RESUMO
Integrator is a metazoan-specific protein complex capable of inducing termination at all RNAPII-transcribed loci. Integrator recognizes paused, promoter-proximal RNAPII and drives premature termination using dual enzymatic activities: an endonuclease that cleaves nascent RNA and a protein phosphatase that removes stimulatory phosphorylation associated with RNAPII pause release and productive elongation. Recent breakthroughs in structural biology have revealed the overall architecture of Integrator and provided insights into how multiple Integrator modules are coordinated to elicit termination effectively. Furthermore, functional genomics and biochemical studies have unraveled how Integrator-mediated termination impacts protein-coding and noncoding loci. Here, we review the current knowledge about the assembly and activity of Integrator and describe the role of Integrator in gene regulation, highlighting the importance of this complex for human health.
Assuntos
Regulação da Expressão Gênica , RNA Polimerase II , Animais , Humanos , Fosfoproteínas Fosfatases/genética , Fosforilação , RNA Polimerase II/metabolismo , Transcrição Gênica , Proteínas/genética , Proteínas/metabolismoRESUMO
Bacterial ribosomal RNAs are synthesized by a dedicated, conserved transcription-elongation complex that transcribes at high rates, shields RNA polymerase from premature termination, and supports co-transcriptional RNA folding, modification, processing, and ribosomal subunit assembly by presently unknown mechanisms. We have determined cryo-electron microscopy structures of complete Escherichia coli ribosomal RNA transcription elongation complexes, comprising RNA polymerase; DNA; RNA bearing an N-utilization-site-like anti-termination element; Nus factors A, B, E, and G; inositol mono-phosphatase SuhB; and ribosomal protein S4. Our structures and structure-informed functional analyses show that fast transcription and anti-termination involve suppression of NusA-stabilized pausing, enhancement of NusG-mediated anti-backtracking, sequestration of the NusG C-terminal domain from termination factor ρ, and the ρ blockade. Strikingly, the factors form a composite RNA chaperone around the RNA polymerase RNA-exit tunnel, which supports co-transcriptional RNA folding and annealing of distal RNA regions. Our work reveals a polymerase/chaperone machine required for biosynthesis of functional ribosomes.
Assuntos
RNA Polimerases Dirigidas por DNA/genética , Chaperonas Moleculares/genética , Proteínas Ribossômicas/genética , Ribossomos/genética , Sítios de Ligação/genética , Microscopia Crioeletrônica , Escherichia coli/genética , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/ultraestrutura , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/ultraestrutura , Biossíntese de Proteínas/genética , Dobramento de RNA/genética , RNA Ribossômico/genética , RNA Ribossômico/ultraestrutura , Proteínas Ribossômicas/ultraestrutura , Ribossomos/ultraestrutura , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/ultraestruturaRESUMO
In addition to phosphodiester bond formation, RNA polymerase II has an RNA endonuclease activity, stimulated by TFIIS, which rescues complexes that have arrested and backtracked. How TFIIS affects transcription under normal conditions is poorly understood. We identified backtracking sites in human cells using a dominant-negative TFIIS (TFIISDN) that inhibits RNA cleavage and stabilizes backtracked complexes. Backtracking is most frequent within 2 kb of start sites, consistent with slow elongation early in transcription, and in 3' flanking regions where termination is enhanced by TFIISDN, suggesting that backtracked pol II is a favorable substrate for termination. Rescue from backtracking by RNA cleavage also promotes escape from 5' pause sites, prevents premature termination of long transcripts, and enhances activation of stress-inducible genes. TFIISDN slowed elongation rates genome-wide by half, suggesting that rescue of backtracked pol II by TFIIS is a major stimulus of elongation under normal conditions.
Assuntos
Clivagem do RNA , RNA Polimerase II/metabolismo , RNA/metabolismo , Elongação da Transcrição Genética , Terminação da Transcrição Genética , Ativação Transcricional , Região 3'-Flanqueadora , Animais , Regulação da Expressão Gênica , Células HEK293 , Humanos , Cinética , Camundongos , Mutação , RNA/genética , RNA Polimerase II/genética , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismoRESUMO
The transition of RNA polymerase II (Pol II) from initiation to productive elongation is a central, regulated step in metazoan gene expression. At many genes, Pol II pauses stably in early elongation, remaining engaged with the 25- to 60-nt-long nascent RNA for many minutes while awaiting signals for release into the gene body. However, 15%-20% of genes display highly unstable promoter Pol II, suggesting that paused polymerase might dissociate from template DNA at these promoters and release a short, non-productive mRNA. Here, we report that paused Pol II can be actively destabilized by the Integrator complex. Specifically, we present evidence that Integrator utilizes its RNA endonuclease activity to cleave nascent RNA and drive termination of paused Pol II. These findings uncover a previously unappreciated mechanism of metazoan gene repression, akin to bacterial transcription attenuation, wherein promoter-proximal Pol II is prevented from entering productive elongation through factor-regulated termination.
Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , RNA Mensageiro/biossíntese , Elongação da Transcrição Genética , Animais , Linhagem Celular , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , RNA Polimerase II/genética , RNA Mensageiro/genéticaRESUMO
Rapid perturbation of protein function permits the ability to define primary molecular responses while avoiding downstream cumulative effects of protein dysregulation. The auxin-inducible degron (AID) system was developed as a tool to achieve rapid and inducible protein degradation in nonplant systems. However, tagging proteins at their endogenous loci results in chronic auxin-independent degradation by the proteasome. To correct this deficiency, we expressed the auxin response transcription factor (ARF) in an improved inducible degron system. ARF is absent from previously engineered AID systems but is a critical component of native auxin signaling. In plants, ARF directly interacts with AID in the absence of auxin, and we found that expression of the ARF PB1 (Phox and Bem1) domain suppresses constitutive degradation of AID-tagged proteins. Moreover, the rate of auxin-induced AID degradation is substantially faster in the ARF-AID system. To test the ARF-AID system in a quantitative and sensitive manner, we measured genome-wide changes in nascent transcription after rapidly depleting the ZNF143 transcription factor. Transcriptional profiling indicates that ZNF143 activates transcription in cis and regulates promoter-proximal paused RNA polymerase density. Rapidly inducible degradation systems that preserve the target protein's native expression levels and patterns will revolutionize the study of biological systems by enabling specific and temporally defined protein dysregulation.
Assuntos
Técnicas Genéticas , Proteínas/metabolismo , Proteólise , Linhagem Celular , Inibidores de Cisteína Proteinase/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Ácidos Indolacéticos/farmacologia , Leupeptinas/farmacologia , Células MCF-7 , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise/efeitos dos fármacos , Transativadores/genética , Transativadores/metabolismoRESUMO
Transcription elongation by multi-subunit RNA polymerases (RNAPs) is regulated by auxiliary factors in all organisms. NusG/Spt5 is the only universally conserved transcription elongation factor shared by all domains of life. NusG is a component of antitermination complexes controlling ribosomal RNA operons, an essential antipausing factor, and a transcription-translation coupling factor in Escherichia coli. We employed RNET-seq for genome-wide mapping of RNAP pause sites in wild-type and NusG-depleted cells. We demonstrate that NusG is a major antipausing factor that suppresses thousands of backtracked and nonbacktracked pauses across the E. coli genome. The NusG-suppressed pauses were enriched immediately downstream from the translation start codon but were also abundant elsewhere in open reading frames, small RNA genes, and antisense transcription units. This finding revealed a strong similarity of NusG to Spt5, which stimulates the elongation rate of many eukaryotic genes. We propose a model in which promoting forward translocation and/or stabilization of RNAP in the posttranslocation register by NusG results in suppression of pausing in E. coli.
Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Transcrição Gênica , Proteínas de Escherichia coli/genética , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo , Fatores de Transcrição/genética , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismoRESUMO
In Schizosaccharomyces pombe, transcripts derived from the pericentromeric dg and dh repeats promote heterochromatin formation via RNAi as well as an RNAi-independent mechanism involving the RNA polymerase II (RNAPII)-associated RNA-binding protein Seb1 and RNA processing activities. We show that Seb1 promotes long-lived RNAPII pauses at pericentromeric repeat regions and that their presence correlates with the heterochromatin-triggering activities of the corresponding dg and dh DNA fragments. Globally increasing RNAPII stalling by other means induces the formation of novel large ectopic heterochromatin domains. Such ectopic heterochromatin occurs even in cells lacking RNAi. These results uncover Seb1-mediated polymerase stalling as a signal necessary for heterochromatin nucleation.
Assuntos
Montagem e Desmontagem da Cromatina/genética , Heterocromatina , Proteínas Nucleares/metabolismo , RNA Polimerase II/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces , Heterocromatina/genética , Heterocromatina/metabolismo , Repetições de Microssatélites/genética , Proteínas Nucleares/genética , Interferência de RNA , RNA Polimerase II/metabolismo , Proteínas de Ligação a RNA/genética , Schizosaccharomyces/enzimologia , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genéticaRESUMO
Transcription activation involves RNA polymerase II (Pol II) recruitment and release from the promoter into productive elongation, but how specific chromatin regulators control these steps is unclear. Here, we identify a novel activity of the histone acetyltransferase p300/CREB-binding protein (CBP) in regulating promoter-proximal paused Pol II. We find that Drosophila CBP inhibition results in "dribbling" of Pol II from the pause site to positions further downstream but impedes transcription through the +1 nucleosome genome-wide. Promoters strongly occupied by CBP and GAGA factor have high levels of paused Pol II, a unique chromatin signature, and are highly expressed regardless of cell type. Interestingly, CBP activity is rate limiting for Pol II recruitment to these highly paused promoters through an interaction with TFIIB but for transit into elongation by histone acetylation at other genes. Thus, CBP directly stimulates both Pol II recruitment and the ability to traverse the first nucleosome, thereby promoting transcription of most genes.
Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Nucleossomos/enzimologia , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo , Acetilação , Animais , Linhagem Celular , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Histonas/metabolismo , Nucleossomos/genética , Ligação Proteica , RNA Polimerase II/genética , Fator de Transcrição TFIIB/genética , Fator de Transcrição TFIIB/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Fatores de Transcrição de p300-CBP/genéticaRESUMO
Adult stem cells persist in mammalian tissues by entering a state of reversible quiescence, referred to as G0, which is associated with low levels of transcription. Using cultured myoblasts and muscle stem cells, we report that in G0, global RNA content and synthesis are substantially repressed, correlating with decreased RNA polymerase II (RNAPII) expression and activation. Integrating RNAPII occupancy and transcriptome profiling, we identify repressed networks and a role for promoter-proximal RNAPII pausing in G0. Strikingly, RNAPII shows enhanced pausing in G0 on repressed genes encoding regulators of RNA biogenesis (such as Ncl, Rps24, Ctdp1), and release of pausing is associated with increased expression of these genes in G1. Knockdown of these transcripts in proliferating cells leads to induction of G0 markers, confirming the importance of their repression in establishment of G0. A targeted screen of RNAPII regulators revealed that knockdown of Aff4 (a positive regulator of elongation) unexpectedly enhances expression of G0-stalled genes and hastens S phase; however, the negative elongation factor (NELF) complex, a regulator of pausing, appears to be dispensable. We propose that RNAPII pausing contributes to transcriptional control of a subset of G0-repressed genes to maintain quiescence and impacts the timing of the G0-G1 transition. This article has an associated First Person interview with the first authors of the paper.
Assuntos
Regulação da Expressão Gênica , RNA Polimerase II , Animais , Ciclo Celular/genética , Mamíferos/metabolismo , Regiões Promotoras Genéticas/genética , RNA , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Transcrição Gênica , Fatores de Elongação da Transcrição/genéticaRESUMO
Cotranscriptional RNA folding is widely assumed to influence the timely control of gene expression, but our understanding remains limited. In bacteria, the fluoride (F-)-sensing riboswitch is a transcriptional control element essential to defend against toxic F- levels. Using this model riboswitch, we find that its ligand F- and essential bacterial transcription factor NusA compete to bind the cotranscriptionally folding RNA, opposing each other's modulation of downstream pausing and termination by RNA polymerase. Single-molecule fluorescence assays probing active transcription elongation complexes discover that NusA unexpectedly binds highly reversibly, frequently interrogating the complex for emerging, cotranscriptionally folding RNA duplexes. NusA thus fine-tunes the transcription rate in dependence of the ligand-responsive higher-order structure of the riboswitch. At the high NusA concentrations found intracellularly, this dynamic modulation is expected to lead to adaptive bacterial transcription regulation with fast response times.
Assuntos
Proteínas de Escherichia coli/metabolismo , Ligantes , Riboswitch , Fatores de Transcrição/metabolismo , Fatores de Elongação da Transcrição/metabolismo , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Dobramento de RNA , RNA Bacteriano/genética , Fatores de Transcrição/genética , Transcrição Gênica , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/genéticaRESUMO
Transcription is punctuated by RNA polymerase (RNAP) pausing. These pauses provide time for diverse regulatory events that can modulate gene expression. Transcription elongation factors dramatically affect RNAP pausing in vitro, but the genome-wide role of such factors on pausing has not been examined. Using native elongating transcript sequencing followed by RNase digestion (RNET-seq), we analyzed RNAP pausing in Bacillus subtilis genome-wide and identified an extensive role of NusG in pausing. This universally conserved transcription elongation factor is known as Spt5 in archaeal and eukaryotic organisms. B. subtilis NusG shifts RNAP to the posttranslocation register and induces pausing at 1,600 sites containing a consensus TTNTTT motif in the nontemplate DNA strand within the paused transcription bubble. The TTNTTT motif is necessary but not sufficient for NusG-dependent pausing. Approximately one-fourth of these pause sites were localized to untranslated regions and could participate in posttranscription initiation control of gene expression as was previously shown for tlrB and the trpEDCFBA operon. Most of the remaining pause sites were identified in protein-coding sequences. NusG-dependent pausing was confirmed for all 10 pause sites that we tested in vitro. Putative pause hairpins were identified for 225 of the 342 strongest NusG-dependent pause sites, and some of these hairpins were shown to function in vitro. NusG-dependent pausing in the ribD riboswitch provides time for cotranscriptional binding of flavin mononucleotide, which decreases the concentration required for termination upstream of the ribD coding sequence. Our phylogenetic analysis implicates NusG-dependent pausing as a widespread mechanism in bacteria.
Assuntos
Bacillus subtilis/genética , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/genética , Fatores de Alongamento de Peptídeos/genética , Fatores de Transcrição/genética , Proteínas de Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Conformação de Ácido Nucleico , Óperon/genética , Fatores de Alongamento de Peptídeos/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo , Translocação Genética/genéticaRESUMO
Although transcription by RNA polymerase (RNAP) is highly processive, elongation can be transiently halted by RNAP pausing. Pausing provides time for diverse regulatory events to occur such as RNA folding and regulatory factor binding. The transcription elongation factors NusA and NusG dramatically affect the frequency and duration of RNAP pausing, and hence regulation of transcription. NusG is the only transcription factor conserved in all three domains of life; its homolog in archaea and eukaryotes is Spt5. This review focuses on NusG-dependent pausing, which is a common occurrence in Bacillus subtilis. B. NusG induces pausing about once per 3 kb at a consensus TTNTTT motif in the non-template DNA strand within the paused transcription bubble. A conserved region of NusG contacts the TTNTTT motif to stabilize the paused transcription elongation complex (TEC) in multiple catalytically inactive RNAP conformations. The density of NusG-dependent pause sites is 3-fold higher in untranslated regions, suggesting that pausing could regulate the expression of hundreds of genes in B. subtilis. We describe how pausing in 5' leader regions contributes to regulating the expression of B. subtilis genes by transcription attenuation and translation control mechanisms. As opposed to the broadly accepted view that NusG is an anti-pausing factor, phylogenetic analyses suggest that NusG-dependent pausing is a widespread mechanism in bacteria. This function of NusG is consistent with the well-established role of its eukaryotic homolog Spt5 in promoter-proximal pausing. Since NusG is present in all domains of life, NusG-dependent pausing could be a conserved mechanism in all organisms.
Assuntos
Bacillus subtilis/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Elongação da Transcrição/metabolismo , Bacillus subtilis/genética , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/genética , Regulação Bacteriana da Expressão Gênica , Filogenia , Fatores de Transcrição/genética , Fatores de Elongação da Transcrição/genéticaRESUMO
Transcription elongation is a highly processive process that is punctuated by RNA polymerase (RNAP) pausing. Long-lived pauses can provide time for diverse regulatory events to occur, which play important roles in modulating gene expression. Transcription elongation factors can dramatically affect RNAP pausing in vitro. The genome-wide role of such factors in pausing in vivo has been examined only for NusG in Bacillus subtilis. NusA is another transcription elongation factor known to stimulate pausing of B. subtilis and Escherichia coli RNAP in vitro. Here, we present the first in vivo study to identify the genome-wide role of NusA in RNAP pausing. Using native elongation transcript sequencing followed by RNase digestion (RNET-seq), we analyzed factor-dependent RNAP pausing in B. subtilis and found that NusA has a relatively minor role in RNAP pausing compared to NusG. We demonstrate that NusA has both stimulating and suppressing effects on pausing in vivo. Based on our thresholding criteria on in vivo data, NusA stimulates pausing at 129 pause peaks in 93 different genes or 5' untranslated regions (5' UTRs). Putative pause hairpins were identified for 87 (67%) of the 129 NusA-stimulated pause peaks, suggesting that RNA hairpins are a common component of NusA-stimulated pause signals. However, a consensus sequence was not identified as a NusA-stimulated pause motif. We further demonstrate that NusA stimulates pausing in vitro at some of the pause sites identified in vivo. IMPORTANCE NusA is an essential transcription elongation factor that was assumed to play a major role in RNAP pausing. NusA stimulates pausing in vitro; however, the essential nature of NusA had prevented an assessment of its role in pausing in vivo. Using a NusA depletion strain and RNET-seq, we identified a similar number of NusA-stimulated and NusA-suppressed pause peaks throughout the genome. NusA-stimulated pausing was confirmed at several sites in vitro. However, NusA did not always stimulate pausing at sites identified in vivo, while in other instances NusA stimulated pausing at sites not observed in vivo. We found that NusA has only a minor role in stimulating RNAP pausing in B. subtilis.
Assuntos
Bacillus subtilis , Proteínas de Escherichia coli , Regiões 5' não Traduzidas , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fatores de Alongamento de Peptídeos/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo , TranscriptomaRESUMO
Aberrant gene expression underlies many human diseases. RNA polymerase II (Pol II) pausing is a key regulatory step in transcription. Here, we mapped the locations of RNA Pol II in normal human cells and found that RNA Pol II pauses in a consistent manner across individuals and cell types. At more than 1,000 genes including MYO1E and SESN2, RNA Pol II pauses at precise nucleotide locations. Characterization of these sites shows that RNA Pol II pauses at GC-rich regions that are marked by a sequence motif. Sixty-five percent of the pause sites are cytosines. By differential allelic gene expression analysis, we showed in our samples and a population dataset from the Genotype-Tissue Expression (GTEx) consortium that genes with more paused polymerase have lower expression levels. Furthermore, mutagenesis of the pause sites led to a significant increase in promoter activities. Thus, our data uncover that RNA Pol II pauses precisely at sites with distinct sequence features that in turn regulate gene expression.
Assuntos
Regulação da Expressão Gênica , RNA Polimerase II/metabolismo , Adulto , Alelos , Células Cultivadas , Humanos , Recém-NascidoRESUMO
Almost all genetic abnormalities involved in the occurrence and progression of myelodysplastic syndromes (MDS) and acute myeloid leukemia have been reported within the last decade. The molecular mechanisms of these genetic changes involved in causing dysfunctions in hematopoietic cells have also been clarified in recent years. For MDS, gene mutations of RNA splicing factors and cohesin complex have been shown to trigger not only aberrant RNA splicing or decreased chromatin insulation but also DNA damage response and transcriptional dysregulation through inefficient interaction between promoters and enhancers. Consequently, these newly identified disease-causing mechanisms may be considered potential therapeutic targets.
Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Humanos , Leucemia Mieloide Aguda/genética , Mutação , Síndromes Mielodisplásicas/genética , Splicing de RNA , Fatores de Processamento de RNA/genéticaRESUMO
RNA splicing, an essential part of eukaryotic pre-messenger RNA processing, can be simultaneous with transcription by RNA polymerase II. Here, we compare and review independent next-generation sequencing methods that jointly quantify transcription and splicing in budding yeast. For many yeast transcripts, splicing is fast, taking place within seconds of intron transcription, while polymerase is within a few dozens of nucleotides of the 3' splice site. Ribosomal protein transcripts are spliced particularly fast and cotranscriptionally. However, some transcripts are spliced inefficiently or mainly post-transcriptionally. Intron-mediated regulation of some genes is likely to be cotranscriptional. We suggest that intermediates of the splicing reaction, missing from current data sets, may hold key information about splicing kinetics.
Assuntos
Splicing de RNA , Saccharomycetales/genética , Transcrição Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Íntrons , Cinética , RNA Polimerase II/metabolismo , RNA Ribossômico/biossíntese , RNA Ribossômico/metabolismo , Saccharomycetales/metabolismo , Análise de Sequência de RNA , Elongação da Transcrição GenéticaRESUMO
Transcriptional regulation of gene expression is a major mechanism used by plants to confer phenotypic plasticity, and yet compared with other eukaryotes or bacteria, little is known about the design principles. We generated an extensive catalog of nascent and steady-state transcripts in Arabidopsis thaliana seedlings using global nuclear run-on sequencing (GRO-seq), 5'GRO-seq, and RNA-seq and reanalyzed published maize data to capture characteristics of plant transcription. De novo annotation of nascent transcripts accurately mapped start sites and unstable transcripts. Examining the promoters of coding and noncoding transcripts identified comparable chromatin signatures, a conserved "TGT" core promoter motif and unreported transcription factor-binding sites. Mapping of engaged RNA polymerases showed a lack of enhancer RNAs, promoter-proximal pausing, and divergent transcription in Arabidopsis seedlings and maize, which are commonly present in yeast and humans. In contrast, Arabidopsis and maize genes accumulate RNA polymerases in proximity of the polyadenylation site, a trend that coincided with longer genes and CpG hypomethylation. Lack of promoter-proximal pausing and a higher correlation of nascent and steady-state transcripts indicate Arabidopsis may regulate transcription predominantly at the level of initiation. Our findings provide insight into plant transcription and eukaryotic gene expression as a whole.
Assuntos
Arabidopsis/genética , Metilação de DNA/genética , Plântula/genética , Transcrição Gênica , Arabidopsis/crescimento & desenvolvimento , Cromatina/genética , Regulação da Expressão Gênica de Plantas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Regiões Promotoras Genéticas , RNA/genética , Plântula/crescimento & desenvolvimentoRESUMO
Naive CD4 T cells differentiate into several effector lineages, which generate a stronger and more rapid response to previously encountered immunological challenges. Although effector function is a key feature of adaptive immunity, the molecular basis of this process is poorly understood. Here, we investigated the spatiotemporal regulation of cytokine gene expression in resting and restimulated effector T helper 1 (Th1) cells. We found that the Lymphotoxin (LT)/TNF alleles, which encode TNF-α, were closely juxtaposed shortly after T-cell receptor (TCR) engagement, when transcription factors are limiting. Allelic pairing required a nuclear myosin, myosin VI, which is rapidly recruited to the LT/TNF locus upon restimulation. Furthermore, transcription was paused at the TNF locus and other related genes in resting Th1 cells and released in a myosin VI-dependent manner following activation. We propose that homologous pairing and myosin VI-mediated transcriptional pause release account for the rapid and efficient expression of genes induced by an external stimulus.
Assuntos
Cadeias Pesadas de Miosina/fisiologia , Células Th1/metabolismo , Transcrição Gênica , Alelos , Animais , Núcleo Celular/metabolismo , Citocinas/metabolismo , Hibridização in Situ Fluorescente , Linfotoxina-alfa/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Cadeias Pesadas de Miosina/genética , RNA Polimerase II/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Fator de Necrose Tumoral alfa/genéticaRESUMO
The Bacillus subtilis trpEDCFBA operon is regulated by a transcription attenuation mechanism in which tryptophan-activated TRAP binds to the nascent transcript and blocks the formation of an antiterminator structure such that the formation of an overlapping intrinsic terminator causes termination in the 5' untranslated region (5' UTR). In the absence of bound TRAP, the antiterminator forms and transcription continues into the trp genes. RNA polymerase pauses at positions U107 and U144 in the 5' UTR. The general transcription elongation factors NusA and NusG stimulate pausing at both positions. NusG-stimulated pausing at U144 requires sequence-specific contacts with a T tract in the nontemplate DNA (ntDNA) strand within the paused transcription bubble. Pausing at U144 participates in a trpE translation repression mechanism. Since U107 just precedes the critical overlap between the antiterminator and terminator structures, pausing at this position is thought to participate in attenuation. Here we carried out in vitro pausing and termination experiments to identify components of the U107 pause signal and to determine whether pausing affects the termination efficiency in the 5' UTR. We determined that the U107 and U144 pause signals are organized in a modular fashion containing distinct RNA hairpin, U-tract, and T-tract components. NusA-stimulated pausing was affected by hairpin strength and the U-tract sequence, whereas NusG-stimulated pausing was affected by hairpin strength and the T-tract sequence. We also determined that pausing at U107 results in increased TRAP-dependent termination in the 5' UTR, implying that NusA- and NusG-stimulated pausing participates in the trp operon attenuation mechanism by providing additional time for TRAP binding.IMPORTANCE The expression of several bacterial operons is controlled by regulated termination in the 5' untranslated region (5' UTR). Transcription attenuation is defined as situations in which the binding of a regulatory molecule promotes transcription termination in the 5' UTR, with the default being transcription readthrough into the downstream genes. RNA polymerase pausing is thought to participate in several attenuation mechanisms by synchronizing the position of RNA polymerase with RNA folding and/or regulatory factor binding, although this has only been shown in a few instances. We found that NusA- and NusG-stimulated pausing participates in the attenuation mechanism controlling the expression of the Bacillus subtilis trp operon by increasing the TRAP-dependent termination efficiency. The pause signal is organized in a modular fashion containing RNA hairpin, U-tract, and T-tract components.
Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Óperon/fisiologia , Bacillus subtilis/genética , Proteínas de Bactérias/genética , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , RNA Polimerases Dirigidas por DNA/genética , Fatores de Transcrição/metabolismo , Transcrição GênicaRESUMO
Regulation of gene expression at the level of transcriptional elongation has been shown to be important in stem cells and tumour cells, but its role in the whole animal is only now being fully explored. Neural crest cells (NCCs) are a multipotent population of cells that migrate during early development from the dorsal neural tube throughout the embryo where they differentiate into a variety of cell types including pigment cells, cranio-facial skeleton and sensory neurons. Specification of NCCs is both spatially and temporally regulated during embryonic development. Here we show that components of the transcriptional elongation regulatory machinery, CDK9 and CYCLINT1 of the P-TEFb complex, are required to regulate neural crest specification. In particular, we show that expression of the proto-oncogene c-Myc and c-Myc responsive genes are affected. Our data suggest that P-TEFb is crucial to drive expression of c-Myc, which acts as a 'gate-keeper' for the correct temporal and spatial development of the neural crest.