Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Curr Protoc ; 3(6): e820, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37338194

RESUMO

The use of polychromatic immunofluorescent staining on whole-mount skin enables cell type characterization and aids in the delineation of the physiological and immunological strategies used by the skin to combat pathogens. Using whole-mount skin for polychromatic immunofluorescent staining removes the need for histological sectioning and enables the visualization of anatomical structures and immune cell types in three dimensions. Here we present a detailed protocol for immunostaining with fluorescence-conjugated primary antibodies in whole-mount skin to reveal structural landmarks and specific immune cell types using confocal laser scanning microscopy (CLSM) (Basic Protocol 1). The optimized staining panel reveals structural features such as blood vessels (CD31 antibody) and the lymphatic network (LYVE-1 antibody), in combination with MHCII antibodies for antigen-presenting cells (APCs), CD64 for macrophages and monocytes, CD103 for dendritic epidermal T cells (DETC), and CD326 for Langerhans cells (LC). Basic Protocol 2 describes image visualization pipelines using open-source software (ImageJ/FIJI), enabling four visualization options (z-projections, orthogonal views, 3D visualization, and animation). Basic Protocol 3 describes a quantitative analysis pipeline using CellProfiler to characterize the spatial relationship between cell types using mathematical indices such as Spatial Distribution Index (SDI), Neighborhood Frequency (NF), and Normalized Median Evenness (NME). These protocols will enable researchers to stain, record, analyze, and interpret data from whole-mount skin using commercially available reagents in a CLSM-equipped laboratory and freely available analysis software. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Immunofluorescent staining and imaging for whole-mount mouse skin Basic Protocol 2: File rendering and visualization using FIJI Basic Protocol 3: Spatial image analysis using CellProfiler.


Assuntos
Imageamento Tridimensional , Pele , Animais , Camundongos , Imageamento Tridimensional/métodos , Pele/diagnóstico por imagem , Coloração e Rotulagem , Corantes , Microscopia Confocal/métodos
2.
Curr Protoc Cytom ; 91(1): e64, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31763771

RESUMO

Confocal microscopy has been an important imaging tool for life scientists for over 20 years. Early techniques focused on indirect staining processes that involved staining with an unconjugated primary antibody, followed by incubation with a secondary fluorescent antibody that would reveal and amplify the signal of the primary antibody. With more and more directly conjugated fluorescent primary antibodies becoming commercially available, staining with multiple fluorescent primary antibodies is now more frequent. To date, staining with up to three primary antibodies and a nuclear dye is widely practiced. Here, we describe an important improvement to the standard polychromatic immunofluorescent staining protocol that allows the simultaneous detection of seven fluorescent parameters using a standard confocal laser scanning microscope with four laser lines and four photomultiplier tubes. By incorporating recently available tandem dyes that emit in the blue and violet regions of the visible light spectrum (Brilliant Blue and Brilliant Violet), we were able to differentiate several additional fluorochromes simultaneously. Due to the added complexity of 7-color immunofluorescent imaging, we developed a clear methodology to optimize antibody concentrations and simple guidelines on how to identify and correct non-specific signals. These are detailed in the following protocol. © 2019 by John Wiley & Sons, Inc. Basic Protocol: 7-Color immunofluorescent staining protocol using directly conjugated antibodies Support Protocol 1: Antibody titration protocol Support Protocol 2: Spillover optimization protocol.


Assuntos
Imunofluorescência/métodos , Microtomia , Coloração e Rotulagem/métodos , Animais , Crioultramicrotomia/métodos , Crioultramicrotomia/normas , Imunofluorescência/normas , Linfonodos/parasitologia , Linfonodos/patologia , Camundongos , Microscopia Confocal/métodos , Microscopia Confocal/normas , Microscopia de Fluorescência/métodos , Microscopia de Fluorescência/normas , Nippostrongylus/fisiologia , Coloração e Rotulagem/normas , Infecções por Strongylida/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA