Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 203
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(43): e2303989120, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37856546

RESUMO

The Periodic Law of Chemistry is one of the great discoveries in cultural history. Elements behaving chemically similar are empirically merged in groups G of a Periodic Table, each element with G valence electrons per neutral atom, and with upper limit G for the oxidation and valence numbers. Here, we report that among the usually mono- or di-valent s-block elements (G = 1 or 2), the heaviest members (87Fr, 88Ra, 119E, and 120E) with atomic numbers Z = 87, 88, 119, 120 form unusual 5- or 6-valent compounds at ambient conditions. Together with well-reported basic changes of valence at the end of the 6d-series, in the whole 7p-series, and for 5g6f-elements, it indicates that at the bottom of common Periodic Tables, the classic Periodic Law is not as straightforward as commonly expected. Specifically, we predict the feasible experimental synthesis of polyvalent [RaL-n] (n = 4, 6) compounds.

2.
Proc Natl Acad Sci U S A ; 119(50): e2202938119, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36469767

RESUMO

Using epitope- and structure-based multiepitope fusion antigen vaccinology platform, we constructed a polyvalent protein immunogen that presents antigenic domains (epitopes) of Vibrio cholerae toxin-coregulated pilus A, cholera toxin (CT), sialidase, hemolysin A, flagellins (B, C, and D), and peptides mimicking lipopolysaccharide O-antigen on a flagellin B backbone. Mice and rabbits immunized intramuscularly with this polyvalent protein immunogen developed antibodies to all of the virulence factors targeted by the immunogen except lipopolysaccharide. Mouse and rabbit antibodies exhibited functional activities against CT enterotoxicity, CT binding to GM1 ganglioside, bacterial motility, and in vitro adherence of V. cholerae O1, O139, and non-O1/non-O139 serogroup strains. When challenged orogastrically with V. cholerae O1 El Tor N16961 or a non-O1/non-O139 strain, rabbits IM immunized with the immunogen showed a 2-log (99%) reduction in V. cholerae colonization of small intestines. Moreover, infant rabbits born to the mother immunized with the protein immunogen acquired antibodies passively and were protected from bacterial intestinal colonization (>2-log reduction), severe diarrhea (100%), and mild diarrhea (88%) after infection with V. cholerae O1 El Tor (N16961), O1 classical (O395), O139 (Bengal), or a non-O1/non-O139 strain. This study demonstrated that this polyvalent cholera protein is broadly immunogenic and cross-protective, and an adult rabbit colonization model and an infant rabbit passive protection model fill a gap in preclinical efficacy assessment in cholera vaccine development.


Assuntos
Cólera , Vibrio cholerae , Coelhos , Camundongos , Animais , Cólera/prevenção & controle , Cólera/microbiologia , Lipopolissacarídeos , Vibrio cholerae/metabolismo , Toxina da Cólera , Diarreia/prevenção & controle
3.
Fish Shellfish Immunol ; 151: 109751, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38971349

RESUMO

Egg yolk antibodies (IgY) can be prepared in large quantities and economically, and have potential value as polyvalent passive vaccines (against multiple bacteria) in aquaculture. This study prepared live and inactivated Vibrio fluvialis IgY and immunized Carassius auratus prior to infection with V. fluvialis and Aeromonas hydrophila. The results showed that the two IgY antibodies hold effective passive protective rates against V. fluvialis and A. hydrophila in C. auratus. Further, the serum of C. auratus recognized the two bacteria in vitro, with a decrease in the bacteria content of the kidney. The phagocytic activity of C. auratus plasma was enhanced, with a decrease in the expression of inflammatory and antioxidant factors. Pathological sections showed that the kidney, spleen, and intestinal tissue structures were intact, and apoptosis and DNA damage decreased in kidney cells. Moreover, the immunoprotection conferred by the live V. fluvialis IgY was higher than that of the inactivated IgY. Addition, live V. fluvialis immunity induced IgY antibodies against outer membrane proteins of V. fluvialis were more than inactivated V. fluvialis immunity. Furthermore, heterologous immune bacteria will not cause infection, so V. fluvialis can be used to immunize chickens to obtain a large amount of IgY antibody. These findings suggest that the passive immunization effect of live bacterial IgY antibody on fish is significantly better than that of inactivated bacterial antibody, and the live V. fluvialis IgY hold potential value as polyvalent passive vaccines in aquaculture.


Assuntos
Aeromonas hydrophila , Gema de Ovo , Doenças dos Peixes , Imunoglobulinas , Vibrioses , Vibrio , Animais , Imunoglobulinas/imunologia , Imunoglobulinas/sangue , Vibrioses/veterinária , Vibrioses/imunologia , Vibrioses/prevenção & controle , Vibrio/imunologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/prevenção & controle , Gema de Ovo/imunologia , Aeromonas hydrophila/imunologia , Carpa Dourada/imunologia , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Infecções por Bactérias Gram-Negativas/prevenção & controle , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Imunização Passiva/veterinária , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem
4.
Nanotechnology ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39079542

RESUMO

Li-ion battery is currently considered to be the most proven technology for energy storage systems when it comes to the overall combination of energy, power, cyclability and cost. However, there are continuous expectations for cost reduction in large-scale applications, especially in electric vehicles and grids, alongside growing concerns over safety, availability of natural resources for lithium, and environmental remediation. Therefore, industry and academia have consequently shifted their focus towards "beyond Li-ion technologies". In this respect, other non-Li-based alkali-ion/polyvalent-ion batteries, non-Li-based all solid-state batteries, fluoride-ion/ammonium-ion batteries, redox-flow batteries, sand batteries and hydrogen fuel cells etc. are becoming potential cost-effective alternatives. While there has been notable swift advancement across various materials, chemistries, architectures, and applications in this field, a comprehensive overview encompassing high-energy "beyond Li-ion" technologies, along with considerations of commercial viability, is currently lacking. Therefore, in this review article, a rationalized approach is adopted to identify notable 'post-Li' candidates. Their pros and cons are comprehensively presented by discussing the fundamental principles in terms of material characteristics, relevant chemistries, and architectural developments that make a good high-energy 'beyond Li' storage system. Furthermore, a concise summary outlining the primary challenges of each system is provided, alongside the potential strategies being implemented to mitigate these issues. Additionally, the extent to which these strategies have positively influenced the performance of these 'post-Li' technologies is discussed.

5.
Arch Toxicol ; 98(2): 375-393, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38153416

RESUMO

Snakebite in India is a severe problem as it causes a mortality rate of 58,000 and a disability rate of 140,000 every year which is the highest among any other country. Antivenom is the primary therapy for snakebite, and its manufacturing techniques have essentially stayed unaltered for over a century. Indian polyvalent antivenom, a scientifically validated medicine for treating the toxic effects of snakebites, is available against the venom of the so-called Big Four snakes namely Spectacled cobra (Naja naja), Saw-scaled viper (Echis carinatus), Russell's viper (Daboia russelli) and the Common krait (Bungarus caeruleus), responsible for majority of the deaths in India. India hosts many other species of snakes, including cobras, kraits, saw-scaled vipers, sea snakes, and pit vipers, responsible for clinically severe envenomation. Neutralization strategy has been applied to access the efficacy of antivenoms, crucial for reducing snake bite deaths and disabilities. This review aims to conduct a systematic review and meta-analysis on the neutralization efficiency of the Polyvalent Antivenom (PAV) and focus on the factors that may contribute to the poor recognition of the antivenom towards the venom toxins. Reports focusing on the investigation of antivenom efficacy were searched and collected from several databases. Preclinical studies that reported the neutralization efficacy of the commercial antivenom against the medically important snakes of India were included. The articles were screened based on the inclusion criteria and 8 studies were shortlisted for meta-analysis. Pooled proportion was calculated for the antivenom efficacy reported by the studies and was found to be statistically significant with a 95% confidence interval. The heterogenicity in the venom toxicity and neutralization potency of the antivenom was evident in the overall estimate (proportion) and individual data. We provide comprehensive evidence on antivenom efficacy against medically important snakes from various parts of India which may aid in identifying the gaps in snake envenomation therapy and the need for novel potentially improved treatment of snakebites.


Assuntos
Bungarus , Daboia , Echis , Mordeduras de Serpentes , Serpentes Peçonhentas , Animais , Antivenenos/uso terapêutico , Mordeduras de Serpentes/tratamento farmacológico , Relevância Clínica
6.
Sensors (Basel) ; 24(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38339518

RESUMO

There is currently a lot of interest in the construction of point-of-care devices stemming from paper-based origami biosensors. These devices demonstrate how paper's foldability permits the construction of sensitive, selective, user-friendly, intelligent, and maintainable analytical devices for the detection of several ailments. Herein, the first example of the electrochemical aptasensor-based polyvalent dengue viral antigen detection using the origami paper-folding method is presented. Coupling it with an aptamer leads to the development of a new notation known as OBAs, or origami-based aptasensor, that presents a multitude of advantages to the developed platform, such as assisting in safeguarding the sample from air-dust particles, providing confidentiality, and providing a closed chamber to the electrodes. In this paper, gold-decorated nanocomposites of zinc and graphene oxide (Au/ZnO/GO) were synthesized via the chemical method, and characterization was conducted by Scanning Electron Microscope, Transmission Electron Microscope, UV-Vis, and XRD which reveals the successful formation of nanocomposites, mainly helping to enhance the signal and specificity of the sensor by employing aptamers, since isolation and purification procedures are not required. The biosensor that is being demonstrated here is affordable, simple, and efficient. The reported biosensor is an OBA detection of polyvalent antigens of the dengue virus in human serum, presenting a good range from 0.0001 to 0.1 mg/mL with a limit of detection of 0.0001 mg/mL. The reported single-folding ori-aptasensor demonstrates exceptional sensitivity, specificity, and performance in human serum assays, and can also be used for the POC testing of various viral infections in remote areas and underdeveloped countries, as well as being potentially effective during outbreaks. Highlights: (1) First report on origami-based aptasensors for the detection of polyvalent antigens of DENV; (2) In-house construction of low-cost origami-based setup; (3) Gold-decorated zinc/graphene nanocomposite characterization was confirmed via FESEM/UV-Vis/FTIR; (4) Cross-reactivity of dengue-aptamer has been deduced; (5) Electrochemical validation was conducted through CV.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Vírus da Dengue , Dengue , Grafite , Nanocompostos , Humanos , Técnicas Eletroquímicas/métodos , Grafite/química , Nanocompostos/química , Técnicas Biossensoriais/métodos , Dengue/diagnóstico , Ouro/química , Zinco , Aptâmeros de Nucleotídeos/química , Limite de Detecção
7.
Infect Immun ; 91(11): e0031623, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37795982

RESUMO

There are no licensed vaccines for Shigella, a leading cause of children's diarrhea and a common etiology of travelers' diarrhea. To develop a cross-protective Shigella vaccine, in this study, we constructed a polyvalent protein immunogen to present conserved immunodominant epitopes of Shigella invasion plasmid antigens B (IpaB) and D (IpaD), VirG, GuaB, and Shiga toxins on backbone protein IpaD, by applying an epitope- and structure-based multiepitope-fusion-antigen (MEFA) vaccinology platform, examined protein (Shigella MEFA) broad immunogenicity, and evaluated antibody function against Shigella invasion and Shiga toxin cytotoxicity but also protection against Shigella lethal challenge. Mice intramuscularly immunized with Shigella MEFA protein developed IgG responses to IpaB, IpaD, VirG, GuaB, and Shiga toxins 1 and 2; mouse sera significantly reduced invasion of Shigella sonnei, Shigella flexneri serotype 2a, 3a, or 6, Shigella boydii, and Shigella dysenteriae type 1 and neutralized cytotoxicity of Shiga toxins of Shigella and Shiga toxin-producing Escherichia coli in vitro. Moreover, mice intranasally immunized with Shigella MEFA protein (adjuvanted with dmLT) developed antigen-specific serum IgG, lung IgG and IgA, and fecal IgA antibodies, and survived from lethal pulmonary challenge with S. sonnei or S. flexneri serotype 2a, 3a, or 6. In contrast, the control mice died, became unresponsive, or lost 20% of body weight in 48 h. These results indicated that this Shigella MEFA protein is broadly immunogenic, induces broadly functional antibodies, and cross-protects against lethal pulmonary challenges with S. sonnei or S. flexneri serotypes, suggesting a potential application of this polyvalent MEFA protein in Shigella vaccine development.


Assuntos
Disenteria Bacilar , Vacinas contra Shigella , Shigella , Humanos , Criança , Animais , Camundongos , Shigella sonnei , Shigella flexneri , Diarreia , Viagem , Antígenos de Bactérias/genética , Pulmão , Toxinas Shiga , Imunoglobulina G , Imunoglobulina A , Anticorpos Antibacterianos , Disenteria Bacilar/prevenção & controle
8.
Proteins ; 91(10): 1444-1460, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37323089

RESUMO

Trans-sialidase (TS) superfamily of proteins comprises eight subgroups, being the proteins of Group-I (TS-GI) promising immunogens in vaccine approaches against Trypanosoma cruzi. Strikingly, TS-GI antigenic variability among parasite lineages and their influence on vaccine development has not been previously analyzed. Here, a search in GenBank detects 49 TS-GI indexed sequences, whereas the main infecting human different parasite discrete typing units (DTU) are represented. In silico comparison among these sequences indicate that they share an identity above 92%. Moreover, the antigenic regions (T-cell and B-cell epitopes) are conserved in most sequences or present amino acid substitutions that scarcely may alter the antigenicity. Additionally, since the generic term TS is usually used to refer to different immunogens of this broad family, a further in silico analysis of the TS-GI-derived fragments tested in preclinical vaccines was done to determine the coverage and identity among them, showing that overall amino acid identity of vaccine immunogens is high, but the segment coverage varies widely. Accordingly, strong H-2K, H-2I, and B-cell epitopes are dissimilarly represented among vaccine TS-derived fragments depending on the extension of the TG-GI sequence used. Moreover, bioinformatic analysis detected a set of 150 T-cell strong epitopes among the DTU-indexed sequences that strongly bind human HLA-I supertypes. In all currently reported experimental vaccines based on TS-GI fragments, mapping these 150 epitopes showed that they are moderately represented. However, despite vaccine epitopes do not present all the substitutions observed in the DTUs, these regions of the proteins are equally recognized by the same HLAs.  Interestingly, the predictions regarding global and South American population coverage estimated in these 150 epitopes are similar to the estimations in experimental vaccines when the complete sequence of TS-GI is used as an antigen. In silico prediction also shows that a number of these MHC-I restricted T-cell strong epitopes could be also cross-recognized by HLA-I supertypes and H-2Kb or H-2Kd backgrounds, indicating that these mice may be used to improve and facilitate the development of new TS-based vaccines and suggesting an immunogenic and protective potential in humans. Further molecular docking analyses were performed to strengthen these results. Taken together, different strategies that would cover more or eventually fully of these T-cell and also B-cell epitopes to reach a high level of coverage are considered.


Assuntos
Trypanosoma cruzi , Camundongos , Humanos , Animais , Trypanosoma cruzi/genética , Trypanosoma cruzi/metabolismo , Epitopos de Linfócito B/genética , Simulação de Acoplamento Molecular , Glicoproteínas/metabolismo
9.
Fish Shellfish Immunol ; 143: 109211, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37944683

RESUMO

Polyvalent antibodies can resist multiple bacterial species, and immunoglobulin Y (IgY) antibody can be economically prepared in large quantities from egg yolk; further, IgY polyvalent antibodies have application value in aquaculture. The outer membrane proteins (OMPs) PF1380 and ExbB of Pseudomonas fluorescens were expressed and purified, and the corresponding IgY antibodies were prepared. PF1380, ExbB, and the corresponding IgY antibodies could activate the innate immune responses of chicken and Carassius auratus. The passive immunization to C. auratus showed that the IgY antibodies of PF1380 and ExbB had an immune protection rate, down-regulated the expression of antioxidant-related factors (MDA, SOD, GSH-Px, and CAT) to reduce the antioxidant reaction, down-regulated the expression of inflammation-related genes (IL-6, IL-8, TNF-α, and IL-1ß) to reduce the inflammatory reaction, maintained the integrity of visceral tissue structure, and reduced apoptosis and damage of tissue cells in relation to P. fluorescens and Aeromonas hydrophila infections. Thus, the IgY antibodies of PF1380 and ExbB could be considered as passive polyvalent vaccine candidates in aquaculture.


Assuntos
Pseudomonas fluorescens , Vacinas , Animais , Proteínas de Membrana , Gema de Ovo , Antioxidantes/análise , Imunoglobulinas , Anticorpos , Inflamação , Galinhas
10.
Fish Shellfish Immunol ; 143: 109226, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37956799

RESUMO

Vibriosis and Streptococcosis are the most important bacterial diseases that infect Asian seabass (Lates calcarifer) in various stages of its life cycle. Vaccination is a cost-effective strategy to prevent the occurrence of infectious diseases and increase sustainability in the aquaculture industry. This study was aimed to develop and evaluate a killed polyvalent vaccine against Vibrio harveyi, V. alginolyticus and Streptococcus iniae, delivered by intraperitoneal injection in Asian seabass. The fish were divided into three groups with 60 fish in triplicate: I) a control group injected with phosphate-buffered saline (PBS), II) a group vaccinated by polyvalent vaccine (V. alginolyticus + V. harveyi + S. iniae) and III) a group vaccinated with the same polyvalent vaccine plus an oral booster. Immunological parameters and antibody titer were measured before and at three, five-, and eight-weeks post-vaccination. The efficacy of the killed vaccine was assessed five weeks post-vaccination by challenging with each isolate separately. The vaccinated groups had higher survival rate than control group. The highest relative percentage survival rate, 85.71 ± 3.57 % was observed in group III when challenged with V. harveyi. The vaccinated fish produced significantly higher antibody titers against V. alginolyticus, V. harveyi and S. iniae than the control group (P < 0.05). Non-specific immune parameters were significantly enhanced in the vaccinated groups, especially group III, compared to the control. The results demonstrated that the administration of a killed polyvalent vaccine can effectively protect Asian seabass against V. alginolyticus, V. harveyi and S. iniae.


Assuntos
Doenças dos Peixes , Perciformes , Infecções Estreptocócicas , Vibrioses , Animais , Streptococcus iniae , Vibrioses/prevenção & controle , Vibrioses/veterinária , Infecções Estreptocócicas/prevenção & controle , Infecções Estreptocócicas/veterinária , Vacinas Combinadas , Vacinas Bacterianas
11.
Anal Bioanal Chem ; 415(12): 2217-2226, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36864310

RESUMO

Sensitive detection of cancer cells plays a critical role in early cancer diagnosis. Nucleolin, overexpressed on the surface of cancer cells, is regarded as a candidate biomarker for cancer diagnosis. Thus, cancer cells can be detected through the detection of membrane nucleolin. Herein, we designed a nucleolin-activated polyvalent aptamer nanoprobe (PAN) to detect cancer cells. In brief, a long single-stranded DNA with many repeated sequences was synthesized through rolling circle amplification (RCA). Then the RCA product acted as a scaffold chain to combine with multiple AS1411 sequences, which was doubly modified with fluorophore and quenching group, respectively. The fluorescence of PAN was initially quenched. Upon binding to target protein, the conformation of PAN changed, leading to the recovery of fluorescence. The fluorescence signal of cancer cells treated with PAN was much brighter compared with that of monovalent aptamer nanoprobes (MAN) at the same concentration. Furthermore, the binding affinity of PAN to B16 cells was proved to be 30 times higher than that of MAN by calculating the dissociation constants. The results indicated that PAN could specifically detect target cells, and this design concept has potential to become promising in cancer diagnosis.


Assuntos
Aptâmeros de Nucleotídeos , Neoplasias , Humanos , Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Neoplasias/diagnóstico , Aptâmeros de Nucleotídeos/química , DNA de Cadeia Simples , Nucleolina
12.
Environ Res ; 217: 114911, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36427641

RESUMO

Nonthermal plasma (NTP) irradiation was employed to adjust the morphological structures and valence distribution of ferromanganese (Fe-Mn)-based binary hydro (oxide) to enhance the heterogeneous adsorption of uranyl ions. The output voltage and the liquid-plate distance played a more vital role among the NTP factors in the irradiation system in influencing the polyvalent Fe-Mn binary hydro (oxide) (poly-Fe-Mn). The formation of plates, flakes, and nanoscale nodules was specifically observed, which caused more pores and fractures in the poly-Fe-Mn binary hydro (oxide). The poly-Fe-Mn performed explicitly better in the adsorption of uranium ions in comparison with the counterpart of the Fe-Mn, which was appropriately fitted by the pseudofirst-order kinetic and Elovich models. Maximum equilibrium adsorption capacities of 663.92 and 923.45 mg/g were obtained for the Fe-Mn and poly-Fe-Mn binary hydro (oxides) toward U ions in the orthogonal design, respectively. The maximum monolayer adsorption capacity achieved by the fitting of the Langmuir model was 1091.10 mg/g. Both physisorption and chemisorption contributed to the heterogeneous process of the poly-Fe-Mn toward uranium ions. The employment of NTP irradiation changed the monolayer adsorption of the traditional Fe-Mn materials and diversified the reaction mechanisms between the interface of the Fe-Mn materials and uranium ions. The elements, including O, N, and U exhibited higher compatibility and overlapped in the samples. The highly effective capture of uranium ions from the solution by the poly-Fe-Mn binary hydro (oxide) was mainly related to the chemical deposition of O and N radicals.


Assuntos
Urânio , Purificação da Água , Óxidos/química , Águas Residuárias , Concentração de Íons de Hidrogênio , Adsorção , Íons , Cinética
13.
Nano Lett ; 22(7): 3018-3025, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35362981

RESUMO

Artificially induced in vitro cell fusion is one essential technique that has been extensively used for biological studies. Nevertheless, there is a lack of robust and efficient method to produce fused cells efficiently. Herein, we proposed to use cell-membrane-anchored polyvalent DNA ligands (PDL) to bring cells into close proximity by forming clusters to enhance PEG-induced cell fusion. PDL of complementary sequences are separately anchored onto different population of cells through cholesterol-induced hydrophobic insertion into lipid membrane. Cells are clustered via mixing cells of complementary PDL prior to cell fusion. PDL exhibited strong stability on cell membrane, induced efficient cell clustering, and eventually achieved cell fusion efficiently in combination with PEG induction. We demonstrated homogeneous and heterogeneous cell fusion of high yield on various cell types. This report presented a programmable yet robust technique for achieving efficient cell fusion that hold great application potentials.


Assuntos
Colesterol , DNA , Fusão Celular , Membrana Celular/metabolismo , Colesterol/química , DNA/química , Ligantes
14.
J Environ Manage ; 344: 118430, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37348300

RESUMO

In this study, an environmentally friendly alternative was developed using catalytic ozonation by sludge-derived biochar loaded with bimetallic Fe/Ce (O3/SBC-FeCe) for enhanced sludge dewatering. The results indicated that the lowest capillary suction time (CST) of 20.9 s and water content of dewatered sludge cake (Wc) of 64.09% were achieved under the dosage of 40 mg O3/g dry solids (DS) and 0.4 g SBC-FeCe/g DS which were considered as the optimum condition. In view of excellent electron exchanging capacity of SBC-FeCe with rich Lewis acid sites and conversions of valence sates of Fe and Ce, more O3 were decomposed into reactive oxygen species under the catalytic action of SBC-FeCe, which strengthened oxidizing capacity. Enhanced oxidation rendered sludge cells inactivation and compact network structure rupture releasing intracellular water and organic substances. Subsequently, hydrophilic organic matters were attacked and eliminated lessening sludge viscosity and colloidal forces and intensifying hydrophobicity and flowability. In addition, changes of sludge morphology suggested that sludge roughness was alleviated, structural strength and compressibility were raised and porous and retiform structure was constructed providing channels for water outflow by adding skeleton builder of SBC-FeCe. Overall, the synergistic interaction of strengthened oxidation and skeleton construction improved sludge dewaterability.


Assuntos
Ozônio , Esgotos , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Oxirredução , Água
15.
Small ; 18(11): e2107374, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35129310

RESUMO

Specific recognition and strong affinities of bacteria receptors with the host cell glycoconjugates pave the way to control the bacteria aggregation and kill bacteria. Herein, using aggregation-induced emission (AIE) molecules decorated upper critical solution temperature (UCST) polyvalent scaffold (PATC-GlcN), an approach toward visualizing bacteria aggregation and controlling bacteria-polyvalent scaffolds affinities under temperature stimulus is described. Polyvalent scaffolds with diblocks, one UCST block PATC of polyacrylamides showing a sharp UCST transition and typical AIE behavior, the second bacteria recognition block GlcN of hydrophilic glucosamine modified polyacrylamide, are prepared through a reversible addition and fragmentation chain transfer polymerization. Aggregated chain conformation of polyvalent scaffolds at temperature below UCST induces the aggregation of E. coli ATCC8739, because of the high density of glucosamine moieties, whereas beyond UCST, the hydrophilic state of the scaffolds dissociates the bacteria aggregation. The sweet-talking of bacteria toward the polyvalent scaffolds can be visualized by the fluorescent imaging technique, simultaneously. Due to the specific recognition of polyvalent scaffolds with bacteria, the photothermal agent IR780 loaded PATC-GlcN shows the targeted killing ability toward E. coli ATCC8739 in vitro and in vivo under NIR radiation.


Assuntos
Escherichia coli , Polímeros , Polimerização , Temperatura
16.
Appl Environ Microbiol ; 88(15): e0038422, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35856689

RESUMO

Shigella invasion plasmid antigen B (IpaB) plays an important role in causing shigellosis. While IpaB's protein structure, contribution to disease mechanism, and protective immunity against Shigella infection have been well studied, the significance of individual antigenic domains, especially at the N terminus, has not been systematically characterized. In an attempt to identify IpaB protein functional epitopes and to construct an optimized polyvalent multiepitope fusion antigen (MEFA) immunogen for development of a protein-based cross protective Shigella vaccine, in this study, we in silico identified immunodominant B-cell epitopes from the IpaB N terminus, fused each epitope to carrier protein CsaB (the major subunit of enterotoxigenic Escherichia coli CS4 adhesin) for epitope fusion proteins, immunized mice with each epitope fusion protein, examined IpaB-specific antibody responses, and assessed antibody functional activity against Shigella bacterial invasion. A total of 10 B-cell continuous epitopes were identified from IpaB N terminus, and after being fused to carrier protein CsaB, each epitope induced anti-IpaB IgG responses in the intramuscularly immunized mice. While in vitro antibody invasion inhibition assays demonstrated that antibodies derived from each identified epitope were functional, epitopes 1 (LAKILASTELGDNTIQAA), 2 (HSTSNILIPELKAPKSL), and 4 (QARQQKNLEFSDKI) induced antibodies to inhibit Shigella sonnei and Shigella flexneri invasion at levels similar to those of recombinant IpaB protein, suggesting that these three IpaB epitopes can be used potentially as IpaB-representing antigens to induce protective anti-IpaB antibodies and for construction of an epitope-based polyvalent MEFA protein immunogen for Shigella vaccine development. IMPORTANCE Currently, there are no effective measures for control or prevention of Shigella infection, the most common cause of diarrhea in children 3 to 5 years of age in developing countries. Challenges in developing Shigella vaccines include virulence heterogeneity among species and serotypes. To overcome virulence heterogeneity challenge and to develop a protein-based multivalent Shigella vaccine, we targeted a panel of virulence factors, including invasion plasmid antigens, identified functional antigenic domains or epitopes as representative antigens, and applied the novel epitope- and structure-based vaccinology platform multiepitope fusion antigen (MEFA) to integrate functional antigenic domains or epitopes into a backbone immunogen to produce a polyvalent immunogen for cross protective antibodies. Identification of functional IpaB epitopes from this study enhances our understanding of IpaB immunogenicity and allows us to directly utilize IpaB epitopes for construction of a cross protective polyvalent Shigella immunogen and to accelerate development of a protein-based Shigella vaccine.


Assuntos
Disenteria Bacilar , Vacinas contra Shigella , Shigella , Animais , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Transporte , Disenteria Bacilar/prevenção & controle , Epitopos de Linfócito B/química , Camundongos , Plasmídeos , Shigella/genética , Shigella flexneri
17.
Arch Microbiol ; 204(10): 597, 2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36056994

RESUMO

Salmonella and Escherichia coli are important foodborne pathogens, forming bacterial biofilms that contribute to their virulence, antimicrobial resistance, and survival on surfaces. Broad lytic phages are promising alternatives to conventional technologies for pathogen biocontrol and reducing biofilms. Herein, we isolated and characterized a novel polyvalent phage STP55 that not only lyse some serotypes of Salmonella, but also some E. coli strains. It had a wide range of pH (4-12) and thermal (30-60 °C) tolerances. The latent time was determined to be 10 min in the one-step growth experiment. Morphological observations by transmission electron microscopy and phylogenetic analysis using terminase gene classified STP55 to family Ackermannviridae in the order Caudovirales, with a complex tail structure. The genome was found to comprise 157,708 bp double-stranded DNA, with 44.57% GC content, 207 predicted ORFs and with no genes associated with antibiotic resistance, toxins, lysogeny, and virulence factors. Particularly, phage STP55 was able to inhibit single- and dual-species biofilms formation by S. Typhimurium ATCC 14028 and E. coli O157: H7, with a reduction percentage of 51.0%, 47.8% and 52.8%, respectively. Moreover, more than 65.0%, 72.9% and 46.2% of an established, single- and dual-species biofilms by S. Typhimurium ATCC 14028 and E. coli O157: H7 were removed after 8 h exposure to the phage STP55, respectively. The elimination effect of STP55 on dual-species biofilm formed on lettuce was further observed by SEM. Overall, our results demonstrated that STP55 is a promising antimicrobial against Salmonella and E. coli.


Assuntos
Bacteriófagos , Escherichia coli O157 , Bacteriófagos/genética , Biofilmes , Escherichia coli O157/genética , Microbiologia de Alimentos , Genômica , Filogenia , Salmonella typhimurium/genética
18.
Fish Shellfish Immunol ; 128: 101-112, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35926820

RESUMO

Among aquaculture vaccines, polyvalent vaccines (for immunoprotection against multiple bacterial species) are more efficient and can better avoid bacterial resistance and antibiotic residues in fish. Here, 15 outer membrane proteins (OMPs) of Aeromonas hydrophila were cloned and purified, and mouse antisera were prepared. Passive immunization to Carassius auratus showed that four OMPs sera (OmpW, OmpAII, P5, and AHA2685) and the entire OMPs serum held effective immunoprotection against A. hydrophila infection. Furthermore, the active immunization of four OMPs to C. auratus showed that OmpW, OmpAII, P5, and AHA2685 held effective immunoprotection against A. hydrophila, and OmpW held active cross-protection against Vibrio alginolyticus. The mechanisms of these four candidate vaccines in triggering immune responses were subsequently explored. They all could activate innate immune responses in active immunization, down-regulate (p < 0.05) the inflammation-related genes expression to reduce the inflammatory reaction induced by A. hydrophila, and down-regulate (p < 0.05) antioxidant-related factors to reduce the antioxidant reaction for bacterial infection. Noteablely, the four OMPs had protective abilities on kidney and spleen tissues of C. auratus after challenged with A. hydrophila and V. alginolyticus by histopathological observation. Collectively, our results identify OmpW as a polyvalent vaccine candidate, and OmpAII, P5, and AHA2685 as vaccine candidates against A. hydrophila infection in fish.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Doenças dos Roedores , Aeromonas hydrophila , Animais , Antibacterianos , Antígenos de Bactérias , Antioxidantes , Proteínas da Membrana Bacteriana Externa , Vacinas Bacterianas , Carpas/metabolismo , Infecções por Bactérias Gram-Negativas/prevenção & controle , Infecções por Bactérias Gram-Negativas/veterinária , Soros Imunes , Camundongos , Vacinas Combinadas
19.
Environ Sci Technol ; 56(23): 17177-17187, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36413403

RESUMO

Eradication of biofilms that may harbor pathogens in water distribution systems is an elusive goal due to limited penetration of residual disinfectants. Here, we explore the use of engineered filamentous coliphage M13 for enhanced biofilm affinity and precise delivery of lytic polyvalent phages (i.e., broad-host-range phages lysing multiple host strains after infection). To promote biofilm attachment, we modified the M13 major coat protein (pVIII) by inserting a peptide sequence with high affinity for Pseudomonas aeruginosa (P. aeruginosa) extracellular polysaccharides (commonly present on the surface of biofilms in natural and engineered systems). Additionally, we engineered the M13 tail fiber protein (pIII) to contain a peptide sequence capable of binding a specific polyvalent lytic phage. The modified M13 had 102- and 5-fold higher affinity for P. aeruginosa-dominated mixed-species biofilms than wildtype M13 and unconjugated polyvalent phage, respectively. When applied to a simulated water distribution system, the resulting phage conjugates achieved targeted phage delivery to the biofilm and were more effective than polyvalent phages alone in reducing live bacterial biomass (84 vs 34%) and biofilm surface coverage (81 vs 22%). Biofilm regrowth was also mitigated as high phage concentrations induced residual bacteria to downregulate genes associated with quorum sensing and extracellular polymeric substance secretion. Overall, we demonstrate that engineered M13 can enable more accurate delivery of polyvalent phages to biofilms in flow-through systems for enhanced biofilm control.


Assuntos
Bacteriófagos , Bacteriófagos/genética , Matriz Extracelular de Substâncias Poliméricas , Biofilmes , Pseudomonas aeruginosa , Colífagos , Peptídeos/farmacologia , Polissacarídeos/farmacologia , Água
20.
Int J Mol Sci ; 24(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36613616

RESUMO

The high affinity and/or selectivity of oligonucleotide-mediated binding offers a myriad of therapeutical and analytical applications, whose rational design implies an accurate knowledge of the involved molecular mechanisms, concurring equilibrium processes and key affinity parameters. Oligonucleotide-functionalized gold surfaces or nanostructures are regularly employed analytical platforms for the development of label-free optical or electrochemical biosensors, and recently, novel detection platform designs have been increasingly considering the synergistic effect of polyvalent binding, involving the simultaneous interaction of two or several oligonucleotide strands. Considering the general lack of studies involving ternary single-stranded DNA (ssDNA) interactions, a complementary analytical workflow involving capillary gel electrophoretic (CGE) mobility shift assay, microcalorimetry and computational modeling has been deployed for the characterization of a series of free and surface-bound binary and ternary oligonucleotide interactions. As a proof of concept, the DNA analogue of MicroRNA 21 (miR21), a well-known oncogenic short MicroRNA (miRNA) sequence, has been chosen as a target molecule, simulating limiting-case scenarios involved in dual molecular recognition models exploited in affinity (bio)sensing. Novel data for the characterization of oligonucleotide interacting modules is revealed, offering a fast and complete mapping of the specific or non-specific, often competing, binary and ternary order interactions in dynamic equilibria, occurring between various free and metal surface-bound oligonucleotides.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Oligonucleotídeos/química , DNA , DNA de Cadeia Simples
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA