Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Neurophysiol ; 120(3): 926-941, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29742022

RESUMO

Similar to primates, visual cortex in rodents appears to be organized in two distinct hierarchical streams. However, there is still little known about how visual information is processed along those streams in rodents. In this study, we examined how repetition suppression and position and clutter tolerance of the neuronal representations evolve along the putative ventral visual stream in rats. To address this question, we recorded multiunit spiking activity in primary visual cortex (V1) and the more downstream visual laterointermediate (LI) area of head-restrained Long-Evans rats. We employed a paradigm reminiscent of the continuous carry-over design used in human neuroimaging. In both areas, stimulus repetition attenuated the early phase of the neuronal response to the repeated stimulus, with this response suppression being greater in area LI. Furthermore, stimulus preferences were more similar across positions (position tolerance) in area LI than in V1, even though the absolute responses in both areas were very sensitive to changes in position. In contrast, the neuronal representations in both areas were equally good at tolerating the presence of limited visual clutter, as modeled by the presentation of a single flank stimulus. When probing tolerance of the neuronal representations with stimulus-specific adaptation, we detected no position tolerance in either examined brain area, whereas, on the contrary, we revealed clutter tolerance in both areas. Overall, our data demonstrate similarities and discrepancies in processing of visual information along the ventral visual stream of rodents and primates. Moreover, our results stress caution in using neuronal adaptation to probe tolerance of the neuronal representations. NEW & NOTEWORTHY Rodents are emerging as a popular animal model that complement primates for studying higher level visual functions. Similar to findings in primates, we demonstrate a greater repetition suppression and position tolerance of the neuronal representations in the downstream laterointermediate area of Long-Evans rats compared with primary visual cortex. However, we report no difference in the degree of clutter tolerance between the areas. These findings provide additional evidence for hierarchical processing of visual stimuli in rodents.


Assuntos
Neurônios/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Adaptação Fisiológica/fisiologia , Animais , Imageamento por Ressonância Magnética , Masculino , Modelos Animais , Estimulação Luminosa/métodos , Ratos , Ratos Long-Evans , Estatísticas não Paramétricas , Córtex Visual/anatomia & histologia
2.
J Neurophysiol ; 112(8): 1963-83, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24990566

RESUMO

Recent studies have revealed a surprising degree of functional specialization in rodent visual cortex. Anatomically, suggestions have been made about the existence of hierarchical pathways with similarities to the ventral and dorsal pathways in primates. Here we aimed to characterize some important functional properties in part of the supposed "ventral" pathway in rats. We investigated the functional properties along a progression of five visual areas in awake rats, from primary visual cortex (V1) over lateromedial (LM), latero-intermediate (LI), and laterolateral (LL) areas up to the newly found lateral occipito-temporal cortex (TO). Response latency increased >20 ms from areas V1/LM/LI to areas LL and TO. Orientation and direction selectivity for the used grating patterns increased gradually from V1 to TO. Overall responsiveness and selectivity to shape stimuli decreased from V1 to TO and was increasingly dependent upon shape motion. Neural similarity for shapes could be accounted for by a simple computational model in V1, but not in the other areas. Across areas, we find a gradual change in which stimulus pairs are most discriminable. Finally, tolerance to position changes increased toward TO. These findings provide unique information about possible commonalities and differences between rodents and primates in hierarchical cortical processing.


Assuntos
Neurônios/fisiologia , Lobo Occipital/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Animais , Estimulação Luminosa , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA