RESUMO
Poly(N-isopropylacrylamide) (polyNIPAm) microspheres were synthesized via the suspension polymerization technique. Thermal and redox initiators were compared for the polymerization, in order to study the effect of initiator type on the surface charge and particle size of polyNIPAm microspheres. The successful polymerization of NIPAm was confirmed by FTIR analysis. Microspheres of diameter >50 µm were synthesized when a pair of ammonium persulfate (APS) and N,N,N',N'-tetramethylene-diamine (TEMED) redox initiators was used, whilst relatively small microspheres of ~1 µm diameter were produced using an Azobis-isobutyronitrile (AIBN) thermal initiator. Hence, suspension polymerization using a redox initiator pair was found to be more appropriate for the synthesis of polyNIPAm microspheres of a size suitable for human embryonic kidney (HEK) cell culturing. However, the zeta potential of polyNIPAm microspheres prepared using an APS/TEMED redox initiator was significantly more negative than AIBN thermal initiator prepared microspheres and acted to inhibit cell attachment. Conversely, strong cell attachment was observed in the case of polyNIPAm microspheres of diameter ~90 µm, prepared using an APS/TEMED redox initiator in the presence of a cetyl trimethyl ammonium bromide (CTAB) cationic surfactant; demonstrating that surface charge modified polyNIPAm microspheres have great potential for use in cell culturing.
RESUMO
Block copolymers that exhibit both an upper critical solution temperature and a lower critical solution temperature are difficult to characterize due to inherent solubility difference between the two blocks. For example, accurate determination of both the molar mass and molar mass distribution is challenging for polyzwitterion-block-N-isopropyl acrylamide (NIPAM) copolymers in aqueous solutions due to self-assembly. However, there are a few examples of using size exclusion chromatography (SEC) for characterization, in which hexafluoro isopropanol (HFIP) is used in all cases. Yet, researchers are hesitant to use this solvent due to how expensive and hazardous HFIP is. Therefore, alternatives to HFIP for SEC analysis would be desirable. Here, a systematic methodology featuring aqueous SEC is demonstrated using several solvent conditions to enable the elution of polyzwitterion-block-NIPAM copolymers on Agilent PolarGel and Tosoh TSKgel column sets. These SEC conditions include 0.2 M KI in water on the PolarGel columns and 0.2 M KI/ 30% DMF in water on the PolarGel and TSKgel columns. These aqueous systems can be utilized for the characterization of similar water-soluble block copolymers that are relevant for drug delivery and other biomedical applications.
Assuntos
Acrilamidas/química , Cromatografia em Gel/métodos , Polímeros/química , Acrilamidas/síntese química , Polimerização , Polímeros/síntese química , Sais/química , Solventes/química , Ácidos Sulfônicos/síntese química , Ácidos Sulfônicos/química , Temperatura , ÁguaRESUMO
This paper describes the preparation and characterization of a new type of core-shell nanoparticle in which the structure consists of a hydrogel core encapsulated within a porous silver shell. The thermo-responsive hydrogel cores were prepared by surfactant-free emulsion polymerization of a selected mixture of N-isopropylacrylamide (NIPAM) and acrylic acid (AAc). The hydrogel cores were then encased within either a porous or complete silver shell for which the localized surface plasmon resonance (LSPR) extends from visible to near-infrared (NIR) wavelengths (i.e., λmax varies from 550 to 1050 nm, depending on the porosity), allowing for reversible contraction and swelling of the hydrogel via photothermal heating of the surrounding silver shell. Given that NIR light can pass through tissue, and the silver shell is porous, this system can serve as a platform for the smart delivery of payloads stored within the hydrogel core. The morphology and composition of the composite nanoparticles were characterized by SEM, TEM, and FTIR, respectively. UV-vis spectroscopy was used to characterize the optical properties.
RESUMO
In the past decade, mesoporous silica nanoparticles (MSNs) as nanocarriers have showed much potential in advanced nanomaterials due to their large surface area and pore volume. Especially, more and more MSNs based nanodevices have been designed as efficient drug delivery systems (DDSs) or biosensors. In this paper, lipid, protein and poly(NIPAM) coated MSNs are reviewed from the preparation, properties and their potential application. We also introduce the preparative methods including physical adsorption, covalent binding and self-assembly on the MSNs' surfaces. Furthermore, the interaction between the aimed cells and these molecular modified MSNs is discussed. We also demonstrate their typical applications, such as photodynamic therapy, bioimaging, controlled release and selective recognition in biomedical field.