Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Macromol Rapid Commun ; : e2400293, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38885644

RESUMO

Tissue repair and regeneration, such as bone and nerve restoration, face significant challenges due to strict regulations within the immune microenvironment, stem cell differentiation, and key cell behaviors. The development of 3D scaffolds is identified as a promising approach to address these issues via the efficiently structural regulations on cell fates and behaviors. In particular, 3D-printed polymer scaffolds with diverse micro-/nanostructures offer a great potential for mimicking the structures of tissue. Consequently, they are foreseen as promissing pathways for regulating cell fates, including cell phenotype, differentiation of stem cells, as well as the migration and the proliferation of key cells, thereby facilitating tissue repairs and regenerations. Herein, the roles of structural functions of 3D-printed polymer scaffolds in regulating the fates and behaviors of numerous cells related to tissue repair and regeneration, along with their specific influences are highlighted. Additionally, the challenges and outlooks associated with 3D-printed polymer scaffolds with various structures for modulating cell fates are also discussed.

2.
Molecules ; 26(20)2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34684690

RESUMO

Scars, as the result of abnormal wound-healing response after skin injury, may lead to loss of aesthetics and physical dysfunction. Current clinical strategies, such as surgical excision, laser treatment, and drug application, provide late remedies for scarring, yet it is difficult to eliminate scars. In this review, the functions, roles of multiple polymer scaffolds in wound healing and scar inhibition are explored. Polysaccharide and protein scaffolds, an analog of extracellular matrix, act as templates for cell adhesion and migration, differentiation to facilitate wound reconstruction and limit scarring. Stem cell-seeded scaffolds and growth factors-loaded scaffolds offer significant bioactive substances to improve the wound healing process. Special emphasis is placed on scaffolds that continuously release oxygen, which greatly accelerates the vascularization process and ensures graft survival, providing convincing theoretical support and great promise for scarless healing.


Assuntos
Cicatriz/tratamento farmacológico , Oxigênio/metabolismo , Polímeros/administração & dosagem , Pele/efeitos dos fármacos , Alicerces Teciduais/química , Cicatrização/efeitos dos fármacos , Animais , Proliferação de Células , Cicatriz/metabolismo , Cicatriz/patologia , Humanos , Polímeros/química , Pele/metabolismo , Pele/patologia , Cicatrização/fisiologia
3.
Small ; 16(32): e2000796, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32633072

RESUMO

Piezoelectric materials can produce electrical power from the mechanical stimulation and thus, they may accelerate electroactive tissue healing as a promising treatment for traumatic peripheral nerve injuries. In this study, a piezoelectric zinc oxide nanogenerator scaffold is manufactured by 3D injectable multilayer biofabrication. The piezoelectric polymeric scaffold displays desirable mechanical and physical characteristics, such as aligned porosity, high elasticity, scaffold stiffness, surface energy, and excellent shear behavior. In addition, its biocompatibility supplies Schwann cells with an adhesive, proliferative, and angiogenic interface, as is reflected by higher expression of functional proteins including nerve growth factor (NGF) and vascular endothelial growth factor (VEGF). In vivo mechanical stimuli by treadmill practice contribute to the comprehensive reparative therapy. The piezoelectric conduit accelerates nerve conducting velocity, promotes axonal remyelination, and restores motor function by recovering endplate muscles. Moreover, the piezoelectric nanogenerator scaffold creates biomimetic electrically conductive microenvironment without causing noticeable toxicity to functioning organs and improves peripheral nerve restoration by the multifunctional characteristics. Therefore, the mechano-informed biomimetic piezoelectric scaffold may have enormous potential in the neuroengineering for regenerative medicine.


Assuntos
Biomimética , Óxido de Zinco , Axônios , Polímeros , Alicerces Teciduais , Fator A de Crescimento do Endotélio Vascular
4.
J Funct Biomater ; 15(3)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38535250

RESUMO

Bone tissue is one of the most transplanted tissues. The ageing population and bone diseases are the main causes of the growing need for novel treatments offered by bone tissue engineering. Three-dimensional (3D) scaffolds, as artificial structures that fulfil certain characteristics, can be used as a temporary matrix for bone regeneration. In this study, we aimed to fabricate 3D porous polymer scaffolds functionalized with tricalcium phosphate (TCP) particles for applications in bone tissue regeneration. Different combinations of poly(lactic acid) (PLA), poly(ethylene glycol) (PEG with molecular weight of 600 or 2000 Da) and poly(ε-caprolactone) (PCL) with TCP were blended by a gel-casting method combined with rapid heating. Porous composite scaffolds with pore sizes from 100 to 1500 µm were obtained. ATR-FTIR, DSC, and wettability tests were performed to study scaffold composition, thermal properties, and hydrophilicity, respectively. The samples were observed with the use of optical and scanning electron microscopes. The addition of PCL to PLA increased the hydrophobicity of the composite scaffolds and reduced their susceptibility to degradation, whereas the addition of PEG increased the hydrophilicity and degradation rates but concomitantly resulted in enhanced creation of rounded mineral deposits. The scaffolds were not cytotoxic according to an indirect test in L929 fibroblasts, and they supported adhesion and growth of MG-63 cells when cultured in direct contact.

5.
J Funct Biomater ; 14(8)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37623657

RESUMO

One of the blends that is usable for 3D printing while not being toxic to cell cultures is the lactic acid (PLA)/polyhydroxybutyrate (PHB)/thermoplastic starch (TPS) blend. The addition of plasticizers can change the rate of biodegradation and the biological behavior of the material. In order to evaluate the potential of the PLA/PHB/TPS material in combination with additives (plasticizers: acetyl tributyl citrate (ATBC) and oligomeric lactic acid (OLA)), for use in the field of biomedical tissue engineering, we performed a comprehensive in vitro characterization of selected mixture materials. Three types of materials were tested: I: PLA/PHB/TPS + 25% OLA, II: PLA/PHB/TPS + 30% ATBC, and III: PLA/PHB/TPS + 30% OLA. The assessment of the biocompatibility of the materials included cytotoxicity tests, such as monitoring the viability, proliferation and morphology of cells and their deposition on the surface of the materials. The cell line 7F2 osteoblasts (Mus musculus) was used in the experiments. Based on the test results, the significant influence of plasticizers on the material was confirmed, with their specific proportions in the mixtures. PLA/PHB/TPS + 25% OLA was evaluated as the optimal material for biocompatibility with 7F2 osteoblasts. The tested biomaterials have the potential for further investigation with a possible change in the proportion of plasticizers, which can have a fundamental impact on their biological properties.

6.
J Colloid Interface Sci ; 650(Pt A): 330-338, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37413867

RESUMO

All inorganic CsPbX3 perovskite has aroused broad interests in building efficient light-emitting devices with wide color gamut and flexible fabrication process. So far, the realization of high-performance blue perovskite light-emitting devices (PeLEDs) is still a critical challenge. Herein, we propose an interfacial induction strategy to generate low-dimensional CsPbBr3 with sky blue emission by employing γ-aminobutyric acid (GABA) modified poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The interaction between GABA and Pb2+ inhibited the formation of bulk CsPbBr3 phase. Further assisted by the polymer networks, the sky-blue CsPbBr3 film exhibited much improved stability under both photoluminescence and electrical excitation. This can be ascribed to the scaffold effect and the passivation function of the polymer. Consequently, the obtained sky-blue PeLEDs exhibited an average external quantum efficiency (EQE) of 5.67% (maximum of 7.21%) with a maximum brightness of 3308 cd/m2 and a working lifespan reaching 0.41 h. The strategy in this work provides a new opportunity for exploitation the full potential of blue PeLEDs towards application in lighting and display devices.

7.
Adv Electron Mater ; 9(10)2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38045756

RESUMO

Effective stroke recovery therapeutics remain limited. Stem cell therapies have yielded promising results, but the harsh ischemic environment of the post-stroke brain reduces their therapeutic potential. Previously, we developed a conductive polymer scaffold system that enabled stem cell delivery with simultaneous electrical modulation of the cells and surrounding neural environment. This wired polymer scaffold proved efficacious in optimizing ideal conditions for stem cell mediated motor improvements in a rodent model of stroke. To further enable preclinical studies and enhance translational potential, we identified a method to improve this system by eliminating its dependence upon a tethered power source. We have herein developed a wirelessly powered, electrically conductive polymer system that eases therapeutic application and enables full mobility. As a proof of concept, we demonstrate that the wirelessly powered scaffold is able to stimulate neural stem cells in vitro, as well as in vivo in a rodent model of stroke. This system modulates the stroke microenvironment and increases the production of endogenous stem cells. In summation, this novel, wirelessly powered conductive scaffold can serve as a mobile platform for a wide variety of therapeutics involving electrical stimulation.

8.
Biomechanics (Basel) ; 3(3): 322-342, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37664542

RESUMO

Spinal cord injury (SCI) is a profoundly debilitating yet common central nervous system condition resulting in significant morbidity and mortality rates. Major causes of SCI encompass traumatic incidences such as motor vehicle accidents, falls, and sports injuries. Present treatment strategies for SCI aim to improve and enhance neurologic functionality. The ability for neural stem cells (NSCs) to differentiate into diverse neural and glial cell precursors has stimulated the investigation of stem cell scaffolds as potential therapeutics for SCI. Various scaffolding modalities including composite materials, natural polymers, synthetic polymers, and hydrogels have been explored. However, most trials remain largely in the preclinical stage, emphasizing the need to further develop and refine these treatment strategies before clinical implementation. In this review, we delve into the physiological processes that underpin NSC differentiation, including substrates and signaling pathways required for axonal regrowth post-injury, and provide an overview of current and emerging stem cell scaffolding platforms for SCI.

9.
Bioact Mater ; 13: 1-8, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35224287

RESUMO

The scaffold pore size influences many critical physical aspects of tissue engineering, including tissue infiltration, biodegradation rate, and mechanical properties. Manual measurements of pore sizes from scanning electron micrographs using ImageJ/FIJI are commonly used to characterize scaffolds, but these methods are both time-consuming and subject to user bias. Current semi-automated analysis tools are limited by a lack of accessibility or limited sample size in their verification process. The work here describes the development of a new MATLAB algorithm, PoreScript, to address these limitations. The algorithm was verified using three common scaffold fabrication methods (e.g., salt leaching, gas foaming, emulsion templating) with varying pore sizes and shapes to demonstrate the versatility of this new tool. Our results demonstrate that the pore size characterization using PoreScript is comparable to manual pore size measurements. The PoreScript algorithm was further evaluated to determine the effect of user-input and image parameters (relative image magnification, pixel intensity threshold, and pore structure). Overall, this work validates the accuracy of the PoreScript algorithm across several fabrication methods and provides user-guidance for semi-automated image analysis and increased throughput of scaffold characterization.

10.
Biosensors (Basel) ; 12(5)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35624602

RESUMO

The evolution of biosensors and diagnostic devices has been thriving in its ability to provide reliable tools with simplified operation steps. These evolutions have paved the way for further advances in sensing materials, strategies, and device structures. Polymeric composite materials can be formed into nanostructures and networks of different types, including hydrogels, vesicles, dendrimers, molecularly imprinted polymers (MIP), etc. Due to their biocompatibility, flexibility, and low prices, they are promising tools for future lab-on-chip devices as both manufacturing materials and immobilization surfaces. Polymers can also allow the construction of scaffold materials and 3D structures that further elevate the sensing capabilities of traditional 2D biosensors. This review discusses the latest developments in nano-scaled materials and synthesis techniques for polymer structures and their integration into sensing applications by highlighting their various structural advantages in producing highly sensitive tools that rival bench-top instruments. The developments in material design open a new door for decentralized medicine and public protection that allows effective onsite and point-of-care diagnostics.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Técnicas Biossensoriais/métodos , Nanoestruturas/química , Polímeros/química
11.
Polymers (Basel) ; 14(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36433144

RESUMO

Although the architectural design parameters of 3D-printed polymer-based scaffolds-porosity, height-to-diameter (H/D) ratio and pore size-are significant determinants of their mechanical integrity, their impact has not been explicitly discussed when reporting bulk mechanical properties. Controlled architectures were designed by systematically varying porosity (30-75%, H/D ratio (0.5-2.0) and pore size (0.25-1.0 mm) and fabricated using fused filament fabrication technique. The influence of the three parameters on compressive mechanical properties-apparent elastic modulus Eapp, bulk yield stress σy and yield strain εy-were investigated through a multiple linear regression analysis. H/D ratio and porosity exhibited strong influence on the mechanical behavior, resulting in variations in mean Eapp of 60% and 95%, respectively. σy was comparatively less sensitive to H/D ratio over the range investigated in this study, with 15% variation in mean values. In contrast, porosity resulted in almost 100% variation in mean σy values. Pore size was not a significant factor for mechanical behavior, although it is a critical factor in the biological behavior of the scaffolds. Quantifying the influence of porosity, H/D ratio and pore size on bench-top tested bulk mechanical properties can help optimize the development of bone scaffolds from a biomechanical perspective.

12.
Polymers (Basel) ; 14(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36433049

RESUMO

In this study, polymer scaffolds were fabricated from biodegradable poly(lactide-co-glycolide) (PLGA) and from non-biodegradable vinylidene fluoride-tetrafluoroethylene (VDF-TeFE) by electrospinning. These polymer scaffolds were subsequently surface-modified by sputtering titanium targets in an argon atmosphere. Direct current pulsed magnetron sputtering was applied to prevent a significant influence of discharge plasma on the morphology and mechanical properties of the nonwoven polymer scaffolds. The scaffolds with initially hydrophobic properties show higher hydrophilicity and absorbing properties after surface modification with titanium. The surface modification by titanium significantly increases the cell adhesion of both the biodegradable and the non-biodegradable scaffolds. Immunocytochemistry investigations of human gingival fibroblast cells on the surface-modified scaffolds indicate that a PLGA scaffold exhibits higher cell adhesion than a VDF-TeFE scaffold.

13.
Polymers (Basel) ; 14(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35012119

RESUMO

Currently, the significantly developing fields of tissue engineering related to the fabrication of polymer-based materials that possess microenvironments suitable to provide cell attachment and promote cell differentiation and proliferation involve various materials and approaches. Biomimicking approach in tissue engineering is aimed at the development of a highly biocompatible and bioactive material that would most accurately imitate the structural features of the native extracellular matrix consisting of specially arranged fibrous constructions. For this reason, the present research is devoted to the discussion of promising fibrous materials for bone tissue regeneration obtained by electrospinning techniques. In this brief review, we focus on the recently presented natural and synthetic polymers, as well as their combinations with each other and with bioactive inorganic incorporations in order to form composite electrospun scaffolds. The application of several electrospinning techniques in relation to a number of polymers is touched upon. Additionally, the efficiency of nanofibrous composite materials intended for use in bone tissue engineering is discussed based on biological activity and physiochemical characteristics.

14.
Polymers (Basel) ; 12(1)2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31936229

RESUMO

Burns affect almost half a million of Americans annually. In the case of full-thickness skin injuries, treatment requires a transplant. The development of bioactive materials that promote damaged tissue regeneration constitutes a great alternative to autografts. For this reason, special attention is focused on three-dimensional scaffolds that are non-toxic to skin cells and can mimic the extracellular matrix, which is mainly composed of nanofibrous proteins. Electrospinning, which enables the preparation of nanofibers, is a powerful tool in the field of biomaterials. In this work, novel hybrid poly (lactic acid)/chitosan biomaterials functionalized with three types of nanoparticles (NPs) were successfully developed. ZnO, Fe3O4, and Au NPs were investigated over their morphology by TEM method. The top layer was obtained from PLA nanofibers, while the bottom layer was prepared from acylated chitosan. The layers were studied over their morphology by the SEM method and their chemical structure by FT-IR. To verify their potential in burn wound treatment, the scaffolds' susceptibility to biodegradation as well as moisture permeability were calculated. Also, biomaterials conductivity was determined in terms of electrostimulation. Finally, cytotoxicity tests were carried out by XTT assay and morphology analysis using both fibroblasts cell line and primary cells. The hybrid nanofibrous scaffolds displayed a great potential in tissue engineering.

15.
Materials (Basel) ; 13(13)2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32610464

RESUMO

Biodegradable polymer scaffolds filled with bioactive glass particles doped with therapeutic metal ions are a novel and promising strategy to repair critical-sized bone defects. In this study, scaffolds based on a poly (D, L-lactide acid) (PDLLA) matrix filled with un-doped and Cu-, Zn- and CuZn-doped bioactive glass particles were produced by freeze-drying and a salt-leaching method. The effects of the doping and content of the glass particles (10 and 30 wt.%) on the morphology, compression properties, apatite formation, and degradation behavior of the scaffolds were evaluated. The scaffolds presented high porosity (~93%) with pores ranged from 100 to 400 µm interconnected by smaller pores and this porosity was kept after the glass particles incorporation. The glass particles reinforced the polymer scaffolds with improvements as high as 130% in elastic moduli, and further promoted the apatite formation on the scaffold surface, both properties depending on the amount and type of filler. The bioactive glass particles boosted the scaffold degradation with the PDLLA/un-doped glass scaffold showing the highest rate, but still retaining structural and dimensional integrity. Our findings show that the incorporation of un-doped and metal-doped bioactive glasses increases the mechanical strength, promotes the bioactivity and modifies the degradation profile of the resulting polymer/glass scaffolds, making them better candidates for bone repair.

16.
ACS Appl Mater Interfaces ; 12(5): 5578-5592, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31886639

RESUMO

Growth factor incorporation in biomedical constructs for their local delivery enables specific pharmacological effects such as the induction of cell growth and differentiation. This has enabled a promising way to improve the tissue regeneration process. However, it remains challenging to identify an appropriate approach that provides effective growth factor loading into biomedical constructs with their following release kinetics in a prolonged manner. In the present work, we performed a systematic study, which explores the optimal strategy of growth factor incorporation into sub-micrometric-sized CaCO3 core-shell particles (CSPs) and hollow silica particles (SiPs). These carriers were immobilized onto the surface of the polymer scaffolds based on polyhydroxybutyrate (PHB) with and without reduced graphene oxide (rGO) in its structure to examine the functionality of incorporated growth factors. Bone morphogenetic protein-2 (BMP-2) and ErythroPOietin (EPO) as growth factor models were included into CSPs and SiPs using different entrapping strategies, namely, physical adsorption, coprecipitation technique, and freezing-induced loading method. It was shown that the loading efficiency, release characteristics, and bioactivity of incorporated growth factors strongly depend on the chosen strategy of their incorporation into delivery systems. Overall, we demonstrated that the combination of scaffolds with drug delivery systems containing growth factors has great potential in the field of tissue regeneration compared with individual scaffolds.


Assuntos
Proteína Morfogenética Óssea 2/química , Portadores de Fármacos/química , Eritropoetina/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 2/farmacologia , Carbonato de Cálcio/química , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Eritropoetina/metabolismo , Eritropoetina/farmacologia , Grafite/química , Humanos , Hidroxibutiratos/química , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Poliésteres/química , Proibitinas , Dióxido de Silício/química
17.
Biotechnol Prog ; 35(2): e2751, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30457221

RESUMO

Polymer-based scaffolds are used extensively in the field of regenerative medicine. These biomaterials may induce therapeutic responses through modulating a wound microenvironment with or without the addition of cells. It has long been known that oxygen is a crucial component of the microenvironment that influences cellular and physiological processes such as metabolism, proliferation, differentiation, matrix deposition, phagocytic killing, and wound healing. Consequently, several studies have investigated the potential for using oxygen-eluting biomaterials to regulate the oxygen tension within a wound microenvironment and to tune the regenerative response. We recently demonstrated that hyperbarically loaded polymers could be used as oxygen delivery devices for biomedical uses. To further develop this strategy, it is important to quantitatively characterize the spatiotemporal oxygen diffusion profile from scaffolds. Here, we use analytical and numerical solutions to describe the profiles of oxygen diffusion from hyperbarically loaded polymers as a function of different scaffold geometries, material compositions, and ambient temperatures. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018 © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2751, 2019.


Assuntos
Materiais Biocompatíveis/química , Modelos Químicos , Oxigênio/química , Polímeros/química , Temperatura
18.
J Cardiovasc Transl Res ; 12(3): 193-203, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30367355

RESUMO

Bioresorbable scaffolds have emerged as a potential alternative to non-erodible metal implants to alleviate the long-term risk of permanent device vascular implant-related adverse events. Bioresorbable scaffolds provide a temporary mechanical support function until the vessel reaches complete healing, and the implant progressively disappears and vasomotion resumes. A polymer matrix with embedded drugs coated onto the scaffold surface degrades slowly, reducing the size from the exterior toward the interior, and this allows controlled drug release to a local vascular segment. Drug elution from a bioresorbable scaffold system is characterized by a rapid initial release that achieves high concentration along the intimal surface, which is designed to prevail vascular dilation-induced injury and formation of neointimal hyperplasia. This review highlights diverse types of bioresorbable biomaterials as vascular scaffolds, drug release kinetics, adaptive arterial wall remodeling, and complexities in the advancement of vascular scaffolds to treat restenosis.


Assuntos
Implantes Absorvíveis , Fármacos Cardiovasculares/administração & dosagem , Materiais Revestidos Biocompatíveis , Procedimentos Endovasculares/instrumentação , Doenças Vasculares/terapia , Animais , Fármacos Cardiovasculares/efeitos adversos , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Procedimentos Endovasculares/efeitos adversos , Humanos , Hiperplasia , Cinética , Neointima , Desenho de Prótese , Recidiva , Fatores de Risco , Resultado do Tratamento , Doenças Vasculares/etiologia , Doenças Vasculares/patologia , Remodelação Vascular
19.
Macromol Biosci ; 19(2): e1800351, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30548765

RESUMO

A novel strategy for the surface functionalization of emulsion-templated highly porous (polyHIPE) materials as well as its application to in vitro 3D cell culture is presented. A heterobifunctional linker that consists of an amine-reactive N-hydroxysuccinimide ester and a photoactivatable nitrophenyl azide, N-sulfosuccinimidyl-6-(4'-azido-2'-nitrophenylamino)hexanoate (sulfo-SANPAH), is utilized to functionalize polyHIPE surfaces. The ability to conjugate a range of compounds (6-aminofluorescein, heptafluorobutylamine, poly(ethylene glycol) bis-amine, and fibronectin) to the polyHIPE surface is demonstrated using fluorescence imaging, FTIR spectroscopy, and X-ray photoelectron spectroscopy. Compared to other existing surface functionalization methods for polyHIPE materials, this approach is facile, efficient, versatile, and benign. It can also be used to attach biomolecules to polyHIPE surfaces including cell adhesion-promoting extracellular matrix proteins. Cell culture experiments demonstrated that the fibronectin-conjugated polyHIPE scaffolds improve the adhesion and function of primary human endometrial stromal cells. It is believed that this approach can be employed to produce the next generation of polyHIPE scaffolds with tailored surface functionality, enhancing their application in 3D cell culture and tissue engineering whilst broadening the scope of applications to a wider range of cell types.


Assuntos
Adesão Celular/fisiologia , Endométrio/citologia , Polímeros/metabolismo , Estirenos/metabolismo , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Materiais Biocompatíveis/metabolismo , Técnicas de Cultura de Células , Movimento Celular/fisiologia , Células Cultivadas , Emulsões , Feminino , Fibronectinas/metabolismo , Humanos , Células Estromais
20.
Macromol Biosci ; 18(2)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29205840

RESUMO

A combination of hard sphere and high internal phase emulsion templating gives a platform for synthesizing hierarchically porous polymers with a unique topology exhibiting interconnected spherical features on multiple levels. Polymeric spheres are fused by thermal sintering to create a 3D monolithic structure while an emulsion with a high proportion of internal phase and monomers in the continuous phase is added to the voids of the previously constructed monolith. Following polymerization of the emulsion and dissolution of the templating structure, a down-replicating topology is created with a primary level of pores as a result of fused spheres of the 3D monolithic structure, a secondary level of pores resulting from the emulsion's internal phase, and a tertiary level of interconnecting channels. Thiol-ene chemistry with divinyladipate and pentaerythritol tetrakis(3-mercaptopropionate) is used to demonstrate the preparation of a crosslinked polyester with overall porosity close to 90%. Due to multilevel porosity, such materials are interesting for applications in bone tissue engineering, possibly simulating the native sponge like bone structure. Their potential to promote ossteointegration is tested using human bone derived osteoblasts. Material-cell interactions are evaluated and they reveal growth and proliferation of osteoblasts both on surface and in the bulk of the scaffold.


Assuntos
Osso e Ossos/fisiologia , Emulsões/química , Osteoblastos/citologia , Polimetil Metacrilato/química , Engenharia Tecidual/métodos , Módulo de Elasticidade , Dureza , Humanos , Porosidade , Temperatura , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA