Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Molecules ; 29(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38999029

RESUMO

In order to effectively adjust reservoir heterogeneity and further exploit the remaining oil, a new type of low-viscosity gel was prepared by adding a regulating agent, retarder, and reinforcing agent on the basis of a polymer + Cr3+ crosslinking system. The new gel has the advantages of low initial viscosity, a slow gel formation rate, and high strength after gel formation. The effectiveness of the gel was verified through three-layer core displacement experiments, and the injection scheme was optimized by changing the slug combination of the polymer and the gel. The results showed that the gel can effectively block the high-permeability layer and adjust reservoir heterogeneity. An injection of 0.1 pore volume (PV) low-initial-viscosity gel can improve oil recovery by 5.10%. By changing the slug combination of the gel and polymer, oil recovery was further increased by 3.12% when using an injection of 0.07 PV low-initial-viscosity gel +0.2 PV high-concentration polymer +0.05 PV low-initial-viscosity gel +0.5 PV high-concentration polymer.

2.
Molecules ; 29(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38893464

RESUMO

Acrylamide polymers with a high degree of polymerization are widely used in petroleum production. It is of great significance to study the oil displacement mechanism of acrylamide polymers with a high degree of polymerization from the micro level. In recent years, the rapid development of computer molecular simulation technology has filed the gaps in macroscopic experiments and theories. This technology has been highly valued in the study of the molecular behaviour of polymer systems. In this paper, the research progress of molecular simulation applied to high-polymerization-degree acrylamide polymer is summarized. The application status of acrylamide polymer flooding, the analysis of polymer flooding mechanisms, and the research progress of molecular simulation in acrylamide linear and crosslinked polymers are expounded. Finally, the development prospect of acrylamide polymer research is given, and suggestions are put forward in terms of simulation direction and simulation tools.

3.
Appl Microbiol Biotechnol ; 107(17): 5531-5544, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37428189

RESUMO

The role of indigenous microbial communities in residual oil extraction following a recovery process is not well understood. This study investigated the dynamics of resident microbial communities in oil-field simulating sand pack bioreactors after the polymer flooding stage resumed with waterflooding and explored their contribution to the oil extraction process. The microbial community succession was studied through high-throughput sequencing of 16S rRNA genes. The results revealed alternating dominance of minority populations, including Dietzia sps., Acinetobacter sps., Soehngenia sps., and Paracoccus sps., in each bioreactor following the flooding process. Additionally, the post-polymer waterflooding stage led to higher oil recovery, with hydroxyethylcellulose, tragacanth gum, and partially hydrolyzed polyacrylamide polymer-treated bioreactors yielding additional recovery of 4.36%, 5.39%, and 3.90% residual oil in place, respectively. The dominant microbial communities were previously reported to synthesize biosurfactants and emulsifiers, as well as degrade and utilize hydrocarbons, indicating their role in aiding the recovery process. However, the correlation analysis of the most abundant taxa showed that some species were more positively correlated with the oil recovery process, while others acted as competitors for the carbon source. The study also found that higher biomass favored the plugging of high permeability zones in the reservoir, facilitating the dislodging of crude oil in new channels. In conclusion, this study suggests that microbial populations significantly shift upon polymer treatment and contribute synergistically to the oil recovery process depending on the characteristics of the polymers injected. KEY POINTS: • Post-polymer flooded microbial ecology shows unique indigenous microbial consortia. • Injected polymers are observed to act as enrichment substrates by resident communities. • The first study to show successive oil recovery stage post-polymer flood without external influence.

4.
Molecules ; 28(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37375169

RESUMO

Significant amounts of oil remain in the reservoir after primary and secondary operations, and to recover the remaining oil, enhanced oil recovery (EOR) can be applied as one of the feasible options remaining nowadays. In this study, new nano-polymeric materials have been prepared from purple yam and cassava starches. The yield of purple yam nanoparticles (PYNPs) was 85%, and that of cassava nanoparticles (CSNPs) was 90.53%. Synthesized materials were characterized through particle size distribution (PSA), Zeta potential distribution, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and transmission electron microscopy (TEM). The performance of PYNPs in recovering oil was better than CSNPs, as found from the recovery experiments. Zeta potential distribution results confirmed the stability of PYNPs over CSNPs (-36.3 mV for PYNPs and -10.7 mV for CSNPs). The optimum concentration for these nanoparticles has been found from interfacial tension measurements and rheological properties, and it was 0.60 wt.% for PYNPs and 0.80 wt.% for CSNPs. A more incremental recovery (33.46%) was achieved for the polymer that contained PYNPs in comparison to the other nano-polymer (31.3%). This paves the way for a new technology for polymer flooding that may replace the conventional method, which depends on partially hydrolyzed polyacrylamide (HPAM).

5.
Molecules ; 28(23)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38067663

RESUMO

Polymer flooding, one of the main methods for improving crude oil recovery using chemical flooding technology in China, is widely used for actual oil displacement. Partially hydrolyzed polyacrylamide (HPAM) is a commonly used linear polymer in polymer flooding, but it exhibits poor temperature and salt resistance due to its molecular structure. Therefore, branched polymers have been studied. This article provides a review of the specific synthetic methods and current practical applications in the petrochemical field of dendritic polymers and hyperbranched macromolecules. The advantages and disadvantages of each synthetic method for branched polymers are also elaborated. Finally, the application prospects of branched polymers are discussed. The feasibility of branched polymers in large quantities should be further verified through additional field tests, which should address concerns such as synthesis costs and reaction efficiency.

6.
Molecules ; 28(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37570740

RESUMO

This study aimed to address the challenges faced by mature oilfields in extracting substantial oil quantities. It focused on improving the efficiency of alkaline-surfactant-polymer (ASP) flooding technique, which is a proven tertiary recovery technology, to overcome scaling issues and other hindrances in its large-scale implementation. Appropriate materials and their suitable concentrations were selected to enhance the ASP flooding technique. Special surfactants from Indonesia were introduced to improve the interfacial tension reduction and wettability alteration. Reservoir rock model that resembling Langgak oilfield in Sumatra was utilized, and low-salinity water was employed to mimic the oilfield conditions. Starches derived from cassava nanoparticles (CSNPs) and purple yam nanoparticles (PYNPs) were combined separately with conventional hydrolyzed polyacrylamide (HPAM) polymer to enhance its performance. Sodium hydroxide and sodium carbonate were used as alkaline in final ASP formula. It was demonstrated from this research that only two combinations of ASP formulations have led to improved oil recovery. One combination utilizing PYNPs resulted in 39.17% progressive recovery, while the other combination incorporating CSNPs achieved 35% incremental oil recovery. The ASP combination that resulted in recovery rate of 39.17% was composed of sodium hydroxide (NaOH) at a concentration of 1.28 wt.%, PSC EOR 2.2 (0.98 wt.%), and a combined polymer consisting of HPAM (0.2 wt.%) and PYNPs nano-starch (0.6 wt.%). The second combination led to 35% recovery rate and involved NaOH also at concentration 1.28 wt.%, PSC HOMF (0.63 wt.%), and a combined polymer comprising from HPAM (0.2 wt.%) and CSNPs nano-starch (0.8 wt.%). These findings of this study highlighted the potential of this modified ASP flooding to enhance oil recovery in mature oilfields, thereby offering valuable insights for oil industry.

7.
J Appl Microbiol ; 133(2): 842-856, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35490352

RESUMO

AIMS: The aim was to characterize indigenous micro-organisms in oil reservoirs after polymer flooding (RAPF). METHODS: The microbial communities in the crude oil phase (Oil) and in the filter-graded aqueous phases Aqu0.22 (>0.22 µm) and Aqu0.1 (0.1-0.22 µm) were investigated by 16S rRNA gene high-throughput sequencing. RESULTS: Indigenous micro-organisms related to hydrocarbon degradation prevailed in the three phases of each well. However, obvious differences in bacterial compositions were observed amongst the three phases of the same well and amongst the same phase of different wells. The crude oil and Aqu0.22 shared many dominant bacteria. Aqu0.1 contained a unique bacterial community in each well. Most bacteria in Aqu0.1 were affiliated to culturable genera, suggesting that they may adapt to the oil reservoir environment by reduction of cell size. Contrary to the bacterial genera, archaeal genera were similar in the three phases but varied in relative abundances. The observed microbial differences may be driven by specific environmental factors in each oil well. CONCLUSIONS: The results suggest an application potential of microbial enhanced oil recovery (MEOR) technology in RAPF. The crude oil and Aqu0.1 contain many different functional micro-organisms related to hydrocarbon degradation. Both should not be overlooked when investing and exploring the indigenous micro-organisms for MEOR. SIGNIFICANCE AND IMPACT OF THE STUDY: This work facilitates the understanding of microbial community structures in RAPF and provides information for microbial control in oil fields.


Assuntos
Microbiota , Petróleo , Bactérias/genética , Hidrocarbonetos , Microbiota/genética , Campos de Petróleo e Gás , Polímeros , RNA Ribossômico 16S/genética , Água
8.
J Environ Manage ; 302(Pt A): 114015, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34731710

RESUMO

Polymer flooding is an enhanced oil recovery technique to extract the large portion of leftover subsurface oil following conventional extraction methods. In the flooding process, a long-chain polymer, such as partially hydrolyzed polyacrylamide (HPAM), is added to the displacing fluid to increase the mobility and extraction of the oil phase. Nevertheless, the challenge of managing produced water from polymer flooding operations is high because residual HPAM results in significantly high viscosity and organic content in the stream. Commonly used methods for produced water treatment, such as gravity settling and flotation, cannot be applied to obtain a purified stream efficiently, while innovative techniques are not yet feasible in practical operations. In this work, a simple method of polymer precipitation prompted by divalent ions is evaluated, optimized, and compared to membrane ultrafiltration. The physico-chemical properties of the HPAM are investigated and polymer precipitation tests are conducted by varying the main operational parameters, including pH, salinity, temperature, calcium and/or magnesium concentration, and polymer concentration. Response surface developed by central composite design method is used to optimize the process and identify the correct dosage of divalent cations coagulants and pH, the two main factors promoting HPAM separation. The removal of HPAM is well-described and maximized (>85%) by the model, which is also validated on three synthetic samples representing real wastewaters from polymer flooding applications. Optimized ultrafiltration, using ceramic membranes with surface pore size of 15 kDa, also shows the ability to remove HPAM effectively from water, but the precipitation method seems to be more versatile and easier to apply. The two processes, precipitation and ultrafiltration, may potentially be used in sequence as they complement each other in several ways.


Assuntos
Polímeros , Purificação da Água , Peso Molecular , Águas Residuárias
9.
Molecules ; 27(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36296573

RESUMO

Polymer flooding is drawing lots of attention because of the technical maturity in some reservoirs. The first commercial polymer flooding in China was performed in the Daqing oilfield and is one of the largest applications in the world. Some laboratory tests from Daqing researchers in China showed that the viscoelasticity of high molecular weight polymers plays a significant role in increasing displacement efficiency. Hence, encouraged by the conventional field applications and new findings on the viscoelasticity effect of polymers on residual oil saturation (ROS), some high-concentration high-molecular-weight (HCHMW) polymer-flooding field tests have been conducted. Although some field tests were well-documented, subsequent progress was seldom reported. It was recently reported that HCHMW has a limited application in Daqing, which does not agree with observations from laboratory core flooding and early field tests. However, the cause of this discrepancy is unclear. Thus, a systematic summary of polymer-flooding mechanisms and field tests in China is necessary. This paper explained why HCHMW is not widely used when considering new understandings of polymer-flooding mechanisms. Different opinions on the viscoelasticity effect of polymers on ROS reduction were critically reviewed. Other mechanisms of polymer flooding, such as wettability change and gravity stability effect, were discussed with regard to widely reported laboratory tests, which were explained in terms of the viscoelasticity effects of polymers on ROS. Recent findings from Chinese field tests were also summarized. Salt-resistance polymers (SRPs) with good economic performance using produced water to prepare polymer solutions were very economically and environmentally promising. Notable progress in SRP flooding and new amphiphilic polymer field tests in China were summarized, and lessons learned were given. Formation blockage, represented by high injection pressure and produced productivity ability, was reported in several oil fields due to misunderstanding of polymers' injectivity. Although the influence of viscoelastic polymers on reservoir conditions is unknown, the injection of very viscous polymers to displace medium-to-high viscosity oils is not recommended. This is especially important for old wells that could cause damage. This paper clarified misleading notions on polymer-flooding implementations based on theory and practices in China.


Assuntos
Petróleo , Polímeros , Espécies Reativas de Oxigênio , Água , Óleos
10.
Molecules ; 27(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35745084

RESUMO

Relative permeability of polymer flooding plays a very important role in oil field development. This paper aimed to measure and calculate the relative permeability curves of polymer flooding more accurately. First, viscosity variation law of polymer in porous media was studied. Rock particles of different diameters and cementing agent were used to make artificial cores and hydrophobically associating polymer solutions were prepared for experiments. Polymer solutions were injected into the cores filled with crude oil and irreducible water. In the process of polymer flooding, produced fluid was collected at different water saturations and locations of the core. Polymer solutions were separated and their viscosities were measured. With the experimental data, the viscosity variation rule of polymer transporting in porous media was explored. The result indicates that the viscosity retention rate of polymer solutions transporting in porous media has power function relationship with the water saturation and the dimensionless distance from the core inlet. Finally, the relative permeability curves of polymer flooding were measured by unsteady state method and the viscosity variation rule was applied to the calculation of the relative permeability curves.


Assuntos
Polímeros , Água , Permeabilidade , Porosidade , Viscosidade
11.
Appl Microbiol Biotechnol ; 105(21-22): 8073-8090, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34609524

RESUMO

As the energy demand is escalating tremendously and crude oil being the primary energy source for at least the next two decades, the production of crude oil should be enhanced to meet the global energy needs. This can be achieved by either exploration of new oil fields for crude oil extraction or employing enhanced oil recovery (EOR) technology to recover the residual oil from existing marginal oil fields. The former method requires more capital investment and time; therefore, this review focuses on the latter. In general, the abandoned oil fields still have 50% of crude left which is unrecovered due to lack of technology. Hence, EOR came into existence after the conventional methods of recovery (primary and secondary recovery) were found to be inefficient and less economical. Nineteen percent of the EOR projects are based upon cEOR methods worldwide, of which more than 80% of projects use economically feasible polymer flooding process for oil recovery. Both synthetic and naturally derived polymers have been used widely for this purpose; however, many recent studies have shown the lower stability of synthetic polymers under extreme reservoir conditions of high salinity and temperature. Additionally, naturally derived polymers face microbial degradation as the major limitation. Therefore, a number of novel polymers are currently studied for their suitability as an efficient EOR polymer. Latest findings have also revealed that biopolymers play an important role in wettability alteration, pore evolution by bioplugging, and reducing fingering effect. Injection of biopolymers can also lead to the selective plugging of thief zones which redirects water flood to the inaccessible oil pores. Therefore, the current study focuses on such principle and mechanism of polymer flooding along with the reservoir and field characteristics which affects the polymer flooding. It also discusses the scope of biopolymer along with the screening criteria for use of novel polymers and strategies to overcome the problems during polymer flooding. KEY POINTS: • Discussion of macroscopic and microscopic mechanisms of polymer flooding. • Screening criteria of polymers prior to flooding are essential. • Biopolymers are eco-friendly and are applicable for a wide range of reservoir conditions.


Assuntos
Petróleo , Polímeros , Biopolímeros , Campos de Petróleo e Gás , Seleção de Pacientes
12.
Molecules ; 26(24)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34946550

RESUMO

Water-soluble polymers, mainly partially hydrolyzed polyacrylamide (HPAM), have been used in the enhanced oil recovery (EOR) process. However, the poor salt tolerance, weak thermal stability and unsatisfactory injectivity impede its use in low-permeability hostile oil reservoirs. Here, we examined the adaptivity of a thermoviscosifying polymer (TVP) in comparison with HPAM for chemical EOR under simulated conditions (45 °C, 4500 mg/L salinity containing 65 mg/L Ca2+ and Mg2+) of low-permeability oil reservoirs in Daqing Oilfield. The results show that the viscosity of the 0.1% TVP solution can reach 48 mPa·s, six times that of HPAM. After 90 days of thermal aging at 45 °C, the TVP solution had 71% viscosity retention, 18% higher than that of the HPAM solution. While both polymer solutions could smoothly propagate in porous media, with permeability of around 100 milliDarcy, TVP exhibited stronger mobility reduction and permeability reduction than HPAM. After 0.7 pore volume of 0.1% polymer solution was injected, TVP achieved an incremental oil recovery factor of 13.64% after water flooding, 3.54% higher than that of HPAM under identical conditions. All these results demonstrate that TVP has great potential to be used in low-permeability oil reservoirs for chemical EOR.

13.
Appl Microbiol Biotechnol ; 101(11): 4387-4402, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28502065

RESUMO

With a rising population, the demand for energy has increased over the years. As per the projections, both fossil fuel and renewables will remain as major energy source (678 quadrillion BTU) till 2030 with fossil fuel contributing 78% of total energy consumption. Hence, attempts are continuously made to make fossil fuel production more sustainable and cheaper. From the past 40 years, polymer flooding has been carried out in marginal oil fields and have proved to be successful in many cases. The common expectation from polymer flooding is to obtain 50% ultimate recovery with 15 to 20% incremental recovery over secondary water flooding. Both naturally derived polymers like xanthan gum and synthetic polymers like partially hydrolyzed polyacrylamide (HPAM) have been used for this purpose. Earlier laboratory and field trials revealed that salinity and temperature are the major issues with the synthetic polymers that lead to polymer degradation and adsorption on the rock surface. Microbial degradation and concentration are major issues with naturally derived polymers leading to loss of viscosity and pore throat plugging. Earlier studies also revealed that polymer flooding is successful in the fields where oil viscosity is quite higher (up to 126 cp) than injection water due to improvement in mobility ratio during polymer flooding. The largest successful polymer flood was reported in China in 1990 where both synthetic and naturally derived polymers were used in nearly 20 projects. The implementation of these projects provides valuable suggestions for further improving the available processes in future. This paper examines the selection criteria of polymer, field characteristics that support polymer floods and recommendation to design a large producing polymer flooding.


Assuntos
Campos de Petróleo e Gás , Petróleo , Polímeros , Resinas Acrílicas , Biopolímeros , China , Hidrólise , Consórcios Microbianos , Polissacarídeos Bacterianos , Tensoativos , Viscosidade , Água
14.
Environ Technol ; 36(9-12): 1373-80, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25420517

RESUMO

In this study, the effects of gravitational settling time, temperature, speed and time of centrifugation, flocculant type and dosage, bubble size and gas amount were investigated. The results show that the simple increase in settling time and temperature is of no use for oil-water separation of the three wastewater samples. As far as oil-water separation efficiency is concerned, increasing centrifugal speed and centrifugal time is highly effective for L sample, and has a certain effect on J sample, but is not valid for S sample. The flocculants are highly effective for S and L samples, and the oil-water separation efficiency increases with an increase in the concentration of inorganic cationic flocculants. There exist critical reagent concentrations for the organic cationic and the nonionic flocculants, wherein a higher or lower concentration of flocculant would cause a decrease in the treatment efficiency. Flotation is an effective approach for oil-water separation of polymer-contained wastewater from the three oilfields. The oil-water separation efficiency can be enhanced by increasing floatation agent concentration, flotation time and gas amount, and by decreasing bubble size.


Assuntos
Óleos/isolamento & purificação , Petróleo , Polímeros/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Centrifugação , China , Floculação , Temperatura Alta , Poluição por Petróleo/prevenção & controle
15.
Polymers (Basel) ; 16(14)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39065321

RESUMO

Polymer flooding is an effective development technology to enhance oil recovery, and it has been widely used all over the world. However, after long-term polymer flooding, a large number of oilfields have experienced a sharp decline in reservoir development efficiency. High water cut wells, serious dispersion of residual oil distribution and complex reservoir conditions all bring great challenges to enhance oil recovery. In this study, the method of enhancing oil recovery after polymer flooding was studied by taking the S Oilfield as an example. A surfactant-polymer system suitable for high-permeability heterogeneous oilfields was developed, comprising biogenic surfactants and polymers. Microscopic displacement experiments were conducted using cast thin sections from the S Oilfield, and nuclear magnetic resonance was employed for core displacement experiments. Numerical simulation experiments were also conducted on the S Oilfield. The results show that the enhanced oil recovery mechanism of the surfactant-polymer system is to adjust the flow direction, expand the swept volume, emulsify crude oil and reduce interfacial tension. Surfactant-polymer flooding proves to be effective in improving recovery efficiency, significantly reducing the time of flooding and further enhancing the strong swept area. The nuclear magnetic resonance results indicate a high amplitude of passive utilization of residual oil during the surfactant-polymer flooding stage, highlighting the enormous potential for an increased recovery ratio. Surfactant-polymer flooding emerges as a more suitable technique to enhance oil recovery in the post polymer-flooding stage in high-permeability heterogeneous oilfields.

16.
Polymers (Basel) ; 16(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39000757

RESUMO

After polymer flooding, the heterogeneity between different layers intensifies, forming intricate seepage channels and fluid diversions, which results in decreased circulation efficiency and lower recovery rates, leaving a significant amount of residual oil trapped within the reservoir. Understanding the characteristics of residual oil occurrence is crucial for enhancing oil recovery post-polymer flooding. This study focused on sandstone reservoirs with varying permeability in the Saertu block of the Daqing oilfield. Using cryosectioning and laser scanning confocal microscopy, the occurrence characteristics of the residual oil in these sandstone reservoirs post-polymer flooding were investigated. Additionally, micro-CT and scanning electron microscopy were employed to analyze the impact of the pore structure on the distribution characteristics of the residual oil. The results indicate that laser scanning confocal images reveal that post-polymer flooding, the residual oil in high- and low-permeability sandstone reservoirs predominantly exists in a bound state (average > 47%), mostly as particle-adsorbed oil. In contrast, the residual oil in medium-permeability reservoirs is primarily in a free state (average > 49%), mostly as intergranular-adsorbed oil. In high-permeability sandstone reservoirs, heavy oil components are mainly in a particle-adsorbed form; in medium-permeability sandstone reservoirs, residual oil predominantly consists of heavy components, with most light components occurring in a clustered form; in low-permeability sandstone reservoirs, clustered residual oil exists in a balanced coexistence of light and heavy components, while the heavy components primarily exist in a particle-adsorbed form. Post-polymer flooding, the large pore-throat structure in high-permeability sandstone reservoirs results in effective displacement and less free residual oil; medium-permeability sandstone reservoirs, with medium-large pores and throats, have preferential channels and fine particles blocking the throats, leading to some unswept pores and more free residual oil; low-permeability sandstone reservoirs, with small pores and throats, exhibit weak displacement forces and poor mobility, resulting in more bound residual oil. The distribution and content of clay particles and clay minerals, along with the complex microscopic pore structure, are the main factors causing the differences in the residual oil occurrence states in sandstones with varying permeability.

17.
Polymers (Basel) ; 15(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37112116

RESUMO

Polymer flooding is one of the most widely used and effective enhanced oil recovery techniques. It can improve the macroscopic sweep efficiency of a reservoir by controlling the fractional flow of water. The applicability of polymer flooding for one of the sandstone fields in Kazakhstan was evaluated in this study and polymer screening was carried out to choose the most appropriate polymer among four hydrolyzed polyacrylamide polymer samples. Polymer samples were prepared in Caspian seawater (CSW) and assessed based on rheology, thermal stability, sensitivity to non-ionic materials and oxygen, and static adsorption. All the tests were performed at a reservoir temperature of 63 °C. Based on the results of the screening study, tolerance of a polymer towards high-temperature reservoir conditions, resistance to bacterial activity and dissolved oxygen present in make-up brine, chemical degradation, and reduced adsorption on rock surface were considered the most important screening parameters. As a result of this screening study, one out of four polymers was selected for the target field as it showed a negligible effect of bacterial activity on thermal stability. The results of static adsorption also showed 13-14% lower adsorption of the selected polymer compared to other polymers tested in the study. The results of this study demonstrate important screening criteria to be followed during polymer selection for an oilfield as the polymer should be selected based on not only polymer characteristics but also the polymer interactions with the ionic and non-ionic components of the make-up brine.

18.
Water Res ; 233: 119749, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36804336

RESUMO

Polymer-flooding produced water is more difficult to treat for reinjection compared with normal produced water because of the presence of residual hydrolyzed polyacrylamide (HPAM). A novel cathode membrane integrated electro-hybrid ozonation-coagulation (CM-E-HOC) process was proposed for the treatment of polymer-flooding produced water. This process achieved in situ self-cleaning by generated microbubbles in the cathode membrane. The CM-E-HOC process achieved a higher suspended solid (SS), turbidity and PAM removal efficiency than the CM-EC process. The SS in the CM-E-HOC effluent was ≤ 20 mg/L SS, which met the reinjection requirements of Longdong, Changqing Oilfield, China (Q/SYCQ 08,011-2019) at different current densities (3, 5 and 10 mA/cm2). The CM-E-HOC process greatly mitigated both reversible and irreversible membrane fouling. Therefore, excellent flux recovery was obtained at different in situ self-cleaning intervals during the CM-E-HOC process. Furthermore, alternating filtration achieved continuous water production during the CM-E-HOC process. On one hand, the effective removal of aromatic protein-like substances and an increase in oxygen-containing functional groups were achieved due to the enhanced oxidation ability of the CM-E-HOC process, which decreased membrane fouling. On the other hand, the CM-E-HOC process showed improved coagulation performance because of the increased oxygen-containing functional groups and polymeric Fe species. Therefore, larger flocs with higher fractal dimensions were generated, and a looser and more porous cake layer was formed on the membrane surface during the CM-E-HOC process. Consequently, the CM-E-HOC process exhibited better in situ self-cleaning performance and lower filtration resistance than the CM-EC process.


Assuntos
Ozônio , Purificação da Água , Polímeros , Membranas Artificiais , Filtração/métodos , Purificação da Água/métodos , Oxigênio
19.
Micromachines (Basel) ; 14(6)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37374722

RESUMO

A series of experiments have been carried out on the flooding of microfluidic chips simulating a homogeneous porous structure with various displacement fluids. Water and polyacrylamide polymer solutions were used as displacement fluids. Three different polyacrylamides with different properties are considered. The results of a microfluidic study of polymer flooding showed that the displacement efficiency increases significantly with increasing polymer concentration. Thus, when using a 0.1% polymer solution of polyacrylamide grade 2540, a 23% increase in the oil displacement efficiency was obtained compared to water. The study of the effect of various polymers on the efficiency of oil displacement showed that the maximum efficiency of oil displacement, other things being equal, can be achieved using polyacrylamide grade 2540, which has the highest charge density among those considered. Thus, when using polymer 2515 with a charge density of 10%, the oil displacement efficiency increased by 12.5% compared to water, while when using polymer 2540 with a charge density of 30%, the oil displacement efficiency increased by 23.6%.

20.
Polymers (Basel) ; 15(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37896432

RESUMO

There have been some studies conducted about the single factor viscoelasticity of polymer solution or wettability effect on the micro-flow mechanism of polymer flooding. In this paper, the flow mechanism of polymer solution in dual heterogeneous reservoir considering the wettability and gravity was studied. The influences of wettability and rock particle shape on flow characteristics were studied based on the characteristics of saturation and pressure distribution. Compared with the simulation results of polymer flooding in three different rock particle shapes porous media, the oil displacement efficiency of the circular particle model is the highest at 91.57%, which is 3.34% and 11.48% higher than that in the hexagonal and diamond models, respectively. The influence of wettability was studied by the circular particle model. The oil displacement efficiency under water-wet conditions was higher than that under oil-wet conditions. The displacement process considering gravity was affected by the crossflow caused by gravity and viscous force, and the micro-oil displacement efficiency was 9.87% lower than that of non-gravity. Considering the wettability, vertical crossflow will be formed. The oil displacement efficiency under water-wet conditions was 3.9% higher than in oil-wet conditions. The research results can not only expand and enrich the micro-flow mechanism of viscoelastic polymer solution, but also provide reference and guidance for polymer flooding scheme design.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA