococcus multilocularis , Mefloquina , Nanopartículas , Polietilenoglicóis , Animais , Mefloquina/farmacologia , Mefloquina/administração & dosagem , Echinococcus multilocularis/efeitos dos fármacos , Camundongos , Polietilenoglicóis/química , Nanopartículas/química , Equinococose/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Feminino , Camundongos Endogâmicos BALB C , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Anti-Helmínticos/farmacologia , Anti-Helmínticos/administração & dosagem , Anti-Helmínticos/química , Humanos , Poliglactina 910
7.
Int J Mol Sci ; 25(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38338928

RESUMO

The low percentage of recyclability of the polymeric materials obtained by olefin transition metal (TM) polymerization catalysis has increased the interest in their substitution with more eco-friendly materials with reliable physical and mechanical properties. Among the variety of known biodegradable polymers, linear aliphatic polyesters produced by ring-opening polymerization (ROP) of cyclic esters occupy a prominent position. The polymer properties are highly dependent on the macromolecule microstructure, and the control of stereoselectivity is necessary for providing materials with precise and finely tuned properties. In this review, we aim to outline the main synthetic routes, the physical properties and also the applications of three commercially available biodegradable materials: Polylactic acid (PLA), Poly(Lactic-co-Glycolic Acid) (PLGA), and Poly(3-hydroxybutyrate) (P3HB), all of three easily accessible via ROP. In this framework, understanding the origin of enantioselectivity and the factors that determine it is then crucial for the development of materials with suitable thermal and mechanical properties.


Assuntos
Ésteres , Poliésteres , Polimerização , Ésteres/química , Poliésteres/química , Polímeros , Ácido 3-Hidroxibutírico
8.
Cleft Palate Craniofac J ; 61(4): 592-598, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36604781

RESUMO

INTRODUCTION: In secondary cleft lip and nasal deformity (CLND) correction, structural grafts are commonly used to control the nasal tip and restore the symmetry of the ala. However, the septal cartilage in Asians often weak and small. Biocompatible absorbable materials are alternatives to autologous grafts. This study assessed the surgical outcomes and complications of poly lactic-co-glycolic acid (PLGA) plate grafts in secondary CLND correction. METHODS: This study was retrospectively analyzed for patients who underwent secondary rhinoplasty for unilateral CLND correction between March 2015 and November 2020. Using open rhinoplasty, the PLGA plate was grafted as a columellar strut. Clinical photographs taken at the initial (T0) and follow-up visits (T1: short-term, T2: long-term) were analyzed and anthropometric parameters, such as nostril height and width, dome height, and tip height, were measured. RESULTS: Twenty-four patients were included in this study. The mean T1 and T2 periods were 1.0 ± 0.4 and 15.5 ± 3.1 months, respectively. The nostril height ratio increased from 0.78 ± 0.12 at T0 to 0.88 ± 0.08 at T1 and 0.86 ± 0.09 at T2 (p < 0.001; Relapse ratio -2.6 ± 6.7%). The tip height ratio increased from 0.60 ± 0.07 (T0) to 0.66 ± 0.05 (T2) (Relapse ratio -3.7 ± 3.0%). CONCLUSIONS: The PLGA plate graft provided stable nasal tip projection and alar symmetry without major complications. It can be a good option for patients lacking available septal and concha cartilages or apprehensive of additional scarring.


Assuntos
Fenda Labial , Implantes Dentários , Glicolatos , Rinoplastia , Humanos , Fenda Labial/cirurgia , Estudos Retrospectivos , Glicóis , Cartilagens Nasais/transplante , Resultado do Tratamento , Nariz/cirurgia , Septo Nasal/cirurgia , Recidiva
9.
Saudi Pharm J ; 32(5): 102064, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38633710

RESUMO

Hepatocellular carcinoma (HCC) exhibits high mortality rates in the advanced stage (>90 %). Sorafenib (SORA) is a targeted therapy approved for the treatment of advanced HCC; however, the reported response rate to such a therapeutic is suboptimal (<3%). Piperine (PIP) is an alkaloid demonstrated to exert a direct tumoricidal activity in HCC and improve the pharmacokinetic profiles of anticancer drugs including SORA. In this study, we developed a strategy to improve efficacy outcomes in HCC using PIP as an add-on treatment to support the first-line therapy SORA using biodegradable Poly (D, L-Lactide-co-glycolide, PLGA) nanoparticles (NPs). SORA and PIP (both exhibit low aqueous solubility) were co-loaded into PLGA NPs (PNPs) and stabilized with various concentrations of polyvinyl alcohol (PVA). The SORA and PIP-loaded PNPs (SP-PNPs) were characterized using Fourier Transform Infrared (FTIR) Spectroscopy, X-ray Powder Diffraction (XRD), Dynamic Light Scattering (DLS), and Scanning Electron Microscopy (SEM), Release of these drugs from SP-PNPs was investigated in vitro at both physiological and acidic pH, and kinetic models were employed to assess the mechanism of drug release. The in vitro efficacy of SP-PNPs against HCC cells (HepG2) was also evaluated. FTIR and XRD analyses revealed that the drugs encapsulated in PNPs were in an amorphous state, with no observed chemical interactions among the drugs or excipients. Assessment of drug release in vitro at pH 5 and 7.4 showed that SORA and PIP loaded in PNPs with 0.5 % PVA were released in a sustained manner, unlike pure drugs, which exhibited relatively fast release. SP-PNPs with 0.5 % PVA were spherical, had an average size of 224 nm, and had a high encapsulation efficiency (SORA âˆ¼ 82 %, PIP âˆ¼ 79 %), as well as superior cytotoxicity compared to SORA monotherapy in vitro. These results suggest that combining PIP with SORA using PNPs may be an effective strategy for the treatment of HCC and may set the stage for a comprehensive in vivo study to evaluate the efficacy and safety of this novel formulation using a murine HCC model.

10.
Mol Cancer ; 22(1): 94, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37312116

RESUMO

Tumor immunotherapy exerts its anti-tumor effects by stimulating and enhancing immune responses of the body. It has become another important modality of anti-tumor therapy with significant clinical efficacy and advantages compared to chemotherapy, radiotherapy and targeted therapy. Although various kinds of tumor immunotherapeutic drugs have emerged, the challenges faced in the delivery of these drugs, such as poor tumor permeability and low tumor cell uptake rate, had prevented their widespread application. Recently, nanomaterials had emerged as a means for treatment of different diseases due to their targeting properties, biocompatibility and functionalities. Moreover, nanomaterials possess various characteristics that overcome the defects of traditional tumor immunotherapy, such as large drug loading capacity, precise tumor targeting and easy modification, thus leading to their wide application in tumor immunotherapy. There are two main classes of novel nanoparticles mentioned in this review: organic (polymeric nanomaterials, liposomes and lipid nanoparticles) and inorganic (non-metallic nanomaterials and metallic nanomaterials). Besides, the fabrication method for nanoparticles, Nanoemulsions, was also introduced. In summary, this review article mainly discussed the research progress of tumor immunotherapy based on nanomaterials in the past few years and offers a theoretical basis for exploring novel tumor immunotherapy strategies in the future.


Assuntos
Imunoterapia , Nanoestruturas , Humanos , Nanoestruturas/uso terapêutico , Transporte Biológico
11.
Small ; 19(25): e2300060, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36929045

RESUMO

Nanoscale drug carriers play a crucial role in reducing side effects of chemotherapy drugs. However, the mononuclear phagocyte system (MPS) and the drug protonation after nanoparticles (NPs) burst release still limit the drug delivery efficiency. In this work, a self-disguised Nanospy is designed to overcome this problem. The Nanospy is composed of: i) poly (lactic-co-glycolic acid)-polyethylene glycol (PLGA-PEG) loading doxorubicin is the core structure of the Nanospy. ii) CD47 mimic peptides (CD47p) is linked to NPs which conveyed the "don't eat me" signal. iii) 4-(2-aminoethyl) benzenesulfonamide (AEBS) as the inhibitor of Carbonic anhydrase IX (CAIX) linked to NPs. Briefly, when the Nanospy circulates in the bloodstream, CD47p binds to the regulatory protein α (SIRPα) on the surface of macrophages, which causes the Nanospy escapes from phagocytosis. Subsequently, the Nanospy enriches in tumor and the AEBS reverses the acidic microenvironment of tumor. Due to above characteristics, the Nanospy reduces liver macrophage phagocytosis by 25% and increases tumor in situ DOX concentration by 56% compared to PLGA@DOX treatment. In addition, the Nanospy effectively inhibits tumor growth with a 63% volume reduction. This work presents a unique design to evade the capture of MPS and overcomes the influence of acidic tumor microenvironment (TME) on weakly alkaline drugs.


Assuntos
Nanopartículas , Neoplasias , Humanos , Sistemas de Liberação de Medicamentos , Portadores de Fármacos/química , Doxorrubicina/química , Neoplasias/tratamento farmacológico , Nanopartículas/química , Peptídeos/uso terapêutico , Liberação Controlada de Fármacos , Polietilenoglicóis/química , Microambiente Tumoral
12.
Exp Eye Res ; 235: 109626, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37652091

RESUMO

In this review, the designs and recent developments of polymer-based drug delivery of Poly(lactic-co-glycolic acid) (PLGA) will be discussed for the possible treatment of age-related macular degeneration (AMD). PLGA is a versatile co-polymer that consists of synthetic lactic acid and glycolic acid monomers that are constructed to produce nanoparticles, microparticles, and scaffolds for the intraocular delivery of various drugs. As an FDA-approved polymer, PLGA has historically been well-suited for systemic slow-sustained release therapies due to its performance in biodegradability and biocompatibility. This review will examine recent in vitro and in vivo studies that provide evidence for PLGA-based particles as a therapeutic drug carrier for the treatment of AMD. Anti-angiogenic and antiproliferative effects of small peptides, small molecules, RNA molecules, and proteins within PLGA particles are briefly discussed. AMD is a leading cause of central vision loss in people over 55 years and the number of those afflicted will rise as the aging population increases. AMD has two forms that are often sequential. Dry AMD and wet AMD account for 85-90% and 10-15% of cases, respectively. The distinct categories of PLGA-based drug delivery vehicles are important for dispensing novel small molecules, RNA molecules, peptides, and proteins as a long-term effective treatment of AMD.


Assuntos
Retina , Degeneração Macular Exsudativa , Humanos , Idoso , Sistemas de Liberação de Medicamentos , Portadores de Fármacos , Degeneração Macular Exsudativa/tratamento farmacológico , RNA
13.
Mol Pharm ; 20(1): 118-127, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36384279

RESUMO

Artemether oily injection is recommended for the treatment of severe malaria by the intramuscular route. The major limitations of the artemisinin combination therapy are erratic absorption from the injection site and high dosing frequency due to a very short elimination half-life of the drug. Advanced drug delivery systems have shown significant improvement in the current malaria therapy; the desired drug concentration within infected erythrocytes is yet the major challenge. Recently, we have reported the fabrication of artemether-loaded polymeric nanorods for intravenous malaria therapy which was found to be biocompatible with THP-1 monocytes and rat erythrocytes. The objective of the present study was the evaluation of pharmacokinetics, biodistribution, and antimalarial efficacy of artemether-loaded polymeric nanorods. Scanning electron microscopy and confocal microscopy studies revealed that both nanospheres and nanorods were adsorbed onto the surface of rat erythrocytes after an incubation of 10 min. After intravenous administration to rats, artemether nanorods showed higher plasma concentration and lower elimination rate of artemether when compared with nanospheres. The biodistribution studies showed that, at 30 min, the liver concentration of DiR-loaded nanospheres was higher than that of DiR-loaded nanorods after intravenous administration to BALB/c mice. The in vitro schizont inhibition study showed that both nanorods and nanospheres exhibited concentration-dependent parasitic inhibition, wherein at lower concentrations (2 ppm), nanorods were more effective than nanospheres. However, at higher concentrations, nanospheres were found to be more effective. Nanorods showed higher chemosuppression on day 5 and day 7 than nanospheres and free artemether when studied with the Plasmodium berghei mouse model. Moreover, the survival rate of P. berghei infected mice was also found to be higher after treatment with artemether nanoformulations when compared with free artemether. In conclusion, polymeric nanorods could be a promising next-generation delivery system for the treatment of malaria.


Assuntos
Antimaláricos , Malária , Nanotubos , Camundongos , Ratos , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artemeter/uso terapêutico , Distribuição Tecidual , Malária/tratamento farmacológico , Malária/parasitologia
14.
Mol Pharm ; 20(3): 1613-1623, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36795759

RESUMO

Chinese yam polysaccharides (CYPs) have received wide attention for their immunomodulatory activity. Our previous studies had discovered that the Chinese yam polysaccharide PLGA-stabilized Pickering emulsion (CYP-PPAS) can serve as an efficient adjuvant to trigger powerful humoral and cellular immunity. Recently, positively charged nano-adjuvants are easily taken up by antigen-presenting cells, potentially resulting in lysosomal escape, the promotion of antigen cross-presentation, and the induction of CD8 T-cell response. However, reports on the practical application of cationic Pickering emulsions as adjuvants are very limited. Considering the economic damage and public-health risks caused by the H9N2 influenza virus, it is urgent to develop an effective adjuvant for boosting humoral and cellular immunity against influenza virus infection. Here, we applied polyethyleneimine-modified Chinese yam polysaccharide PLGA nanoparticles as particle stabilizers and squalene as the oil core to fabricate a positively charged nanoparticle-stabilized Pickering emulsion adjuvant system (PEI-CYP-PPAS). The cationic Pickering emulsion of PEI-CYP-PPAS was utilized as an adjuvant for the H9N2 Avian influenza vaccine, and the adjuvant activity was compared with the Pickering emulsion of CYP-PPAS and the commercial adjuvant (aluminum adjuvant). The PEI-CYP-PPAS, with a size of about 1164.66 nm and a ζ potential of 33.23 mV, could increase the H9N2 antigen loading efficiency by 83.99%. After vaccination with Pickering emulsions based on H9N2 vaccines, PEI-CYP-PPAS generated higher HI titers and stronger IgG antibodies than CYP-PPAS and Alum and increased the immune organ index of the spleen and bursa of Fabricius without immune organ injury. Moreover, treatment with PEI-CYP-PPAS/H9N2 induced CD4+ and CD8+ T-cell activation, a high lymphocyte proliferation index, and increased cytokine expression of IL-4, IL-6, and IFN-γ. Thus, compared with the CYP-PPAS and aluminum adjuvant, the cationic nanoparticle-stabilized vaccine delivery system of PEI-CYP-PPAS was an effective adjuvant for H9N2 vaccination to elicit powerful humoral and cellular immune responses.


Assuntos
Vírus da Influenza A Subtipo H9N2 , Vacinas contra Influenza , Nanopartículas , Animais , Galinhas , Alumínio/farmacologia , Emulsões/farmacologia , Antígenos , Imunidade Celular , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia , Adjuvantes Imunológicos , Polissacarídeos/farmacologia
15.
J Microencapsul ; 40(4): 217-232, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36752024

RESUMO

Azithromycin is an antibiotic proposed as a treatment for the coronavirus disease 2019 (COVID-19) due to its immunomodulatory activity. The aim of this study is to develop dry powder formulations of azithromycin-loaded poly(lactic-co-glycolic acid) (PLGA) nanocomposite microparticles for pulmonary delivery to improve the low bioavailability of azithromycin. Double emulsion method was used to produce nanoparticles, which were then spray dried to form nanocomposite microparticles. Encapsulation efficiency and drug loading were analysed, and formulations were characterised by particle size, zeta potential, morphology, crystallinity and in-vitro aerosol dispersion performance. The addition of chitosan changed the neutrally-charged azithromycin only formulation to positively-charged nanoparticles. However, the addition of chitosan also increased the particle size of the formulations. It was observed in the NGI® data that there was an improvement in dispersibility of the chitosan-related formulations. It was demonstrated in this study that all dry powder formulations were able to deliver azithromycin to the deep lung regions, which suggested the potential of using azithromycin via pulmonary drug delivery as an effective method to treat COVID-19.


Assuntos
COVID-19 , Quitosana , Nanopartículas , Humanos , Azitromicina , Pós , Administração por Inalação , Tratamento Farmacológico da COVID-19 , Aerossóis e Gotículas Respiratórios , Tamanho da Partícula
16.
Int J Mol Sci ; 24(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37511480

RESUMO

The development of paclitaxel-loaded polymeric nanoparticles for the treatment of brain tumors was investigated. Poly(lactide-glycolide) (PLGA) nanoparticles containing 10% w/w paclitaxel with a particle size of 216 nm were administered through intranasal and intravenous routes to male Sprague-Dawley rats at a dose of 5 mg/kg. Both routes of administration showed appreciable accumulation of paclitaxel in brain tissue, liver, and kidney without any sign of toxicity. The anti-proliferative effect of the nanoparticles on glioblastoma tumor cells was comparable to that of free paclitaxel.


Assuntos
Glioblastoma , Nanopartículas , Paclitaxel , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Paclitaxel/administração & dosagem , Paclitaxel/química , Nanopartículas/química , Humanos , Glioblastoma/tratamento farmacológico , Administração Intranasal , Absorção Nasal , Linhagem Celular Tumoral , Animais , Ratos , Barreira Hematoencefálica
17.
Int J Mol Sci ; 24(19)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37833971

RESUMO

This study aimed to examine the impact of different surface properties of poly(lactic-co-glycolic) acid (PLGA) nanoparticles (P NPs) and PLGA-Poloxamer nanoparticles (PP NPs) on their in vivo biodistribution. For this purpose, NPs were formulated via nanoprecipitation and loaded with diphenylhexatriene (DPH), a fluorescent dye. The obtained NPs underwent comprehensive characterization, encompassing their morphology, technological attributes, DPH release rate, and thermodynamic properties. The produced NPs were then administered to wild-type mice via intraperitoneal injection, and, at scheduled time intervals, the animals were euthanized. Blood samples, as well as the liver, lungs, and kidneys, were extracted for histological examination and biodistribution analysis. The findings of this investigation revealed that the presence of poloxamers led to smaller NP sizes and induced partial crystallinity in the NPs. The biodistribution and histological results from in vivo experiments evidenced that both, P and PP NPs, exhibited comparable concentrations in the bloodstream, while P NPs could not be detected in the other organs examined. Conversely, PP NPs were primarily sequestered by the lungs and, to a lesser extent, by the kidneys. Future research endeavors will focus on investigating the behavior of drug-loaded NPs in pathological animal models.


Assuntos
Nanopartículas , Poloxâmero , Camundongos , Animais , Portadores de Fármacos/química , Ácido Poliglicólico/química , Ácido Láctico/química , Distribuição Tecidual , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Nanopartículas/química , Tamanho da Partícula
18.
Int J Mol Sci ; 24(4)2023 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36835111

RESUMO

Residual ridge resorption combined with dimensional loss resulting from tooth extraction has a prolonged correlation with early excessive inflammation. Nuclear factor-kappa B (NF-κB) decoy oligodeoxynucleotides (ODNs) are double-stranded DNA sequences capable of downregulating the expression of downstream genes of the NF-κB pathway, which is recognized for regulating prototypical proinflammatory signals, physiological bone metabolism, pathologic bone destruction, and bone regeneration. The aim of this study was to investigate the therapeutic effect of NF-κB decoy ODNs on the extraction sockets of Wistar/ST rats when delivered by poly(lactic-co-glycolic acid) (PLGA) nanospheres. Microcomputed tomography and trabecular bone analysis following treatment with NF-κB decoy ODN-loaded PLGA nanospheres (PLGA-NfDs) demonstrated inhibition of vertical alveolar bone loss with increased bone volume, smoother trabecular bone surface, thicker trabecular bone, larger trabecular number and separation, and fewer bone porosities. Histomorphometric and reverse transcription-quantitative polymerase chain reaction analysis revealed reduced tartrate-resistant acid phosphatase-expressing osteoclasts, interleukin-1ß, tumor necrosis factor-α, receptor activator of NF-κB ligand, turnover rate, and increased transforming growth factor-ß1 immunopositive reactions and relative gene expression. These data demonstrate that local NF-κB decoy ODN transfection via PLGA-NfD can be used to effectively suppress inflammation in a tooth-extraction socket during the healing process, with the potential to accelerate new bone formation.


Assuntos
Perda do Osso Alveolar , NF-kappa B , Nanosferas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Animais , Ratos , Perda do Osso Alveolar/tratamento farmacológico , Processo Alveolar , Glicóis , Inflamação/metabolismo , Nanosferas/uso terapêutico , NF-kappa B/química , NF-kappa B/farmacologia , Oligodesoxirribonucleotídeos/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia , Ratos Wistar , Microtomografia por Raio-X
19.
Molecules ; 28(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36985478

RESUMO

Cancer stem cells (CSCs) are linked to tumour relapse and metastasis, the main reason for cancer-related deaths. The application of polymeric nanoparticles as drug delivery systems to target CSCs is relatively unexplored. Here, we report the encapsulation of a CSC-potent copper(II) complex 1 by two compositionally different methoxy poly(ethylene glycol)-b-poly(D,L-lactic-co-glycolic) acid (PEG-PLGA) copolymers. Specifically, we used PEG-PLGA (5000:10,000 Da, 1:1 LA:GA) and PEG-PLGA (5000:10,000 Da, 4:1 LA:GA) polymers to prepare spherical nanoparticle formulations 1:1 NP15 and 4:1 NP15, respectively, both with a 15% feed of 1. The two formulations show distinct biophysical and in vitro properties. For example, (i) 4:1 NP15 displays a slower payload release profile than 1:1 NP15 in physiologically relevant solutions, (ii) 4:1 NP15 exhibits statistically greater potency towards breast CSCs than bulk breast cancer cells grown in monolayers, whereas 1:1 NP15 is equally potent towards breast CSCs and bulk breast cancer cells, and (iii) 4:1 NP15 shows significantly greater potency towards three-dimensionally cultured mammospheres than 1:1 NP15. This study shows that the release profile and anti-breast CSC properties of PEG-PLGA nanoparticle formulations (containing 1) can be perturbed (and possibly controlled) by modifying the proportion of glycolic acid within the PLGA component.


Assuntos
Neoplasias da Mama , Nanopartículas , Humanos , Feminino , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Cobre , Ácido Poliglicólico , Recidiva Local de Neoplasia , Polietilenoglicóis , Ácido Láctico , Neoplasias da Mama/tratamento farmacológico , Células-Tronco , Portadores de Fármacos , Tamanho da Partícula
20.
Br Poult Sci ; 64(2): 176-184, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36469700

RESUMO

1. The purpose of this study was to create ALP1-VP2-PLGA nanoparticle (AVPN) and to study the immunogenicity of AVPN. AVPN was prepared and observed by scanning and transmission electron microscopies.2. Chickens were divided into five groups and vaccinated with normal saline, VP2 protein, ALP1 and VP2 protein, AVPN or PLGA, respectively. After 28 days, the immune organ indexes were calculated; specific antibody levels in blood were detected by enzyme-linked immunosorbent assay (ELISA). Additionally, the spleen and bursa of Fabricius were determined by HE staining, immunological cytokine mRNA levels in bursa of Fabricius were detected by qPCR andchicken body weight was determined.3. The results indicated that AVPN was a spherical nanoparticle with a diameter of about 85 nm. It increased bursal indexes and IBDV-specific antibody levels and promoted the expression of IL-2 mRNA in blood and TNF-α and IgG mRNA in bursa of Fabricius. This promoted growth.4. This study suggested that AVPN can increase immunogenicity of VP2 protein, and it could possibly be used as an IBDV subunit vaccine.


Assuntos
Amomum , Infecções por Birnaviridae , Vírus da Doença Infecciosa da Bursa , Doenças das Aves Domésticas , Animais , Galinhas , Vírus da Doença Infecciosa da Bursa/genética , Bolsa de Fabricius , Anticorpos Antivirais , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Infecções por Birnaviridae/prevenção & controle , Infecções por Birnaviridae/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA