Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; : e2400370, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38873978

RESUMO

Liquid crystalline elastomers (LCEs) are a class of shape-changing polymers with exceptional mechanical properties and potential as artificial muscles/polymer actuators. In this study, multifunctional LCE actuators with strain sensing and joule heating responsivity are developed. LCEs are successfully synthesized using the thiol-ene two-staged michael addition polymerization (TMAP) method. The LCE films are further functionalized via sequential polydopamine (PDA) and silver electroless coating. It is found that the PDA coating enabled the anchoring of the Ag particles to the LCE, thereby enabling the electrical conductivity of the Ag-LCEs (<0.1 Ω cm-1). The studies confirm that the Ag/PDA coated LCEs can sense up to ≈30% strain, sense their own actuation strokes, and actuate at a rate of 1.83% s-1 while lifting a weight ≈50 times its mass in response to a 12 V 2A DC current.

2.
Macromol Rapid Commun ; 44(2): e2200547, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36208074

RESUMO

Untethered small actuators have drawn tremendous interest owing to their reversibility, flexibility, and widespread applications in various fields. For polymer actuators, however, it is still challenging to achieve programmable structural changes under different stimuli caused by the intractability and single-stimulus responses of most polymer materials. Herein, multi-stimuli-responsive polymer actuators that can respond to light and solvent via structural changes are developed. The actuators are based on bilayer films of polydimethylsiloxane (PDMS) and azobenzene chromophore (AAZO)-crosslinked poly(diallyldimethylammonium chloride) (PDAC). Upon UV light irradiation, the AAZO undergoes trans-cis-trans photoisomerization, causing the bending of the bilayer films. When the UV light is off, a shape recovery toward an opposite direction occurs spontaneously. The reversible deformation can be repeated at least 20 cycles. Upon solvent vapor annealing, one of the bilayer films can be selectively swollen, causing the bending of the bilayer films with the directions controlled by the solvent vapors. The effects of different parameters, such as the weight ratios of AAZO and film thicknesses, on the bending angles and curvatures of the polymer films are also analyzed. The results demonstrate that multi-stimuli-responsive actuators with fast responses and high reproducibility can be fulfilled.


Assuntos
Polímeros , Polímeros Responsivos a Estímulos , Polímeros/química , Solventes , Reprodutibilidade dos Testes , Raios Ultravioleta
3.
Sensors (Basel) ; 18(9)2018 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-30223614

RESUMO

Ionic electroactive polymer (IEAP) actuators that are driven by electrical stimuli have been widely investigated for use in practical applications. However, conventional electrodes in IEAP actuators have a serious drawback of poor durability under long-term actuation in open air, mainly because of leakage of the inner electrolyte and hydrated cations through surface cracks on the metallic electrodes. To overcome this problem, a top priority is developing new high-performance ionic polymer actuators with graphene electrodes that have superior mechanical, electrical conductivity, and electromechanical properties. However, the task is made difficultby issues such as the low electrical conductivity of graphene (G). The percolation network of silver nanowires (Ag-NWs) is believed to enhance the conductivity of graphene, while poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS), which exhibits excellent stability under ambient conditions, is expected to improve the actuation performance of IEAP actuators. In this study, we developed a very fast, stable, and durable IEAP actuator by employing electrodes made of a nanocomposite comprising PEDOT:PSS and graphene⁻Ag-NWs (P/(G⁻Ag)). The cost-effective P/(G⁻Ag) electrodes with high electrical conductivity displayed a smooth surface resulting from the PEDOT:PSS coating, which prevented oxidation of the surface upon exposure to air, and showedstrong bonding between the ionic polymer and the electrode surface. More interestingly, the proposed IEAP actuator based on the P/G⁻Ag electrode can be used in active biomedical devices, biomimetic robots, wearable electronics, and flexible soft electronics.

4.
Angew Chem Int Ed Engl ; 57(36): 11758-11763, 2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-30025194

RESUMO

A strip of a liquid crystal elastomer doped with a near-infrared dye with one side crosslinked monodomain and the other crosslinked polydomain along the thickness behaves like a multifunctional photoactuator without the need for a support. A flat strip with two ends fixed on substrate surface forms a moving bump under laser scanning, which can be used as light-fueled conveyor to transport an object. Cutting off and laser scanning the bump with two free ends makes a soft and flexible millimeter-scale crawler that can not only move straight and climb an inclined surface, but also undergo light-guided turning to right or left as a result of combined out-of-plane and in-plane actuation. Based on the self-shadowing mechanism, with one end of the strip fixed on substrate surface, it can execute a variety of autonomous arm-like movements under constant laser illumination, such as bending-unbending and twisting, depending on the laser incident angles with respect to the strip actuator.

5.
Polymers (Basel) ; 15(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37447515

RESUMO

The fabrication of low-electrical-percolation-threshold polymer composites aims to reduce the weight fraction of the conductive nanomaterial necessary to achieve a given level of electrical resistivity of the composite. The present work aimed at preparing composites based on multiwalled carbon nanotubes (MWCNTs) and magnetite particles in a polyurethane (PU) matrix to study the effect on the electrical resistance of electrodes produced under magnetic fields. Composites with 1 wt.% of MWCNT, 1 wt.% of magnetite and combinations of both were prepared and analysed. The hybrid composites combined MWCNTs and magnetite at the weight ratios of 1:1; 1:1/6; 1:1/12; and 1:1/24. The results showed that MWCNTs were responsible for the electrical conductivity of the composites since the composites with 1 wt.% magnetite were non-conductive. Combining magnetite particles with MWCNTs reduces the electrical resistance of the composite. SQUID analysis showed that MWCNTs simultaneously exhibit ferromagnetism and diamagnetism, ferromagnetism being dominant at lower magnetic fields and diamagnetism being dominant at higher fields. Conversely, magnetite particles present a ferromagnetic response much stronger than MWCNTs. Finally, optical microscopy (OM) and X-ray micro computed tomography (micro CT) identified the interaction between particles and their location inside the composite. In conclusion, the combination of magnetite and MWCNTs in a polymer composite allows for the control of the location of these particles using an external magnetic field, decreasing the electrical resistance of the electrodes produced. By adding 1 wt.% of magnetite to 1 wt.% of MWCNT (1:1), the electric resistance of the composites decreased from 9 × 104 to 5 × 103 Ω. This approach significantly improved the reproducibility of the electrode's fabrication process, enabling the development of a triboelectric sensor using a polyurethane (PU) composite and silicone rubber (SR). Finally, the method's bearing was demonstrated by developing an automated robotic soft grip with tendon-driven actuation controlled by the triboelectric sensor. The results indicate that magnetic patterning is a versatile and low-cost approach to manufacturing sensors for soft robotics.

6.
ACS Appl Mater Interfaces ; 14(38): 43701-43710, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36044399

RESUMO

Here, we report low-voltage-driven fast-response nanostructured columnar ionic liquid crystal/polymer composite actuators that form three-dimensional continuous ion channels. A three-component self-assembly of a zwitterionic rod-like molecule (49.5 wt %), an ionic liquid (27.5 wt %), and poly(vinyl alcohol) (23.0 wt %) provided a free-standing stretchable membrane electrolyte. The dissociated ions can move through a continuous 3D ionophilic matrix surrounding the hydrophobic columns formed by the hexagonally organized rod-mesogens. Three-layer actuators composed of the electrolyte film sandwiched between two conductive polymer film electrodes of doped polythiophene exhibited a bending motion with 0.32% strain and moved 2 mm within 220 ms under 1 V at 0.1 Hz in 70% relative humidity due to the formation of electric double layers at the soft solid electrolyte/electrode interfaces. The bending strain of the columnar nanostructured actuator is comparable to those of polymer iongel actuators and block polymer actuators containing 25-80 wt % of ionic liquids. It is noteworthy that a small number of ions organized into the 3D nanochannels can generate the large bending deformation, which can contribute to reduce the risk of leakage of ions and the production cost. In addition, we have demonstrated a low-voltage-driven deformable mirror actuator that is expected to be applied to optical devices.

7.
ACS Appl Mater Interfaces ; 13(5): 6930-6940, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33523645

RESUMO

For highly conformable and universal transport devices, bioinspired dry adhesion systems with reversible molecular attractions (e.g., van der Waals forces, capillarity, or suction stress) between the engaged surfaces have recently become favorable for various dry/wet processes in flexible devices and medical applications. In addition, many efforts have been made for switchable attachments of such adhesives by employing costly sophisticated systems such as mechanically deformable chucks, UV-radiating components, or fluidic channels. In this work, we propose a simple electrothermally actuating transport device based on an octopus-inspired microsphere-embedded sucker (OMS). The adhesive with microsphere-embedded suckers offers enhanced adhesion on dry/wet surfaces, in accordance with investigation of the geometric and materials parameters of the novel suction architecture for maximizing adhesion interactions. Inspired by muscle actuation of octopus tentacles, we laminate the electrothermally reactive poly(3,4-ethylenedioxy thiophene):poly(styrenesulfonic acid) (PEDOT:PSS) layer on the backside of the OMS adhesive patch. By controlling inputs of electrical energy, our assembled actuator may actively expand and contract reversibly to induce switchable attachments and detachments. Our bioinspired device can be integrated onto a robotic arm to attach and release against dry/wet flexible thin objects.

8.
Adv Sci (Weinh) ; 6(5): 1801196, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30886790

RESUMO

Electroactive ionic soft actuators, a type of artificial muscles containing a polymer electrolyte membrane sandwiched between two electrodes, have been intensively investigated owing to their potential applications to bioinspired soft robotics, wearable electronics, and active biomedical devices. However, the design and synthesis of an efficient polymer electrolyte suitable for ion migration have been major challenges in developing high-performance ionic soft actuators. Herein, a highly bendable ionic soft actuator based on an unprecedented block copolymer is reported, i.e., polystyrene-b-poly(1-ethyl-3-methylimidazolium-4-styrenesulfonate) (PS-b-PSS-EMIm), with a functionally antagonistic core-shell architecture that is specifically designed as an ionic exchangeable polymer electrolyte. The corresponding actuator shows exceptionally good actuation performance, with a high displacement of 8.22 mm at an ultralow voltage of 0.5 V, a fast rise time of 5 s, and excellent durability over 14 000 cycles. It is envisaged that the development of this high-performance ionic soft actuator could contribute to the progress toward the realization of the aforementioned applications. Furthermore, the procedure described herein can also be applied for developing novel polymer electrolytes related to solid-state lithium batteries and fuel cells.

9.
ACS Appl Mater Interfaces ; 11(17): 16252-16259, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30950596

RESUMO

Shape-programmed deformation of soft polymer films is essential for applications in robotics, self-adaptive devices, and sensors. In comparison to bilayer polymer actuators, the challenge remains to manipulate single-layered soft actuators for rapid, reversible, and shape-programmed deformations in response to external stimuli owing to their homogeneous composite structures. Herein, this work reports a soft polymer film actuator that has a single-layered structure, yet demonstrates the shape-programmed motility. The actuator is composed of polyvinylidene fluoride film as a matrix and patterned by photocrosslinking of acrylamide and N', N'-methylenebisacrylamide, which generates soft-hard alternating segments in the structure. As it is exposed to acetone vapors, the soft-hard structures lead to an unequal response that results in the shape-programmed deformation. The actuator is elastic (strain: 160%) and tough (stress: 40 MPa) and can maintain its rapid, reversible, and shape-programmed motions for a few hours, even longer. The soft-hard structure enables the film actuator (3.5 mg) to give a contracting stress of 4 MPa that is used in an automatic device able to lift a cargo of 5.09 g, ∼1453 times heavier than the film itself. The power output reaches 474 J kg-1, ∼100 times higher than the reported soft actuators. This simple application indicates a potential for the soft actuator used in acetone vapor sensing devices.

10.
Polymers (Basel) ; 10(3)2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30966290

RESUMO

Crosslinking of thermoplastics is a versatile method to create crystallizable polymer networks, which are of high interest for shape-memory actuators. Here, crosslinked poly(ε-caprolactone) thermosets (cPCLs) were prepared from linear starting material, whereby the amount of extractable polymer was varied. Fractions of 5⁻60 wt % of non-crosslinked polymer chains, which freely interpenetrate the crosslinked network, were achieved leading to differences in the resulting phase of the bulk material. This can be described as "sponge-like" with open or closed compartments depending on the amount of interpenetrating polymer. The crosslinking density and the average network chain length remained in a similar range for all network structures, while the theoretical accessible volume for reptation of the free polymer content is affected. This feature could influence or introduce new functions into the material created by thermomechanical treatment. The effect of interpenetrating PCL in cPCLs on the reversible actuation was analyzed by cyclic, uniaxial tensile tests. Here, high reversible strains of up to ∆ε = 24% showed the enhanced actuation performance of networks with a non-crosslinked PCL content of 30 wt % resulting from the crystal formation in the phase of the non-crosslinked PCL and co-crystallization with network structures. Additional functionalities are reprogrammability and self-healing capabilities for networks with high contents of extractable polymer enabling reusability and providing durable actuator materials.

11.
ACS Appl Mater Interfaces ; 10(17): 14978-14985, 2018 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-29557639

RESUMO

There is a need for soft actuators in various biomedical applications to manipulate delicate objects such as cells and tissues. Soft actuators are able to adapt to any shape and limit the stress applied to delicate objects. Conjugated polymer (CP) actuators, especially in the so-called trilayer configuration, are interesting candidates for driving such micromanipulators. However, challenges involved in patterning the electrodes in a trilayer with individual contact have prevented further development of soft micromanipulators based on CP actuators. To allow such patterning, two printing-based patterning techniques have been developed. First, an oxidant layer is printed using either syringe-based printing or microcontact printing, followed by vapor-phase polymerization of the CP. Submillimeter patterns with electronic conductivities of 800 S·cm-1 are obtained. Next, laser ablation is used to cleanly cut the final device structures including the printed patterns, resulting in fingers with individually controllable digits and miniaturized hands. The methods presented in this paper will enable integration of patterned electrically active CP layers in many types of complex three-dimensional structures.

12.
Adv Mater ; 30(14): e1706597, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29430745

RESUMO

A near-infrared-light (NIR)- and UV-light-responsive polymer nanocomposite is synthesized by doping polymer-grafted gold nanorods into azobenzene liquid-crystalline dynamic networks (AuNR-ALCNs). The effects of the two different photoresponsive mechanisms, i.e., the photochemical reaction of azobenzene and the photothermal effect from the surface plasmon resonance of the AuNRs, are investigated by monitoring both the NIR- and UV-light-induced contraction forces of the oriented AuNR-ALCNs. By taking advantage of the material's easy processability, bilayer-structured actuators can be fabricated to display photocontrollable bending/unbending directions, as well as localized actuations through programmed alignment of azobenzene mesogens in selected regions. Versatile and complex motions enabled by the enhanced photocontrol of actuation are demonstrated, including plastic "athletes" that can execute light-controlled push-ups or sit-ups, and a light-driven caterpillar-inspired walker that can crawl forward on a ratcheted substrate at a speed of about 13 mm min-1 . Moreover, the photomechanical effects arising from the two types of light-triggered molecular motion, i.e., the trans-cis photoisomerization and a liquid-crystalline-isotropic phase transition of the azobenzene mesogens, are added up to design a polymer "crane" that is capable of performing light-controlled, robot-like, concerted macroscopic motions including grasping, lifting up, lowering down, and releasing an object.

13.
ACS Appl Mater Interfaces ; 9(39): 33559-33564, 2017 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-28920427

RESUMO

Reversible movements of current polymeric actuators stem from the continuous response to signals from a controlling unit, and subsequently cannot be interrupted without stopping or eliminating the input trigger. Here, we present actuators based on cross-linked blends of two crystallizable polymers capable of pausing their movements in a defined manner upon continuous cyclic heating and cooling. This noncontinuous actuation can be adjusted by varying the applied heating and cooling rates. The feasibility of these devices for technological applications was shown in a 140 cycle experiment of free-standing noncontinuous shape shifts, as well as by various demonstrators.

14.
Adv Mater ; 29(28)2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28585247

RESUMO

A new strategy for enhancing the photoinduced mechanical force is demonstrated using a reprocessable azobenzene-containing liquid crystalline network (LCN). The basic idea is to store mechanical strain energy in the polymer beforehand so that UV light can then be used to generate a mechanical force not only from the direct light to mechanical energy conversion upon the trans-cis photoisomerization of azobenzene mesogens but also from the light-triggered release of the prestored strain energy. It is shown that the two mechanisms can add up to result in unprecedented photoindued mechanical force. Together with the malleability of the polymer stemming from the use of dynamic covalent bonds for chain crosslinking, large-size polymer photoactuators in the form of wheels or spring-like "motors" can be constructed, and, by adjusting the amount of prestored strain energy in the polymer, a variety of robust, light-driven motions with tunable rolling or moving direction and speed can be achieved. The approach of prestoring a controllable amount of strain energy to obtain a strong and tunable photoinduced mechanical force in azobenzene LCN can be further explored for applications of light-driven polymer actuators.

15.
Adv Mater ; 28(8): 1610-5, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26669817

RESUMO

Sulfur and nitrogen co-doped graphene electrodes for bioinspired ionic artificial muscles, which exhibit outstanding actuation performances (bending strain of 0.36%, 4.5 times higher than PEDOT: PSS electrodes, and 96% of initial strain after demonstration over 18 000 cycles), provide remarkable electro-chemo-mech anical properties: specific capacitance, electrical conductivity, and large surface area with mesoporosity.


Assuntos
Biomimética/instrumentação , Grafite/química , Músculos , Nitrogênio/química , Enxofre/química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Condutividade Elétrica , Eletrodos , Modelos Moleculares , Conformação Molecular , Polímeros/química , Poliestirenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA