Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Appl Environ Microbiol ; 89(11): e0148823, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37855636

RESUMO

IMPORTANCE: Polyhydroxyalkanoate (PHA) is a highly biodegradable microbial polyester, even in marine environments. In this study, we incorporated an enrichment culture-like approach in the process of isolating marine PHA-degrading bacteria. The resulting 91 isolates were suggested to fall into five genera (Alloalcanivorax, Alteromonas, Arenicella, Microbacterium, and Pseudoalteromonas) based on 16S rRNA analysis, including two novel genera (Arenicella and Microbacterium) as marine PHA-degrading bacteria. Microbacterium schleiferi (DSM 20489) and Alteromonas macleodii (NBRC 102226), the type strains closest to the several isolates, have an extracellular poly(3-hydroxybutyrate) [P(3HB)] depolymerase homolog that does not fit a marine-type domain composition. However, A. macleodii exhibited no PHA degradation ability, unlike M. schleiferi. This result demonstrates that the isolated Alteromonas spp. are different species from A. macleodii. P(3HB) depolymerase homologs in the genus Alteromonas should be scrutinized in the future, particularly about which ones work as the depolymerase.


Assuntos
Poli-Hidroxialcanoatos , Pseudoalteromonas , Poli-Hidroxialcanoatos/metabolismo , RNA Ribossômico 16S/genética , Baías , Água do Mar , Pseudoalteromonas/genética
2.
Environ Sci Technol ; 57(30): 11108-11121, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37474498

RESUMO

Polyhydroxyalkanoates (PHAs) can be produced with municipal waste activated sludge from biological wastewater treatment processes. Methods of selective fluorescent staining with confocal laser scanning microscopy (CLSM) were developed and optimized to evaluate the distribution of PHA storage activity in this mixed culture activated sludge microbial communities. Selective staining methods were applied to a municipal activated sludge during pilot scale PHA accumulation in replicate experiments. Visualization of stained flocs revealed that a significant but limited fraction of the biomass was engaged with PHA accumulation. Accumulated PHA granules were furthermore heterogeneously distributed within and between flocs. These observations suggested that the PHA content for the bacteria storing PHAs was significantly higher than the average PHA content measured for the biomass as a whole. Optimized staining methods provided high acuity for imaging of PHA distribution when compared to other methods reported in the literature. Selective staining methods were sufficient to resolve and distinguish between distinctly different morphotypes in the biomass, and these observations of distinctions have interpreted implications for PHA recovery methods. Visualization tools facilitate meaningful insights for advancements of activated sludge processes where systematic observations, as applied in the present work, can reveal underlying details of structure-function relationships.


Assuntos
Poli-Hidroxialcanoatos , Purificação da Água , Esgotos/microbiologia , Biomassa , Bactérias , Reatores Biológicos/microbiologia
3.
Arch Microbiol ; 205(1): 11, 2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36460824

RESUMO

Solid-state fermentation (SSF) is a type of fermentation process with potential to use agro-industrial by-products as a carbon source. Nonetheless, there are few studies evaluating SSF compared to submerged fermentation (SmF) to produce polyhydroxyalkanoates (PHAs). Different methodologies are available associating the two processes. In general, the studies employ a 1st step by SSF to hydrolyze the agro-industrial by-products used as a carbon source, and a 2nd step to produce PHA that can be carried out by SmF or SSF. This paper reviewed and compared the different methodologies described in the literature to assess their potential for use in PHA production. The studies evaluated showed that highest PHA yields (86.2% and 82.3%) were achieved by associating SSF and SmF by Cupriavidus necator. Meanwhile, in methodologies using only SSF, Bacillus produced the highest yields (62% and 56.8%). Since PHA (%) does not necessarily represent a higher production by biomass, the productivity parameter was also compared between studies. We observed that the highest productivity results did not necessarily represent the highest PHA (%). C. necator presented the highest PHA yields associating SSF and SmF, however, is not the most suitable microorganism for PHA production by SSF. Concomitant use of C. necator and Bacillus is suggested for future studies in SSF. Also, it discusses the lack of studies on the association of the two fermentation methodologies, and on the scaling of SSF process for PHA production. In addition to demonstrating the need for standardization of results, for comparison between different methodologies.


Assuntos
Bacillus , Cupriavidus necator , Fermentação , Biomassa , Carbono
4.
Environ Sci Technol ; 56(24): 17732-17742, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36480707

RESUMO

While new biodegradable materials are being rapidly introduced to address plastic pollution, their end-of-life impacts remain unclear. Biodegradable plastics typically comprise a biopolymer matrix with functional additives and/or solid fillers, which may be toxic. Here, using an established method for continuous biodegradation monitoring, we investigated the impact of a commonly used plasticizer, dibutyl phthalate (DBP), on the biodegradation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) in soil. The presence of DBP delayed the initial stage of PHBV biodegradation but then accelerated subsequent rates of biodegradation. Furthermore, it led to significant increases in total bacterial and fungal biomass and altered the composition of microbial communities with significant increases in the relative abundances of Thauera (gammaproteobacterial) and Mucor circinelloides (fungal) populations. It is proposed, with evidence from biodegradation behavior and microbial analysis, that the presence of DBP likely stimulated a microbial community shift, introduced higher proportions of more readily degradable amorphous regions from the plasticizing effect, and facilitated access to the bulk polymer matrix for microorganisms or at least their associated enzymes. These effects in combination overcame the initial inhibition effect of the DBP and resulted in a net increase in the rate of biodegradation of PHBV.


Assuntos
Ácidos Ftálicos , Poli-Hidroxialcanoatos , Plastificantes , Dibutilftalato/metabolismo , Biodegradação Ambiental
5.
Environ Sci Technol ; 56(16): 11729-11738, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35900322

RESUMO

Municipal activated sludge can be used for polyhydroxyalkanoate (PHA) production, when supplied with volatile fatty acids. In this work, standardized PHA accumulation assays were performed with different activated sludge to determine (1) the maximum biomass PHA content, (2) the degree of enrichment (or volume-to-volume ratio of PHA-accumulating bacteria with respect to the total biomass), and (3) the average PHA content in the PHA-storing biomass fraction. The maximum attained biomass PHA content with different activated sludge ranged from 0.18 to 0.42 gPHA/gVSS, and the degree of enrichment ranged from 0.16 to 0.51 volume/volume. The average PHA content within the PHA-accumulating biomass fraction was relatively constant and independent of activated sludge source, with an average value of 0.58 ± 0.07 gPHA/gVSS. The degree of enrichment for PHA-accumulating bacteria was identified as the key factor to maximize PHA content when municipal activated sludge is directly used for PHA accumulation. Future optimization should focus on obtaining a higher degree of enrichment of PHA-accumulating biomass, either through selection during wastewater treatment or by selective growth during PHA accumulation. A PHA content in the order of 0.6 g PHA/g VSS is a realistic target to be achieved when using municipal activated sludge for PHA production.


Assuntos
Poli-Hidroxialcanoatos , Purificação da Água , Bactérias , Biomassa , Reatores Biológicos/microbiologia , Ácidos Graxos Voláteis , Esgotos/microbiologia
6.
Int J Mol Sci ; 23(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35628419

RESUMO

The global utilization of single-use, non-biodegradable plastics, such as bottles made of polyethylene terephthalate (PET), has contributed to catastrophic levels of plastic pollution. Fortunately, microbial communities are adapting to assimilate plastic waste. Previously, our work showed a full consortium of five bacteria capable of synergistically degrading PET. Using omics approaches, we identified the key genes implicated in PET degradation within the consortium's pangenome and transcriptome. This analysis led to the discovery of a novel PETase, EstB, which has been observed to hydrolyze the oligomer BHET and the polymer PET. Besides the genes implicated in PET degradation, many other biodegradation genes were discovered. Over 200 plastic and plasticizer degradation-related genes were discovered through the Plastic Microbial Biodegradation Database (PMBD). Diverse carbon source utilization was observed by a microbial community-based assay, which, paired with an abundant number of plastic- and plasticizer-degrading enzymes, indicates a promising possibility for mixed plastic degradation. Using RNAseq differential analysis, several genes were predicted to be involved in PET degradation, including aldehyde dehydrogenases and several classes of hydrolases. Active transcription of PET monomer metabolism was also observed, including the generation of polyhydroxyalkanoate (PHA)/polyhydroxybutyrate (PHB) biopolymers. These results present an exciting opportunity for the bio-recycling of mixed plastic waste with upcycling potential.


Assuntos
Consórcios Microbianos , Polietilenotereftalatos , Bactérias/genética , Bactérias/metabolismo , Plastificantes , Plásticos/metabolismo
7.
Molecules ; 27(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36364191

RESUMO

This work aims to characterize the haloarchaeal diversity of unexplored environmental salty samples from a hypersaline environment on the southern coast of Jeddah, Saudi Arabia, looking for new isolates able to produce polyhydroxyalkanoates (PHAs). Thus, the list of PHA producers has been extended by describing two species of Halolamina; Halolamina sediminis sp. strain NRS_35 and unclassified Halolamina sp. strain NRS_38. The growth and PHA-production were investigated in the presence of different carbon sources, (glucose, sucrose, starch, carboxymethyl cellulose (CMC), and glycerol), pH values, (5-9), temperature ranges (4-65 °C), and NaCl concentrations (100-350 g L-1). Fourier-transform infra-red analysis (FT-IR) and Liquid chromatography-mass spectrometry (LC-MS) were used for qualitative identification of the biopolymer. The highest yield of PHB was 33.4% and 27.29% by NRS_35 and NRS_38, respectively, using starch as a carbon source at 37 °C, pH 7, and 25% NaCl (w/v). The FT-IR pattern indicated sharp peaks formed around 1628.98 and 1629.28 cm-1, which confirmed the presence of the carbonyl group (C=O) on amides and related to proteins, which is typical of PHB. LC-MS/MS analysis displayed peaks at retention times of 5.2, 7.3, and 8.1. This peak range indicates the occurrence of PHB and its synthetic products: Acetoacetyl-CoA and PHB synthase (PhaC). In summary, the two newly isolated Halolamina species showed a high capacity to produce PHB using different sources of carbon. Further research using other low-cost feedstocks is needed to improve both the quality and quantity of PHB production. With these results, the use of haloarchaea as cell factories to produce PHAs is reinforced, and light is shed on the global concern about replacing plastics with biodegradable polymers.


Assuntos
Poli-Hidroxialcanoatos , Cloreto de Sódio , Cloreto de Sódio/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Cromatografia Líquida , Espectrometria de Massas em Tandem , Poli-Hidroxialcanoatos/química , Carbono/metabolismo , Amido , Hidroxibutiratos/química
8.
Crit Rev Biotechnol ; 41(4): 474-490, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33726581

RESUMO

Polyhydroxyalkanoate (PHA) is a biogenic polymer that has the potential to substitute synthetic plastic in numerous applications. This is due to its unique attribute of being a biodegradable and biocompatible thermoplastic, achievable through microbial fermentation from a broad utilizable range of renewable resources. Among all the PHAs discovered, poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] stands out as a next generation healthcare biomaterial for having high biopharmaceutical and medical value since it is highly compatible to mammalian tissue. This review provides a critical assessment and complete overview of the development and trend of P(3HB-co-4HB) research over the last few decades, highlighting aspects from the microbial strain discovery to metabolic engineering and bioprocess cultivation strategies. The article also outlines the relevance of P(3HB-co-4HB) as a material for high value-added products in numerous healthcare-related applications.


Assuntos
Poli-Hidroxialcanoatos , Animais , Hidroxibutiratos , Engenharia Metabólica , Poliésteres
9.
Arch Microbiol ; 203(10): 5993-6005, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34553263

RESUMO

Microorganisms have been contemplated as a promising source for the inexhaustible synthesis of many novel materials utilizing renewable sources. Among many of such products, polyhydroxyalkanoate (PHA) remains as an essential biodegradable polymer with functions similar to conventional plastics. Bacillus endophyticus is capable of accumulating biopolymer PHA in nutrient limiting conditions with excess of carbon source. Screening and optimizing the parameters for increased PHA production was done statistically. The optimized medium gave a maximum yield of 46.57% which was in well agreement with the given predicted value provided by response surface methodology model yield of 47.02%. Optimal media conditions when extrapolated in bioreactor gave an even higher production percentage of 49.9. This is the first report highlighting 49% of polyhydroxybutyrate statistically using sucrose as a source. The main highlight of the study was the use of wild type strain for producing high quality PHA using simple carbon source which can be a starting platform for using this strain for large scale PHA production industrially. FTIR and 1HNMR analysis confirmed the polymer produced.


Assuntos
Bacillus , Poli-Hidroxialcanoatos , Carbono , Sacarose
10.
Int J Mol Sci ; 21(2)2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31936484

RESUMO

Plant polyphenols are a huge group of compounds with a wide spectrum of applications. Substances from this group have been used in polymer materials such as stabilizers, dyes, indicators, fungicides, and bactericides, especially in new generation packaging materials. The aim of this study is to obtain environmentally friendly materials based on the biodegradable aliphatic polyesters, polylactide (PLA) and polyhydroxyalkanoate (PHA), with plant functional additives, (+)-catechin and polydatin. These natural polyphenols (polydatin and (+)-catechin) have not been used so far in polymer materials (especially in biodegradable polyesters) as stabilizers, dyes, and indicators of aging. The application of polydatin and (+)-catechin as multifunctional additives for biodegradable polymers is a scientific novelty. This paper presents the following analyses of polyester materials: SEM microscopy, wide angle x-ray diffraction, mechanical properties, thermal analysis, surface free energy analysis, and determination of change of color after controlled UV exposure, thermal oxidation and weathering. Both PLA and PHA polyesters were characterized by higher resistance to oxidation and greater resistance to degradation under the influence of UV radiation. In addition, (+)-catechin was used simultaneously as a dye and an indicator of the aging time of polymeric materials. In contrast, polydatin did not dye polymers, but was a very good indicator of their lifetime, changing color under the influence of various external factors. Both polyphenols can be successfully used as natural additives for pro-ecological polyesters.


Assuntos
Materiais Biocompatíveis/química , Catequina/química , Glucosídeos/química , Poliésteres/química , Estilbenos/química , Varredura Diferencial de Calorimetria , Oxirredução , Poli-Hidroxialcanoatos/química , Polifenóis/química , Temperatura , Termogravimetria , Difração de Raios X
11.
Prep Biochem Biotechnol ; 49(6): 567-577, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30929621

RESUMO

Polyhydroxyalkanoates (PHAs) are intracellular carbon and energy storage reserve material stored by gram-negative bacteria under nutrient limitation. PHAs are best alternative biodegradable plastics (bio-plastics) due to their resemblance to conventional synthetic plastic. The present study investigated the synergistic effect of nutritional supplements (amino acid and vitamin) on the PHA production by Alcaligenes sp. NCIM 5085 utilizing a sugar refinery waste (cane molasses) under submerged fermentation process. Initially, the effect of individual factor on PHA yield was studied by supplementing amino acids (cysteine, isoleucine, and methionine), vitamin (thiamin), and cane molasses at varying concentration in the production medium. Further, the cultivation medium was optimized by varying the levels of cane molasses, methionine and thiamin using response surface methodology to enhance the PHA yield. The maximum PHA yield of 70.89% was obtained under the optimized condition, which was then scaled up on 7.5 L-bioreactor. Batch cultivation in 7.5 L-bioreactor under the optimized condition gave a maximum PHA yield and productivity of 79.26% and 0.312 gL-1 h-1, respectively. The PHA produced was subsequently characterized as PHB by FTIR. PHB extracted was of relatively high molecular weight and crystallinity index. DSC analysis gave Tg, Tm, and Xc of 4.2, 179 °C and 66%, respectively. TGA analysis showed thermal stability with maximized degradation occurring at 302 °C, which is above the melting temperature (179 °C) of the purified polymer. The extracted polymer, therefore, possessed desirable material properties to be used in food packaging.


Assuntos
Aminoácidos/metabolismo , Poli-Hidroxialcanoatos/biossíntese , Tiamina/metabolismo , Alcaligenes/metabolismo , Reatores Biológicos , Cisteína/metabolismo , Fermentação , Embalagem de Alimentos , Resíduos Industriais/prevenção & controle , Isoleucina/metabolismo , Metionina/metabolismo , Melaço , Peso Molecular , Poli-Hidroxialcanoatos/química , Temperatura de Transição , Gerenciamento de Resíduos/métodos
12.
Can J Microbiol ; 63(12): 1009-1024, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28982015

RESUMO

Pseudomonas chlororaphis PA23 was isolated from soybean roots as a plant-growth-promoting rhizobacterium. This strain secretes a wide range of compounds, including the antibiotics phenazine-1-carboxylic acid (PCA), pyrrolnitrin, and 2-hydroxyphenazine. We have determined that P. chlororaphis PA23 can synthesize medium-chain-length polyhydroxyalkanoate (PHA) polymers utilizing free fatty acids, such as octanoic acid and nonanoic acid, as well as vegetable oils as sole carbon sources. Genome analysis identified a pha operon containing 7 genes in P. chlororaphis PA23 that were highly conserved. A nonpigmented strain that does not synthesize PCA, P. chlororaphis PA23-63, was also studied for PHA production. Pseudomonas chlororaphis PA23-63 produced 2.42-5.14 g/L cell biomass and accumulated PHAs from 11.7% to 32.5% cdm when cultured with octanoic acid, nonanoic acid, fresh canola oil, waste canola fryer oil, or biodiesel-derived waste free fatty acids under batch culture conditions. The subunit composition of the PHAs produced from fresh canola oil, waste canola fryer oil, or biodiesel-derived free fatty acids did not differ significantly. Addition of octanoic acid and nonanoic acid to canola oil cultures increased PHA production, but addition of glucose did not. PHA production in the phz mutant, P. chlororaphis PA23-63, was greater than that in the parent strain.


Assuntos
Ácidos Graxos não Esterificados/metabolismo , Óleos de Plantas/metabolismo , Poli-Hidroxialcanoatos/biossíntese , Pseudomonas chlororaphis/genética , Pseudomonas chlororaphis/metabolismo , Genoma Bacteriano/genética , Mutação
13.
J Environ Sci (China) ; 52: 76-84, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28254060

RESUMO

Four sequence batch reactors (SBRs) fed by fermented sugar cane wastewater were continuously operated under the aerobic dynamic feeding (ADF) mode with different configurations of sludge retention time (SRT), carbon and initial biomass concentrations to enrich polyhydroxyalkanoate (PHA) accumulating mixed microbial cultures (MMCs) from municipal activated sludge. The stability of SBRs was investigated besides the enrichment performance. The microbial community structures of the enriched MMCs were analyzed using terminal restriction fragment length polymorphism (T-RFLP). The optimum operating conditions for the enrichment process were: SRT of 5days, carbon concentration of 2.52g COD/L and initial biomass concentration of 3.65g/L. The best enrichment performance in terms of both operating stability and PHA storage ability of enriched cultures (with the maximum PHA content and PHA storage yield (YPHA/S) of 61.26% and 0.68mg COD/mg COD, respectively) was achieved under this condition. Effects of the SRT, carbon concentration and initial biomass concentration on the PHA accumulating MMCs selection process were discussed respectively. A new model including the segmentation of the enrichment process and the effects of SRT on each phase was proposed.


Assuntos
Reatores Biológicos/microbiologia , Poli-Hidroxialcanoatos/metabolismo , Eliminação de Resíduos Líquidos/métodos , Análise da Demanda Biológica de Oxigênio , Biomassa , Esgotos
14.
Biosci Biotechnol Biochem ; 80(7): 1440-50, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26981955

RESUMO

Conditions for the optimal production of polyhydroxyalkanoate (PHA) by Pseudomonas mendocina PSU using a biodiesel liquid waste (BLW) were determined by response surface methodology. These were an initial carbon to nitrogen ratio (C/N) of 40 (mole/mole), an initial pH of 7.0, and a temperature of 35 °C. A biomass and PHA concentration of 3.65 g/L and about 2.6 g/L (77% DCW), respectively, were achieved in a growth associated process using 20 g/L glycerol in the BLW after 36 h of exponential growth. The PHA monomer compositions were 3HB (3-hydroxybutyrate), a short-chain-length-PHA, and the medium-chain-length-PHA e.g. 3-hydroxyoctanoate and 3-hydroxydecanoate. Both the phbC and phaC genes were characterized. The phbC enzyme had not been previously detected in a Pseudomonas mendocina species. A 2.15 g/L of an exopolysaccharide, alginate, was also produced with a similar composition to that of other Pseudomonas species.


Assuntos
Biocombustíveis , Carbono/metabolismo , Genes Bacterianos , Resíduos Industriais , Poli-Hidroxialcanoatos/biossíntese , Pseudomonas mendocina/metabolismo , Ácido 3-Hidroxibutírico/biossíntese , Alginatos , Biodegradação Ambiental , Caprilatos/metabolismo , Ácidos Decanoicos/metabolismo , Análise Fatorial , Expressão Gênica , Ácido Glucurônico/biossíntese , Glicerol/metabolismo , Ácidos Hexurônicos , Concentração de Íons de Hidrogênio , Nitrogênio/metabolismo , Filogenia , Pseudomonas mendocina/classificação , Pseudomonas mendocina/genética , Temperatura
15.
Biosci Biotechnol Biochem ; 79(8): 1369-77, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25971301

RESUMO

Pseudomonas sp. 61-3 accumulates two types of polyhydroxyalkanoates (PHAs), poly(3-hydroxybutyrate) [P(3HB)], and poly(3HB-co-3-hydroxyalkanoates) [P(3HB-co-3HA)], and some proteins associated with their PHA granules have been identified. To date, PhaFPs (GA36) and PhaIPs (GA18) were identified from P(3HB-co-3HA) granules. In this study, the gene encoding GA24 associated with P(3HB) granule was identified as phbPPs. PhbPPs was composed of 192 amino acids with a calculated molecular mass of 20.4 kDa and was assumed to be a phasin. phbFPs gene and unknown ORF were also found on phb locus. PhbFPs was anticipated to be the transcriptional repressor of phbPPs gene. PhbPPs was bound to the P(3HB-co-3HA) granules with 3HB composition of more than 87 mol%, and PhaIPs and PhaFPs were bound to the P(3HB-co-3HA) granules with 3HA (C6-C12) composition of more than 13 mol% in the producing cells, suggesting that localization of these proteins is attributed to the monomer compositions of the copolymers.


Assuntos
Proteínas de Bactérias/metabolismo , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Poli-Hidroxialcanoatos/metabolismo , Pseudomonas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Hidroxibutiratos/química , Corpos de Inclusão/química , Corpos de Inclusão/metabolismo , Peso Molecular , Poliésteres/química , Poli-Hidroxialcanoatos/química , Pseudomonas/patogenicidade
16.
J Hazard Mater ; 466: 133573, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38306834

RESUMO

Biosourced and biodegradable plastics offer a promising solution to reduce environmental impacts of plastics for specific applications. Here, we report a novel bacterium named Alteromonas plasticoclasticus MED1 isolated from the marine plastisphere that forms biofilms on foils of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). Experiments of degradation halo, plastic matrix weight loss, bacterial oxygen consumption and heterotrophic biosynthetic activity showed that the bacterial isolate MED1 is able to degrade PHBV and to use it as carbon and energy source. The likely entire metabolic pathway specifically expressed by this bacterium grown on PHBV matrices was shown by further genomic and transcriptomic analysis. In addition to a gene coding for a probable secreted depolymerase, a gene cluster was located that encodes characteristic enzymes involved in the complete depolymerization of PHBV, the transport of oligomers, and in the conversion of the monomers into intermediates of central carbon metabolism. The transcriptomic experiments showed the activation of the glyoxylate shunt during PHBV degradation, setting the isocitrate dehydrogenase activity as regulated branching point of the carbon flow entering the tricarboxylic acid cycle. Our study also shows the potential of exploring the natural plastisphere to discover new bacteria with promising metabolic capabilities.


Assuntos
Bactérias , Poliésteres , Bactérias/genética , Bactérias/metabolismo , Hidroxibutiratos , Biopolímeros , Carbono/metabolismo
17.
J Colloid Interface Sci ; 673: 647-656, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38901355

RESUMO

Monodisperse nanoparticles of biodegradable polyhydroxyalkanoates (PHAs) polymers, copolymers of 3-hydroxybutyrate (3HB) and 4-hydroxybutyrate (4HB), are synthesized using a membrane-assisted emulsion encapsulation and evaporation process for biomedical resorbable adhesives. The precise control over the diameter of these PHA particles, ranging from 100 nm to 8 µm, is achieved by adjusting the diameter of emulsion or the PHA concentration. Mechanical properties of the particles can be tailored based on the 3HB to 4HB ratio and molecular weight, primarily influenced by the level of crystallinity. These monodisperse PHA particles in solution serve as adhesives for hydrogel systems, specifically those based on poly(N, N-dimethylacrylamide) (PDMA). Semi-crystalline PHA nanoparticles exhibit stronger adhesion energy than their amorphous counterparts. Due to their self-adhesiveness, adhesion energy increases even when those PHA nanoparticles form multilayers between hydrogels. Furthermore, as they degrade and are resorbed into the body, the PHA nanoparticles demonstrate efficacy in in vivo wound closure, underscoring their considerable impact on biomedical applications.

18.
Materials (Basel) ; 17(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38998187

RESUMO

The inherent brittleness of polyhydroxybutyrate (PHB), a well-studied polyhydroxyalkanoate (PHA), limits its applicability in flexible and impact-resistant applications. This study explores the potential of blending PHB with a different PHA to overcome brittleness. The synthesis of PHA polymers, including PHB and an amorphous medium-chain-length PHA (aPHA) consisting of various monomers, was achieved in previous works through canola oil fermentation. Detailed characterization of aPHA revealed its amorphous nature, as well as good thermal stability and shear thinning behavior. The blending process was carried out at different mass ratios of aPHA and PHB, and the resulting blends were studied by differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The blends exhibited complex DSC curves, indicating the presence of multiple crystalline forms of PHB. SEM images revealed the morphology of the blends, with PHB particles dispersed within the aPHA matrix. TGA showed similar thermal degradation patterns for the blends, with the residue content decreasing as the PHB content increased. The crystallinity of the blends was influenced by the PHB content, with higher PHB ratios resulting in an increased degree of crystallinity. XRD confirmed the presence of both α and ß crystals of PHB in the blends. Overall, the results demonstrate the potential of PHB+aPHA blends to enhance the mechanical properties of biopolymer materials, without com-promising the thermal stability, paving the way for sustainable material design and novel application areas.

19.
Sci Total Environ ; 912: 168899, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38029992

RESUMO

The versatile capacity of purple phototrophic bacteria (PPB) for producing valuable bioproducts has gathered renewed interest in the field of resource recovery and waste valorisation. However, greater knowledge regarding the viability of applying PPB technologies in outdoor, large-scale systems is required. This study assessed, for the first time, the upscaling of the phototrophic polyhydroxyalkanoate (PHA) production technology in a pilot-scale system operated in outdoor conditions. An integrated system composed of two up-flow anaerobic sludge blanket (UASB) reactors (for fermentation of wastewater with molasses), and two high-rate algal ponds retrofitted into PPB ponds, was operated in a wastewater treatment plant under outdoor conditions. UASB's adaptation to the outdoor temperatures involved testing different operational settings, namely hydraulic retention times (HRT) of 48 and 72 h, and molasses fermentation in one or two UASBs. Results have shown that the fermentation of molasses in both UASBs with an increased HRT of 72 h was able to ensure a suitable operation during colder conditions, achieving 3.83 ± 0.63 g CODFermentative Products/L, compared to the 3.73 ± 0.85 g CODFermentative Products/L achieved during warmer conditions (molasses fermentation in one UASB; HRT 48 h). Furthermore, the PPB ponds were operated under a light-feast/dark-aerated-famine strategy and fed with the fermented wastewater and molasses from the two UASBs. The best PHA production was obtained during the summer of 2018 and spring of 2019, attaining 34.7 % gPHA/gVSS with a productivity of 0.11 gPHA L-1 day-1 and 36 % gPHA/gVSS with a productivity of 0.14 gPHA L-1 day-1, respectively. Overall, this study showcases the first translation of phototrophic PHA production technology from an artificially illuminated laboratory scale system into a naturally illuminated, outdoor, pilot-scale system. It also addresses relevant process integration aspects with UASBs for pre-fermenting wastewater with molasses, providing a novel operational strategy to achieve photosynthetic PHA production in outdoor full-scale systems.


Assuntos
Poli-Hidroxialcanoatos , Águas Residuárias , Lagoas , Esgotos/microbiologia , Bactérias , Reatores Biológicos
20.
Int J Biol Macromol ; 229: 713-723, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36587645

RESUMO

Polyhydroxyalkanoate (PHA) production has been the focus of considerable research to increase productivities and reduce production costs. In this study, a fermented confectionary industry wastewater was used as feedstock for mixed microbial culture PHA production. The feedstock was dominated by lactate and ethanol (60-90 % of all soluble fermentation products). The culture selection reactor was inoculated with municipal activated sludge and was operated at an organic loading rate (OLR) of 100 Cmmol·L-1·d-1, achieving a robust PHA-accumulating enrichment, which produced up to 52.6 ± 0.4 wt% of PHA in accumulation assays. An OLR increase in the culture selection stage to 150 Cmmol·L-1·d-1 led to a PHA content of 59.1 ± 0.6, a yield of 0.93 ± 0.01 Cmol-PHA·Cmol-S-1 and a productivity of 0.93 ± 0.01 g-PHA L-1·h-1. A correlation analysis of the impact of ethanol concentrations from 3.19 to 20.3 Cmmol·L-1 in the reactor showed that ethanol inhibited PHA production rate and yield and the consumption of other carbon sources available. Microbial community analysis revealed the increase of Amaricoccus genus during the bioreactor operation time, a known PHA accumulator. The produced polymer was poly(3-hydroxybutyrate) with an average molecular weight of 4.3 × 105 Da and a polydispersity index of 1.88.


Assuntos
Ácido Láctico , Poli-Hidroxialcanoatos , Reatores Biológicos , Águas Residuárias , Esgotos , Fermentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA