Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Mol Cell ; 82(24): 4681-4699.e8, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36435176

RESUMO

Long introns with short exons in vertebrate genes are thought to require spliceosome assembly across exons (exon definition), rather than introns, thereby requiring transcription of an exon to splice an upstream intron. Here, we developed CoLa-seq (co-transcriptional lariat sequencing) to investigate the timing and determinants of co-transcriptional splicing genome wide. Unexpectedly, 90% of all introns, including long introns, can splice before transcription of a downstream exon, indicating that exon definition is not obligatory for most human introns. Still, splicing timing varies dramatically across introns, and various genetic elements determine this variation. Strong U2AF2 binding to the polypyrimidine tract predicts early splicing, explaining exon definition-independent splicing. Together, our findings question the essentiality of exon definition and reveal features beyond intron and exon length that are determinative for splicing timing.


Assuntos
Processamento Alternativo , Splicing de RNA , Humanos , Sequência de Bases , Íntrons/genética , Éxons/genética
2.
Mol Cell ; 72(2): 380-394.e7, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30293782

RESUMO

RNA splicing is a critical mechanism by which to modify transcriptome, and its dysregulation is the underlying cause of many human diseases. It remains challenging, however, to genetically modulate a splicing event in its native context. Here, we demonstrate that a CRISPR-guided cytidine deaminase (i.e., targeted-AID mediated mutagenesis [TAM]) can efficiently modulate various forms of mRNA splicing. By converting invariant guanines to adenines at either 5' or 3' splice sites (SS), TAM induces exon skipping, activation of alternative SS, switching between mutually exclusive exons, or targeted intron retention. Conversely, TAM promotes downstream exon inclusion by mutating cytidines into thymines at the polypyrimidine tract. Applying this approach, we genetically restored the open reading frame and dystrophin function of a mutant DMD gene in patient-derived induced pluripotent stem cells (iPSCs). Thus, the CRISPR-guided cytidine deaminase provides a versatile genetic platform to modulate RNA splicing and to correct mutations associated with aberrant splicing in human diseases.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Citidina Desaminase/genética , Splicing de RNA/genética , Sequência de Aminoácidos , Animais , Linhagem Celular , Distrofina/genética , Éxons/genética , Redes Reguladoras de Genes , Células HEK293 , Humanos , Íntrons/genética , Camundongos , Fases de Leitura Aberta/genética , Sítios de Splice de RNA/genética
3.
Plant J ; 118(6): 2202-2218, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38578875

RESUMO

Alternative splicing (AS) is a complex process that generates transcript variants from a single pre-mRNA and is involved in numerous biological functions. Many RNA-binding proteins are known to regulate AS; however, little is known about the underlying mechanisms, especially outside the mammalian clade. Here, we show that polypyrimidine tract binding proteins (PTBs) from Arabidopsis thaliana regulate AS of cassette exons via pyrimidine (Py)-rich motifs close to the alternative splice sites. Mutational studies on three PTB-dependent cassette exon events revealed that only some of the Py motifs in this region are critical for AS. Moreover, in vitro binding of PTBs did not reflect a motif's impact on AS in vivo. Our mutational studies and bioinformatic investigation of all known PTB-regulated cassette exons from A. thaliana and human suggested that the binding position of PTBs relative to a cassette exon defines whether its inclusion or skipping is induced. Accordingly, exon skipping is associated with a higher frequency of Py stretches within the cassette exon, and in human also upstream of it, whereas exon inclusion is characterized by increased Py motif occurrence downstream of said exon. Enrichment of Py motifs downstream of PTB-activated 5' splice sites is also seen for PTB-dependent intron removal and alternative 5' splice site events from A. thaliana, suggesting this is a common step of exon definition. In conclusion, the position-dependent AS regulatory mechanism by PTB homologs has been conserved during the separate evolution of plants and mammals, while other critical features, in particular intron length, have considerably changed.


Assuntos
Processamento Alternativo , Proteínas de Arabidopsis , Arabidopsis , Éxons , Proteína de Ligação a Regiões Ricas em Polipirimidinas , Arabidopsis/genética , Arabidopsis/metabolismo , Éxons/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pirimidinas , Humanos
4.
J Biol Chem ; 299(6): 104778, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37142223

RESUMO

The maturation of RNA from its nascent transcription to ultimate utilization (e.g., translation, miR-mediated RNA silencing, etc.) involves an intricately coordinated series of biochemical reactions regulated by RNA-binding proteins (RBPs). Over the past several decades, there has been extensive effort to elucidate the biological factors that control specificity and selectivity of RNA target binding and downstream function. Polypyrimidine tract binding protein 1 (PTBP1) is an RBP that is involved in all steps of RNA maturation and serves as a key regulator of alternative splicing, and therefore, understanding its regulation is of critical biologic importance. While several mechanisms of RBP specificity have been proposed (e.g., cell-specific expression of RBPs and secondary structure of target RNA), recently, protein-protein interactions with individual domains of RBPs have been suggested to be important determinants of downstream function. Here, we demonstrate a novel binding interaction between the first RNA recognition motif 1 (RRM1) of PTBP1 and the prosurvival protein myeloid cell leukemia-1 (MCL1). Using both in silico and in vitro analyses, we demonstrate that MCL1 binds a novel regulatory sequence on RRM1. NMR spectroscopy reveals that this interaction allosterically perturbs key residues in the RNA-binding interface of RRM1 and negatively impacts RRM1 association with target RNA. Furthermore, pulldown of MCL1 by endogenous PTBP1 verifies that these proteins interact in an endogenous cellular environment, establishing the biological relevance of this binding event. Overall, our findings suggest a novel mechanism of regulation of PTBP1 in which a protein-protein interaction with a single RRM can impact RNA association.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas , Proteína de Sequência 1 de Leucemia de Células Mieloides , Proteína de Ligação a Regiões Ricas em Polipirimidinas , Processamento Alternativo/genética , Sítios de Ligação/genética , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/química , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Ligação Proteica/genética , RNA/metabolismo , Humanos
5.
BMC Genomics ; 25(1): 595, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38872102

RESUMO

BACKGROUND: Nuclear introns in Euglenida have been understudied. This study aimed to investigate nuclear introns in Euglenida by identifying a large number of introns in Euglena gracilis (E. gracilis), including cis-spliced conventional and nonconventional introns, as well as trans-spliced outrons. We also examined the sequence characteristics of these introns. RESULTS: A total of 28,337 introns and 11,921 outrons were identified. Conventional and nonconventional introns have distinct splice site features; the former harbour canonical GT/C-AG splice sites, whereas the latter are capable of forming structured motifs with their terminal sequences. We observed that short introns had a preference for canonical GT-AG introns. Notably, conventional introns and outrons in E. gracilis exhibited a distinct cytidine-rich polypyrimidine tract, in contrast to the thymidine-rich tracts observed in other organisms. Furthermore, the SL-RNAs in E. gracilis, as well as in other trans-splicing species, can form a recently discovered motif called the extended U6/5' ss duplex with the respective U6s. We also describe a novel type of alternative splicing pattern in E. gracilis. The tandem repeat sequences of introns in this protist were determined, and their contents were comparable to those in humans. CONCLUSIONS: Our findings highlight the unique features of E. gracilis introns and provide insights into the splicing mechanism of these introns, as well as the genomics and evolution of Euglenida.


Assuntos
Euglena gracilis , Íntrons , Euglena gracilis/genética , Sítios de Splice de RNA , Processamento Alternativo , Splicing de RNA
6.
Plant Mol Biol ; 114(2): 22, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443687

RESUMO

The dynamic interaction of RNA-binding proteins (RBPs) with their target RNAs contributes to the diversity of ribonucleoprotein (RNP) complexes that are involved in a myriad of biological processes. Identifying the RNP components at high resolution and defining their interactions are key to understanding their regulation and function. Expressing fusions between an RBP of interest and an RNA editing enzyme can result in nucleobase changes in target RNAs, representing a recent addition to experimental approaches for profiling RBP/RNA interactions. Here, we have used the MS2 protein/RNA interaction to test four RNA editing proteins for their suitability to detect target RNAs of RBPs in planta. We have established a transient test system for fast and simple quantification of editing events and identified the hyperactive version of the catalytic domain of an adenosine deaminase (hADARcd) as the most suitable editing enzyme. Examining fusions between homologs of polypyrimidine tract binding proteins (PTBs) from Arabidopsis thaliana and hADARcd allowed determining target RNAs with high sensitivity and specificity. Moreover, almost complete editing of a splicing intermediate provided insight into the order of splicing reactions and PTB dependency of this particular splicing event. Addition of sequences for nuclear localisation of the fusion protein increased the editing efficiency, highlighting this approach's potential to identify RBP targets in a compartment-specific manner. Our studies have established the editing-based analysis of interactions between RBPs and their RNA targets in a fast and straightforward assay, offering a new system to study the intricate composition and functions of plant RNPs in vivo.


Assuntos
Arabidopsis , Splicing de RNA , Splicing de RNA/genética , Arabidopsis/genética , Domínio Catalítico , Éxons , RNA
7.
Cancer Cell Int ; 23(1): 195, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37670313

RESUMO

BACKGROUND: Polypyrimidine tract binding protein 1 (PTBP1) has been found to play an important role in the occurrence and development of various tumors. At present, the role of PTBP1 in gastric cancer (GC) is still unknown and worthy of further investigation. METHODS: We used bioinformatics to analyze the expression of PTBP1 in patients with GC. Cell proliferation related experiments were used to detect cell proliferation after PTBP1 knockdown. Skeleton staining, scanning electron microscopy and transmission electron microscopy were used to observe the changes of actin skeleton. Proliferation and actin skeleton remodeling signaling pathways were detected by Western Blots. The relationship between PTBP1 and proliferation of gastric cancer cells was further detected by subcutaneous tumor transplantation. Finally, tissue microarray data from clinical samples were used to further explore the expression of PTBP1 in patients with gastric cancer and its correlation with prognosis. RESULTS: Through bioinformatics studies, we found that PTBP1 was highly expressed in GC patients and correlated with poor prognosis. Cell proliferation and cycle analysis showed that PTBP1 down-regulation could significantly inhibit cell proliferation. The results of cell proliferation detection related experiments showed that PTBP1 down-regulation could inhibit the division and proliferation of GC cells. Furthermore, changes in the morphology of the actin skeleton of cells showed that PTBP1 down-regulation inhibited actin skeletal remodeling in GC cells. Western Blots showed that PTBP1 could regulate proliferation and actin skeleton remodeling signaling pathways. In addition, we constructed PTBP1 Cas9-KO mouse model and performed xenograft assays to further confirm that down-regulation of PTBP1 could inhibit the proliferation of GC cells. Finally, tissue microarray was used to further verify the close correlation between PTBP1 and poor prognosis in patients with GC. CONCLUSIONS: Our study demonstrates for the first time that PTBP1 may affect the proliferation of GC cells by regulating actin skeleton remodeling. In addition, PTBP1 is closely related to actin skeleton remodeling and proliferation signaling pathways. We suppose that PTBP1 might be a potential target for the treatment of GC.

8.
J Evol Biol ; 36(9): 1295-1312, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37564008

RESUMO

Among eukaryotes, the major spliceosomal pathway is highly conserved. While long introns may contain additional regulatory sequences, the ones in short introns seem to be nearly exclusively related to splicing. Although these regulatory sequences involved in splicing are well-characterized, little is known about their evolution. At the 3' end of introns, the splice signal nearly universally contains the dimer AG, which consists of purines, and the polypyrimidine tract upstream of this 3' splice signal is characterized by over-representation of pyrimidines. If the over-representation of pyrimidines in the polypyrimidine tract is also due to avoidance of a premature splicing signal, we hypothesize that AG should be the most under-represented dimer. Through the use of DNA-strand asymmetry patterns, we confirm this prediction in fruit flies of the genus Drosophila and by comparing the asymmetry patterns to a presumably neutrally evolving region, we quantify the selection strength acting on each motif. Moreover, our inference and simulation method revealed that the best explanation for the base composition evolution of the polypyrimidine tract is the joint action of purifying selection against a spurious 3' splice signal and the selection for pyrimidines. Patterns of asymmetry in other eukaryotes indicate that avoidance of premature splicing similarly affects the nucleotide composition in their polypyrimidine tracts.


Assuntos
Pirimidinas , Splicing de RNA , Sequência de Bases , Composição de Bases , Mutação , Íntrons , Pirimidinas/metabolismo
9.
Mol Cell Biochem ; 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38129625

RESUMO

Polypyrimidine tract-binding protein 1 (PTBP1) is a member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family, which plays a key role in alternative splicing of precursor mRNA and RNA metabolism. PTBP1 is universally expressed in various tissues and binds to multiple downstream transcripts to interfere with physiological and pathological processes such as the tumor growth, body metabolism, cardiovascular homeostasis, and central nervous system damage, showing great prospects in many fields. The function of PTBP1 involves the regulation and interaction of various upstream molecules, including circular RNAs (circRNAs), microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). These regulatory systems are inseparable from the development and treatment of diseases. Here, we review the latest knowledge regarding the structure and molecular functions of PTBP1 and summarize its functions and mechanisms of PTBP1 in various diseases, including controversial studies. Furthermore, we recommend future studies on PTBP1 and discuss the prospects of targeting PTBP1 in new clinical therapeutic approaches.

10.
Int J Mol Sci ; 24(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37446395

RESUMO

Polypyrimidine tract binding protein 1 (PTBP1) is one of the most well-described RNA binding proteins, known initially for its role as a splicing repressor before later studies revealed its numerous roles in RNA maturation, stability, and translation. While PTBP1's various biological roles have been well-described, it remains unclear how its four RNA recognition motif (RRM) domains coordinate these functions. The early PTBP1 literature saw extensive effort placed in detailing structures of each of PTBP1's RRMs, as well as their individual RNA sequence and structure preferences. However, limitations in high-throughput and high-resolution genomic approaches (i.e., next-generation sequencing had not yet been developed) precluded the functional translation of these findings into a mechanistic understanding of each RRM's contribution to overall PTBP1 function. With the emergence of new technologies, it is now feasible to begin elucidating the individual contributions of each RRM to PTBP1 biological functions. Here, we review all the known literature describing the apo and RNA bound structures of each of PTBP1's RRMs, as well as the emerging literature describing the dependence of specific RNA processing events on individual RRM domains. Our goal is to provide a framework of the structure-function context upon which to facilitate the interpretation of future studies interrogating the dynamics of PTBP1 function.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas , Proteína de Ligação a Regiões Ricas em Polipirimidinas , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , RNA/metabolismo , Genômica , Relação Estrutura-Atividade , Processamento Alternativo
11.
J Biol Chem ; 295(33): 11613-11625, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32571872

RESUMO

The sequence-specific RNA-binding proteins PTBP1 (polypyrimidine tract-binding protein 1) and HNRNP L (heterogeneous nuclear ribonucleoprotein L) protect mRNAs from nonsense-mediated decay (NMD) by preventing the UPF1 RNA helicase from associating with potential decay targets. Here, by analyzing in vitro helicase activity, dissociation of UPF1 from purified mRNPs, and transcriptome-wide UPF1 RNA binding, we present the mechanistic basis for inhibition of NMD by PTBP1. Unlike mechanisms of RNA stabilization that depend on direct competition for binding sites among protective RNA-binding proteins and decay factors, PTBP1 promotes displacement of UPF1 already bound to potential substrates. Our results show that PTBP1 directly exploits the tendency of UPF1 to release RNA upon ATP binding and hydrolysis. We further find that UPF1 sensitivity to PTBP1 is coordinated by a regulatory loop in domain 1B of UPF1. We propose that the UPF1 regulatory loop and protective proteins control kinetic proofreading of potential NMD substrates, presenting a new model for RNA helicase regulation and target selection in the NMD pathway.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Degradação do RNAm Mediada por Códon sem Sentido , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , RNA Helicases/metabolismo , Transativadores/metabolismo , Trifosfato de Adenosina/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/química , Humanos , Modelos Moleculares , Proteína de Ligação a Regiões Ricas em Polipirimidinas/química , Domínios Proteicos , RNA Helicases/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transativadores/química , Transcrição Gênica
12.
Neuropathol Appl Neurobiol ; 47(7): 990-1003, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34288034

RESUMO

AIM: Splicing factor proline and glutamine rich (SFPQ) is an RNA-DNA binding protein that is dysregulated in Alzheimer's disease and frontotemporal dementia. Dysregulation of SFPQ, specifically increased intron retention and nuclear depletion, has been linked to several genetic subtypes of amyotrophic lateral sclerosis (ALS), suggesting that SFPQ pathology may be a common feature of this heterogeneous disease. Our study aimed to investigate this hypothesis by providing the first comprehensive assessment of SFPQ pathology in large ALS case-control cohorts. METHODS: We examined SFPQ at the RNA, protein and DNA levels. SFPQ RNA expression and intron retention were examined using RNA-sequencing and quantitative PCR. SFPQ protein expression was assessed by immunoblotting and immunofluorescent staining. At the DNA level, SFPQ was examined for genetic variation novel to ALS patients. RESULTS: At the RNA level, retention of SFPQ intron nine was significantly increased in ALS patients' motor cortex. In addition, SFPQ RNA expression was significantly reduced in the central nervous system, but not blood, of patients. At the protein level, neither nuclear depletion nor reduced expression of SFPQ was found to be a consistent feature of spinal motor neurons. However, SFPQ-positive ubiquitinated protein aggregates were observed in patients' spinal motor neurons. At the DNA level, our genetic screen identified two novel and two rare SFPQ sequence variants not previously reported in the literature. CONCLUSIONS: Our findings confirm dysregulation of SFPQ as a pathological feature of the central nervous system of ALS patients and indicate that investigation of the functional consequences of this pathology will provide insight into ALS biology.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Glutamina/metabolismo , Neurônios Motores/patologia , Demência Frontotemporal/genética , Glutamina/genética , Humanos , Íntrons/fisiologia , Prolina/genética , Prolina/metabolismo , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo
13.
Arterioscler Thromb Vasc Biol ; 40(10): 2440-2453, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32787518

RESUMO

OBJECTIVE: Calcium channel blockers, such as dihydropyridines, are commonly used to inhibit enhanced activity of vascular CaV1.2 channels in hypertension. However, patients who are insensitive to such treatments develop calcium channel blocker-resistant hypertension. The function of CaV1.2 channel is diversified by alternative splicing, and the splicing factor PTBP (polypyrimidine tract-binding protein) 1 influences the utilization of mutually exclusive exon 8/8a of the CaV1.2 channel during neuronal development. Nevertheless, whether and how PTBP1 makes a role in the calcium channel blocker sensitivity of vascular CaV1.2 channels, and calcium channel blocker-induced vasodilation remains unknown. Approach and Results: We detected high expression of PTBP1 and, inversely, low expression of exon 8a in CaV1.2 channels (CaV1.2E8a) in rat arteries. In contrast, the opposite expression patterns were observed in brain and heart tissues. In comparison to normotensive rats, the expressions of PTBP1 and CaV1.2E8a channels were dysregulated in mesenteric arteries of hypertensive rats. Notably, PTBP1 expression was significantly downregulated, and CaV1.2E8a channels were aberrantly increased in dihydropyridine-resistant arteries compared with dihydropyridine-sensitive arteries of rats and human. In rat vascular smooth muscle cells, PTBP1 knockdown resulted in shifting of CaV1.2 exon 8 to 8a. Using patch-clamp recordings, we demonstrated a concomitant reduction of sensitivity of CaV1.2 channels to nifedipine, due to the higher expression of CaV1.2E8a isoform. In vascular myography experiments, small interfering RNA-mediated knockdown of PTBP1 attenuated nifedipine-induced vasodilation of rat mesenteric arteries. CONCLUSIONS: PTBP1 finely modulates the sensitivities of CaV1.2 channels to dihydropyridine by shifting the utilization of exon 8/8a and resulting in changes of responses in dihydropyridine-induced vasodilation.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/efeitos dos fármacos , Resistência a Medicamentos , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Hipertensão/tratamento farmacológico , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Nifedipino/farmacologia , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Processamento Alternativo , Animais , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Éxons , Células HEK293 , Ribonucleoproteínas Nucleares Heterogêneas/genética , Humanos , Hipertensão/genética , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Masculino , Potenciais da Membrana , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/metabolismo , Artérias Mesentéricas/fisiopatologia , Camundongos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Ratos Sprague-Dawley , Transdução de Sinais
14.
Exp Cell Res ; 387(2): 111753, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31837293

RESUMO

PURPOSE: The metabolic syndrome (MetS) is characterized of a cluster of medical disorders. Altered function of adipose tissue has a significant impact on whole-body metabolism and represents a key driver for MetS. In this study, we aim to explore the function of human circular RNA H19 (hsa_circH19) in human adipose-derived stem cells (hADSCs). METHODS: The blood samples from MetS patients and normal subjects were used to determine the expression level of the hsa_circH19. After knock-down of hsa_circH19 in hADSCs, we measured the expression of adipogenic genes. Oil red O, Nile red staining assay and triglyceride assessment were performed to examine the role of hsa_circH19 in hADSCs differentiation. Then, RNA Pull-down and RIP assays were conducted to explore the related RNA binding protein of hsa_circH19. IF was performed to determine the potential molecular regulatory mechanism. RESULTS: After accounting for confounding factors, high levels of hsa_circH19 remained an independent risk factor for MetS. Furthermore, the knockdown of hsa_circH19 significantly increased the expression of adipogenic genes and the formation of lipid droplets. Bioinformatics analyses revealed that has_circH19 shared multiple binding sites with polypyrimidine tract-binding protein 1 (PTBP1) and their interaction was validated by circRNA pull-down and RIP assays. Mechanistically, depletion of hsa_circH19 triggered translocation of sterol-regulatory element binding proteins (SREBP1) from cytoplasm to nucleus in the presence of PTBP1. CONCLUSION: Our experiments suggest that knockdown of hsa_circH19 promotes hADCSs adipogenic differentiation via targeting of PTBP1. In consequence, the expression of hsa_circH19 might correlated to lipid metabolism in adipose tissue from MetS.


Assuntos
Adipogenia/genética , Adipogenia/fisiologia , Tecido Adiposo/fisiologia , Diferenciação Celular/genética , RNA Circular/genética , RNA Longo não Codificante/genética , Adipócitos/fisiologia , Idoso , Feminino , Ribonucleoproteínas Nucleares Heterogêneas , Humanos , Masculino , Células-Tronco Mesenquimais/fisiologia , Pessoa de Meia-Idade , Proteína de Ligação a Regiões Ricas em Polipirimidinas , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
15.
J Cell Mol Med ; 24(5): 2917-2930, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31989778

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) tumours exhibit a high level of heterogeneity which is associated with hypoxia and strong resistance to chemotherapy. The RNA splicing protein polypyrimidine tract-binding protein 3 (PTBP3) regulates hypoxic gene expression by selectively binding to hypoxia-regulated transcripts. We have investigated the role of PTBP3 in tumour development and chemotherapeutic resistance in human PDAC tissues and pancreatic cancer cells. In addition, we determined the sensitivity of cancer cells to gemcitabine with differential levels of PTBP3 and whether autophagy and hypoxia affect gemcitabine resistance in vitro. PTBP3 expression was higher in human pancreatic cancer than in paired adjacent tissues. PTBP3 overexpression promoted PDAC proliferation in vitro and tumour growth in vivo, whereas PTBP3 depletion had opposing effects. Hypoxia significantly increased the expression of PTBP3 in pancreatic cancer cells in vitro. Under hypoxic conditions, cells were more resistance to gemcitabine. Knockdown of PTBP3 results in decreased resistance to gemcitabine, which was attributed to attenuated autophagy. We propose that PTBP3 binds to multiple sites in the 3'-UTR of ATG12 resulting in overexpression. PTBP3 increases cancer cell proliferation and autophagic flux in response to hypoxic stress, which contributes to gemcitabine resistance.


Assuntos
Proteína 12 Relacionada à Autofagia/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Hipóxia Tumoral/genética , Regulação para Cima/genética , Regiões 3' não Traduzidas/genética , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Proteína 12 Relacionada à Autofagia/metabolismo , Sequência de Bases , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Pancreáticas/tratamento farmacológico , Estresse Fisiológico/efeitos dos fármacos , Hipóxia Tumoral/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Gencitabina
16.
J Cell Physiol ; 233(11): 8930-8939, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29856478

RESUMO

Invasion and migration is the hallmark of malignant tumors as well as the major cause for breast cancer death. The polypyrimidine tract binding, PTB, protein serves as an important model for understanding how RNA binding proteins affect proliferation and invasion and how changes in the expression of these proteins can control complex programs of tumorigenesis. We have investigated some roles of polypyrimidine tract binding protein 1 (PTBP1) in human breast cancer. We found that PTBP1 was upregulated in breast cancer tissues compared with normal tissues and the same result was confirmed in breast cancer cell lines. Knockdown of PTBP1 substantially inhibited tumor cell growth, migration, and invasion. These results suggest that PTBP1 is associated with breast tumorigenesis and appears to be required for tumor cell growth and maintenance of metastasis. We further analyzed the relationship between PTBP1 and clinicopathological parameters and found that PTBP1 was correlated with her-2 expression, lymph node metastasis, and pathological stage. This will be a novel target for her-2(+ ) breast cancer. PTBP1 exerts these effects, in part, by regulating the phosphatase and tensin homolog-phosphatidylinositol-4,5-bisphosphate 3-kinase/protein kinase B (PTEN-PI3K/Akt) pathway and autophagy, and consequently alters cell growth and contributes to the invasion and metastasis.


Assuntos
Autofagia/genética , Neoplasias da Mama/genética , Ribonucleoproteínas Nucleares Heterogêneas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteínas de Ligação a RNA/genética , Animais , Apoptose , Neoplasias da Mama/patologia , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Metástase Linfática/genética , Metástase Linfática/patologia , Células MCF-7 , Camundongos , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Metástase Neoplásica , Proteína Oncogênica v-akt/genética , PTEN Fosfo-Hidrolase/genética , Receptor ErbB-2/genética , Transdução de Sinais/genética , Ensaios Antitumorais Modelo de Xenoenxerto
17.
RNA ; 21(3): 347-59, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25605962

RESUMO

Splicing factor proline- and glutamine-rich (SFPQ) also commonly known as polypyrimidine tract-binding protein-associated-splicing factor (PSF) and its binding partner non-POU domain-containing octamer-binding protein (NONO/p54nrb), are highly abundant, multifunctional nuclear proteins. However, the exact role of this complex is yet to be determined. Following purification of the endogeneous SFPQ/NONO complex, mass spectrometry analysis identified a wide range of interacting proteins, including those involved in RNA processing, RNA splicing, and transcriptional regulation, consistent with a multifunctional role for SFPQ/NONO. In addition, we have identified several sites of arginine methylation in SFPQ/PSF using mass spectrometry and found that several arginines in the N-terminal domain of SFPQ/PSF are asymmetrically dimethylated. Furthermore, we find that the protein arginine N-methyltransferase, PRMT1, catalyzes this methylation in vitro and that this is antagonized by citrullination of SFPQ. Arginine methylation and citrullination of SFPQ/PSF does not affect complex formation with NONO. However, arginine methylation was shown to increase the association with mRNA in mRNP complexes in mammalian cells. Finally we show that the biochemical properties of the endogenous complex from cell lysates are significantly influenced by the ionic strength during purification. At low ionic strength, the SFPQ/NONO complex forms large heterogeneous protein assemblies or aggregates, preventing the purification of the SFPQ/NONO complex. The ability of the SFPQ/NONO complex to form varying protein assemblies, in conjunction with the effect of post-translational modifications of SFPQ modulating mRNA binding, suggests key roles affecting mRNP dynamics within the cell.


Assuntos
Proteínas Associadas à Matriz Nuclear/genética , Fatores de Transcrição de Octâmero/genética , Splicing de RNA/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Transcrição Gênica , Animais , Arginina/genética , Arginina/metabolismo , Proteínas de Ligação a DNA , Regulação da Expressão Gênica , Células HeLa , Humanos , Metilação , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Proteínas Associadas à Matriz Nuclear/química , Fatores de Transcrição de Octâmero/química , Fator de Processamento Associado a PTB , Processamento de Proteína Pós-Traducional , Proteína-Arginina N-Metiltransferases/genética , Proteínas de Ligação a RNA/química , Proteínas Repressoras/genética , Ribonucleoproteínas/genética
18.
J Cell Mol Med ; 20(7): 1255-65, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26929148

RESUMO

MEAN (6-methoxyethylamino-numonafide) is a small molecule compound, and here, we report that it effectively inhibits hepatitis C virus (HCV) infection in an HCV cell culture system using a JC1-Luc chimeric virus, with a 50% effective concentration (EC50) of 2.36 ± 0.29 µM. Drug combination usage analyses demonstrated that MEAN was synergistic with interferon α, ITX5061 and ribavirin. In addition, MEAN effectively inhibits N415D mutant virus and G451R mutant viral infections. Mechanistic studies show that the treatment of HCV-infected hepatocytes with MEAN inhibits HCV replication but not translation. Furthermore, treatment with MEAN significantly reduces polypyrimidine tract-binding protein (PTB) levels and blocks the cytoplasmic redistribution of PTB upon infection. In the host cytoplasm, PTB is directly associated with HCV replication, and the inhibition of HCV replication by MEAN can result in the sequestration of PTB in treated nuclei. Taken together, these results indicate that MEAN is a potential therapeutic candidate for HCV infection, and the targeting of the nucleo-cytoplasmic translocation of the host PTB protein could be a novel strategy to interrupt HCV replication.


Assuntos
Hepacivirus/fisiologia , Naftalimidas/farmacologia , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Replicação Viral/efeitos dos fármacos , Antivirais/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Citoplasma/metabolismo , Regulação para Baixo/efeitos dos fármacos , Sinergismo Farmacológico , Técnicas de Silenciamento de Genes , Proteínas de Fluorescência Verde/metabolismo , Hepacivirus/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Hepatite C/virologia , Humanos , Interferon-alfa/farmacologia , Sítios Internos de Entrada Ribossomal/genética , Proteínas Mutantes/metabolismo , Naftalimidas/química , Naftalimidas/uso terapêutico , Fenilenodiaminas/farmacologia , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Biossíntese de Proteínas/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , RNA Viral/biossíntese , Ribavirina/farmacologia , Sulfonamidas/farmacologia
19.
RNA ; 20(4): 440-6, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24572809

RESUMO

The mouse immunoglobulin (IgM) pre-mRNA contains a splicing inhibitor that bears multiple binding sites for the splicing repressor polypyrimidine tract binding protein (PTB). Here we show that the inhibitor directs assembly of an ATP-dependent complex that contains PTB and U1 and U2 small nuclear RNAs (snRNAs). Unexpectedly, although U2 snRNA is present in the inhibitor complex, it is not base-paired to the branch point. We present evidence that inhibitor-bound PTB contacts U2 snRNA to promote base-pairing to an adjacent branch point-like sequence within the inhibitor, thereby preventing the U2 snRNA-branch point interaction and resulting in splicing repression. Our studies reveal a novel mechanism by which PTB represses splicing.


Assuntos
Pareamento de Bases/genética , Imunoglobulina M/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Precursores de RNA/genética , Splicing de RNA/genética , RNA Mensageiro/genética , RNA Nuclear Pequeno/genética , Trifosfato de Adenosina/farmacologia , Animais , Sequência de Bases , Sítios de Ligação , Northern Blotting , Reagentes de Ligações Cruzadas/farmacologia , Éxons/genética , Imunoprecipitação , Camundongos , Dados de Sequência Molecular , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Precursores de RNA/metabolismo , RNA Mensageiro/metabolismo , RNA Nuclear Pequeno/metabolismo , Spliceossomos/genética
20.
Biochem Soc Trans ; 44(4): 1058-65, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27528752

RESUMO

Polypyrimidine tract binding protein (PTBP1) is a heterogeneous nuclear ribonucleoprotein (hnRNP) that plays roles in most stages of the life-cycle of pre-mRNA and mRNAs in the nucleus and cytoplasm. PTBP1 has four RNA binding domains of the RNA recognition motif (RRM) family, each of which can bind to pyrimidine motifs. In addition, RRM2 can interact via its dorsal surface with proteins containing short peptide ligands known as PTB RRM2 interacting (PRI) motifs, originally found in the protein Raver1. Here we review our recent progress in understanding the interactions of PTB with RNA and with various proteins containing PRI ligands.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Precursores de RNA/genética , Proteínas de Ligação a RNA/genética , Sítios de Ligação/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Ligantes , Modelos Genéticos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Precursores de RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA