Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 337
Filtrar
1.
Cell ; 187(5): 1160-1176.e21, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38382524

RESUMO

The α7 nicotinic acetylcholine receptor is a pentameric ligand-gated ion channel that plays an important role in cholinergic signaling throughout the nervous system. Its unique physiological characteristics and implications in neurological disorders and inflammation make it a promising but challenging therapeutic target. Positive allosteric modulators overcome limitations of traditional α7 agonists, but their potentiation mechanisms remain unclear. Here, we present high-resolution structures of α7-modulator complexes, revealing partially overlapping binding sites but varying conformational states. Structure-guided functional and computational tests suggest that differences in modulator activity arise from the stable rotation of a channel gating residue out of the pore. We extend the study using a time-resolved cryoelectron microscopy (cryo-EM) approach to reveal asymmetric state transitions for this homomeric channel and also find that a modulator with allosteric agonist activity exploits a distinct channel-gating mechanism. These results define mechanisms of α7 allosteric modulation and activation with implications across the pentameric receptor superfamily.


Assuntos
Receptor Nicotínico de Acetilcolina alfa7 , Humanos , Receptor Nicotínico de Acetilcolina alfa7/química , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/ultraestrutura , Sítios de Ligação , Microscopia Crioeletrônica , Inflamação/tratamento farmacológico , Transdução de Sinais , Regulação Alostérica
2.
Cell ; 184(4): 943-956.e18, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33571432

RESUMO

Dopamine receptors, including D1- and D2-like receptors, are important therapeutic targets in a variety of neurological syndromes, as well as cardiovascular and kidney diseases. Here, we present five cryoelectron microscopy (cryo-EM) structures of the dopamine D1 receptor (DRD1) coupled to Gs heterotrimer in complex with three catechol-based agonists, a non-catechol agonist, and a positive allosteric modulator for endogenous dopamine. These structures revealed that a polar interaction network is essential for catecholamine-like agonist recognition, whereas specific motifs in the extended binding pocket were responsible for discriminating D1- from D2-like receptors. Moreover, allosteric binding at a distinct inner surface pocket improved the activity of DRD1 by stabilizing endogenous dopamine interaction at the orthosteric site. DRD1-Gs interface revealed key features that serve as determinants for G protein coupling. Together, our study provides a structural understanding of the ligand recognition, allosteric regulation, and G protein coupling mechanisms of DRD1.


Assuntos
Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Receptores de Dopamina D1/metabolismo , Transdução de Sinais , Regulação Alostérica , Sítio Alostérico , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Catecóis/metabolismo , Microscopia Crioeletrônica , Fenoldopam/química , Fenoldopam/farmacologia , Subunidades alfa Gs de Proteínas de Ligação ao GTP/química , Subunidades alfa Gs de Proteínas de Ligação ao GTP/ultraestrutura , Células HEK293 , Humanos , Ligantes , Modelos Moleculares , Multimerização Proteica , Receptores de Dopamina D1/química , Receptores de Dopamina D1/ultraestrutura , Receptores de Dopamina D2/metabolismo , Homologia Estrutural de Proteína
3.
Brain ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028675

RESUMO

GABABRs are key membrane proteins that continually adapt the excitability of the nervous system. These G-protein coupled receptors are activated by the brain's premier inhibitory neurotransmitter GABA. They are obligate heterodimers composed of GABA-binding GABABR1 and G-protein-coupling GABABR2 subunits. Recently, three variants (G693W, S695I, I705N) have been identified in the gene (GABBR2) encoding for GABABR2. Individuals that harbour any of these variants exhibit severe developmental epileptic encephalopathy and intellectual disability, but the underlying pathogenesis that is triggered in neurons, remains unresolved. Using a range of confocal imaging, flow cytometry, structural modelling, biochemistry, live cell Ca2+ imaging of presynaptic terminals, whole-cell electrophysiology of HEK-293T cells and neurons, and two-electrode voltage clamping of Xenopus oocytes we have probed the biophysical and molecular trafficking and functional profiles of G693W, S695I and I705N variants. We report that all three point mutations impair neuronal cell surface expression of GABABRs, reducing signalling efficacy. However, a negative effect evident for one variant perturbed neurotransmission by elevating presynaptic Ca2+ signalling. This is reversed by enhancing GABABR signalling via positive allosteric modulation. Our results highlight the importance of studying neuronal receptors expressed in nervous system tissue and provide new mechanistic insights into how GABABR variants can initiate neurodevelopmental disease whilst highlighting the translational suitability and therapeutic potential of allosteric modulation for correcting these deficits.

4.
Cell Mol Life Sci ; 81(1): 332, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110172

RESUMO

Drug modulation of the α7 acetylcholine receptor has emerged as a therapeutic strategy for neurological, neurodegenerative, and inflammatory disorders. α7 is a homo-pentamer containing topographically distinct sites for agonists, calcium, and drug modulators with each type of site present in five copies. However, functional relationships between agonist, calcium, and drug modulator sites remain poorly understood. To investigate these relationships, we manipulated the number of agonist binding sites, and monitored potentiation of ACh-elicited single-channel currents through α7 receptors by PNU-120596 (PNU) both in the presence and absence of calcium. When ACh is present alone, it elicits brief, sub-millisecond channel openings, however when ACh is present with PNU it elicits long clusters of potentiated openings. In receptors harboring five agonist binding sites, PNU potentiates regardless of the presence or absence of calcium, whereas in receptors harboring one agonist binding site, PNU potentiates in the presence but not the absence of calcium. By varying the numbers of agonist and calcium binding sites we show that PNU potentiation of α7 depends on a balance between agonist occupancy of the orthosteric sites and calcium occupancy of the allosteric sites. The findings suggest that in the local cellular environment, fluctuations in the concentrations of neurotransmitter and calcium may alter this balance and modulate the ability of PNU to potentiate α7.


Assuntos
Cálcio , Receptor Nicotínico de Acetilcolina alfa7 , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Sítios de Ligação , Cálcio/metabolismo , Humanos , Animais , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/metabolismo , Acetilcolina/metabolismo , Acetilcolina/farmacologia , Células HEK293 , Xenopus laevis , Agonistas Nicotínicos/farmacologia , Agonistas Nicotínicos/metabolismo , Isoxazóis
5.
J Struct Biol ; 216(3): 108113, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39079583

RESUMO

Kainate receptors play an important role in the central nervous system by mediating postsynaptic excitatory neurotransmission and modulating the release of the inhibitory neurotransmitter GABA through a presynaptic mechanism. To date, only three structures of the ligand-binding domain (LBD) of the kainate receptor subunit GluK1 in complex with positive allosteric modulators have been determined by X-ray crystallography, all belonging to class II modulators. Here, we report a high-resolution structure of GluK1-LBD in complex with kainate and BPAM538, which belongs to the full-spanning class III. One BPAM538 molecule binds at the GluK1 dimer interface, thereby occupying two allosteric binding sites simultaneously. BPAM538 stabilizes the active receptor conformation with only minor conformational changes being introduced to the receptor. Using a calcium-sensitive fluorescence-based assay, a 5-fold potentiation of the kainate response (100 µM) was observed in presence of 100 µM BPAM538 at GluK1(Q)b, whereas no potentiation was observed at GluK2(VCQ)a. Using electrophysiology recordings of outside-out patches excised from HEK293 cells, BPAM538 increased the peak response of GluK1(Q)b co-expressed with NETO2 to rapid application of 10 mM L-glutamate with 130 ± 20 %, and decreased desensitization determined as the steady-state/peak response ratio from 23 ± 2 % to 90 ± 4 %. Based on dose-response relationship experiments on GluK1(Q)b the EC50 of BPAM538 was estimated to be 58 ± 29 µM.


Assuntos
Ácido Caínico , Receptores de Ácido Caínico , Receptores de Ácido Caínico/química , Receptores de Ácido Caínico/metabolismo , Receptores de Ácido Caínico/genética , Cristalografia por Raios X , Ácido Caínico/metabolismo , Ácido Caínico/farmacologia , Ligantes , Regulação Alostérica , Humanos , Sítios de Ligação , Ligação Proteica , Domínios Proteicos , Sítio Alostérico , Células HEK293
6.
Curr Issues Mol Biol ; 46(1): 788-807, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38248353

RESUMO

Glutamate (Glu) toxicity has been an important research topic in toxicology and neuroscience studies. In vitro and in vivo studies have shown that Group II metabotropic Glu2 (mGlu2) activators have cell viability effects. This study aims to determine a candidate ligand with high mGlu2 allosteric region activity among cytotoxicity-safe molecules using the in silico positioning method and to evaluate its cell viability effect in vitro. We investigated the candidate molecule's cell viability effect on the SH-SY5Y human neuroblastoma cell line by MTT analysis. In the study, LY 379268 (agonist) and JNJ-46281222 (positive allosteric modulator; PAM) were used as control reference molecules. Drug bank screening yielded THRX-195518 (docking score being -12.4 kcal/mol) as a potential novel drug candidate that has a high docking score and has not been mentioned in the literature so far. The orthosteric agonist LY 379268 exhibited a robust protective effect in our study. Additionally, our findings demonstrate that JNJ-46281222 and THRX-195518, identified as activating the mGlu2 allosteric region through in silico methods, preserve cell viability against Glu toxicity. Therefore, our study not only emphasizes the positive effects of this compound on cell viability against Glu toxicity but also sheds light on the potential of THRX-195518, acting as a mGlu2 PAM, based on in silico absorption, distribution, metabolism, excretion, and toxicity (ADMET) data, as a candidate drug molecule. These findings underscore the potential utility of THRX-195518 against both neurotoxicity and Central Nervous System (CNS) disorders, providing valuable insights.

7.
Mov Disord ; 39(4): 733-738, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38357797

RESUMO

BACKGROUND: SAGE-324/BIIB124 is an investigational positive allosteric modulator of GABAA receptors. OBJECTIVE: KINETIC (NCT04305275), a double-blind, randomized, placebo-controlled, phase 2 study, evaluated SAGE-324/BIIB124 in individuals with essential tremor (ET). METHODS: Individuals aged 18 to 80 years were randomly assigned 1:1 to orally receive 60 mg of SAGE-324/BIIB124 or placebo once daily for 28 days. The primary endpoint was change from baseline in The Essential Tremor Rating Assessment Scale-Performance Subscale (TETRAS-PS) Item 4 (upper-limb tremor) at day 29 with SAGE-324/BIIB124 versus placebo. RESULTS: Between May 2020 and February 2021, 69 U.S. participants were randomly assigned to receive SAGE-324/BIIB124 (n = 34) or placebo (n = 35). There was a significant reduction from baseline in TETRAS-PS Item 4 at day 29 with SAGE-324/BIIB124 versus placebo (least squares mean [standard error]: -2.31 [0.401] vs. -1.24 [0.349], P = 0.0491). The most common treatment-emergent adverse events included somnolence, dizziness, fatigue, and balance disorder. CONCLUSION: These results support further development of SAGE-324/BIIB124 for potential ET treatment. © 2024 Sage Therapeutics, Inc and The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Tremor Essencial , Humanos , Tremor Essencial/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Feminino , Idoso , Método Duplo-Cego , Adulto , Idoso de 80 Anos ou mais , Adulto Jovem , Adolescente , Resultado do Tratamento
8.
Purinergic Signal ; 20(5): 559-570, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38416332

RESUMO

The A3 adenosine receptor (AR) is an important inflammatory and immunological target. However, the underlying mechanisms are not fully understood. Here, we report the gene regulation in HL-60 cells treated acutely with highly selective A3AR agonist MRS5698, positive allosteric modulator (PAM) LUF6000, or both. Both pro- and anti-inflammatory genes, such as IL-1a, IL-1ß, and NFκBIZ, are significantly upregulated. During our observations, LUF6000 alone produced a lesser effect, while the MRS5698 + LUF6000 group demonstrated generally greater effects than MRS5698 alone, consistent with allosteric enhancement. The number of genes up- and down-regulated are similar. Pathway analysis highlighted the critical involvement of signaling molecules, including IL-6 and IL-17. Important upstream regulators include IL-1a, IL-1ß, TNF-α, NF-κB, etc. PPAR, which modulates eicosanoid metabolism, was highly downregulated by the A3AR agonist. Considering previous pharmacological results and mathematical modeling, LUF6000's small enhancement of genetic upregulation suggested that MRS5698 is a nearly full agonist, which we demonstrated in both cAMP and calcium assays. The smaller effect of LUF6000 on MRS5698 in comparison to its effect on Cl-IB-MECA was shown in both HL-60 cells endogenously expressing the human (h) A3AR and in recombinant hA3AR-expressing CHO cells, consistent with its HL-60 cell genetic regulation patterns. In summary, by using both selective agonists and PAM, we identified genes that are closely relevant to immunity and inflammation to be regulated by A3AR in differentiated HL-60 cells, a cell model of neutrophil function. In addition, we demonstrated the previously uncharacterized allosteric signaling-enhancing effect of LUF6000 in cells endogenously expressing the hA3AR.


Assuntos
Agonistas do Receptor A3 de Adenosina , Receptor A3 de Adenosina , Humanos , Células HL-60 , Receptor A3 de Adenosina/metabolismo , Receptor A3 de Adenosina/genética , Agonistas do Receptor A3 de Adenosina/farmacologia , Regulação Alostérica/efeitos dos fármacos , Adenosina/análogos & derivados , Adenosina/farmacologia
9.
J Physiol ; 601(12): 2447-2472, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37026398

RESUMO

Gloeobacter violaceus ligand-gated ion channel (GLIC) is a prokaryotic orthologue of brain pentameric neurotransmitter receptors. Using whole-cell patch-clamp electrophysiology in a host cell line, we show that short-chain dicarboxylate compounds are positive modulators of pHo 5-evoked GLIC activity, with a rank order of action fumarate > succinate > malonate > glutarate. Potentiation by fumarate depends on intracellular pH, mainly as a result of a strong decrease of the pHo 5-evoked current when intracellular pH decreases. The modulating effect of fumarate also depends on extracellular pH, as fumarate is a weak inhibitor at pHo 6 and shows no agonist action at neutral pHo. A mutational analysis of residue dependency for succinate and fumarate effects, based on two carboxylate-binding pockets previously identified by crystallography (Fourati et al., 2020), shows that positive modulation involves both the inter-subunit pocket, homologous to the neurotransmitter-binding orthotopic site, and the intra-subunit (also called vestibular) pocket. An almost similar pattern of mutational impact is observed for the effect of caffeate, a known negative modulator. We propose, for both dicarboxylate compounds and caffeate, a model where the inter-subunit pocket is the actual binding site, and the region corresponding to the vestibular pocket is required either for inter-subunit binding itself, or for binding-to-gating coupling during the allosteric transitions involved in pore-gating modulation. KEY POINTS: Using a bacterial orthologue of brain pentameric neurotransmitter receptors, we show that the orthotopic/orthosteric agonist site and the adjacent vestibular region are functionally interdependent in mediating compound-elicited modulation. We propose that the two sites in the extracellular domain are involved 'in series', a mechanism which may have relevance for eukaryote receptors. We show that short-chain dicarboxylate compounds are positive modulators of the Gloeobacter violaceus ligand-gated ion channel (GLIC). The most potent compound identified is fumarate, known to occupy the orthotopic/orthosteric site in previously published crystal structures. We show that intracellular pH modulates GLIC allosteric transitions, as previously known for extracellular pH. We report a caesium to sodium permeability ratio (PCs /PNa ) of 0.54 for GLIC ion pore.


Assuntos
Cianobactérias , Canais Iônicos de Abertura Ativada por Ligante , Canais Iônicos de Abertura Ativada por Ligante/química , Cianobactérias/metabolismo , Receptores de Neurotransmissores/metabolismo , Succinatos/metabolismo , Proteínas de Bactérias/metabolismo
10.
Biochem Biophys Res Commun ; 668: 27-34, 2023 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-37235916

RESUMO

Skeletal muscle-type nicotinic acetylcholine receptors (m-nAChRs) are ligand-gated ion channels that open after activation by ACh and whose signals cause muscle contraction. Defects in neurotransmission are reported in disorders such as myasthenia gravis (MG) and congenital myasthenia syndromes (CMS). Although treatments for these disorders exist, therapies which significantly increase muscle strength have yet to be reported. Positive allosteric modulators (PAMs), which promote ACh signaling through AChRs, are expected to be promising therapeutic agents. In this study, we identified an m-nAChR PAM called AS3513678 by high-throughput screening using human myotube cells and modified it to obtain novel compounds (AS3566987 and AS3580239) that showed even stronger PAM activity. AS3580239 caused a leftward shift in the ACh concentration-response curve and was 14.0-fold potent at 10 µM compared with vehicle. Next, we examined the effect of AS3580239 on electrically-induced isometric contraction of the extensor digitorum longus (EDL) muscle in wild-type (WT) and MG model rats. AS3580239 enhanced EDL muscle contraction in both WT and MG model rats at 30 µM. These data suggest that AS3580239 improved neurotransmission and enhanced muscle strength. Thus, m-nAChR PAMs may be a useful treatment for neuromuscular diseases.


Assuntos
Receptores Nicotínicos , Ratos , Animais , Humanos , Receptores Nicotínicos/metabolismo , Regulação Alostérica , Agonistas Nicotínicos/farmacologia , Transmissão Sináptica , Músculo Esquelético/metabolismo
11.
Pharmacol Res ; 191: 106759, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37023990

RESUMO

Considerable progress has been made in recent years towards the identification and characterisation of novel subtype-selective modulators of nicotinic acetylcholine receptors (nAChRs). In particular, this has focussed on modulators of α7 nAChRs, a nAChR subtype that has been identified as a target for drug discovery in connection with a range of potential therapeutic applications. This review focusses upon α7-selective modulators that bind to receptor sites other than the extracellular 'orthosteric' agonist binding site for the endogenous agonist acetylcholine (ACh). Such compounds include those that are able to potentiate responses evoked by orthosteric agonists such as ACh (positive allosteric modulators; PAMs) and those that are able to activate α7 nAChRs by direct allosteric activation in the absence of an orthosteric agonist (allosteric agonists or 'ago-PAMs'). There has been considerable debate about the mechanism of action of α7-selective PAMs and allosteric agonists, much of which has centred around identifying the location of their binding sites on α7 nAChRs. Based on a variety of experimental evidence, including recent structural data, there is now clear evidence indicating that at least some α7-selective PAMs bind to an inter-subunit site located in the transmembrane domain. In contrast, there are differing hypotheses about the site or sites at which allosteric agonists bind to α7 nAChRs. It will be argued that the available evidence supports the conclusion that direct allosteric activation by allosteric agonists/ago-PAMs occurs via the same inter-subunit transmembrane site that has been identified for several α7-selective PAMs.


Assuntos
Receptores Nicotínicos , Receptor Nicotínico de Acetilcolina alfa7 , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Regulação Alostérica , Sítios de Ligação , Receptores Nicotínicos/metabolismo , Acetilcolina/farmacologia
12.
Bioorg Med Chem Lett ; 80: 129106, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36528230

RESUMO

Herein, we report on the further chemical optimization of the first reported mGlu7 positive allosteric modulator (PAM), VU6027459. Replacement of the quinoline core by a cinnoline scaffold increased mGlu7 PAM potency by âˆ¼ 10-fold, and concomitant introduction of a chiral tricyclic motif led to potent mGlu7 PAMs with enantioselective mGlu receptor selectivity profiles. Of these, VU6046980 emerged as a putative in vivo tool compound with excellent CNS penetration (Kp = 4.1; Kp,uu = 0.7) and efficacy in preclinical models. However, either off-target activity at the sigma-1 receptor or activity at a target not elucidated by large ancillary pharmacology panels led to sedation not driven by activation of mGlu7 (validated in Grm7 knockout mice). Thus, despite a significant advance, a viable mGlu7 PAM in vivo tool remains elusive.


Assuntos
Regulação Alostérica , Camundongos , Animais
13.
Bioorg Med Chem ; 83: 117236, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36934527

RESUMO

NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo . Activation of NR2A-containing NMDA receptors promotes neuronal survival and exerts a neuroprotective action, whereas over activating GluN2B-containing receptor results in excitotoxicity, increasing neuronal apoptosis. Our previous study has identified Npam 43 as a NMDAR positive allosteric modulators. However, the cis-trans isomerization impedes the development of Npam 43 as potential neuroprotective agents. To discover more potent and selective GluN2A NMDAR positive allosteric modulators, 38 derivatives were synthesized and evaluated their neuroprotective effect on glutamate-exposed PC-12 cells. The allosteric activities of compounds were evaluated using calcium imaging approaches. Among them, compound 5c exhibit GluN1/2A selectivity over GluN1/2B and show neuroprotective activity in vitro and in vivo. This study reported a series of GluN1/2A positive allosteric modulators as neuroprotective agents, and provided a potential opportunity to discover new drugs for stroke treatment.


Assuntos
Fármacos Neuroprotetores , Receptores de N-Metil-D-Aspartato , Apoptose , Morte Celular , Fármacos Neuroprotetores/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais , Acidente Vascular Cerebral/tratamento farmacológico , Regulação Alostérica/efeitos dos fármacos
14.
Bioorg Med Chem ; 92: 117418, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37536263

RESUMO

In this study, twenty-two novel cholic acid (CA) derivatives were designed and synthesized as potential Takeda G protein-coupled receptor 5 (TGR5) positive allosteric modulators (PAMs) using structure-based drug design (SBDD). GloSensor cAMP accumulation assay was employed to assess the functional activity and allosteric mechanism of final compounds. Biological results showed that all target compounds were able to activate the TGR5 in the cAMP formation assay. Remarkably, compound B1, selective methylation of 7-OH in CA, exhibited 5-fold higher activity for TGR5 compared to that of CA. Moreover, B1 positively modulate the functional activity of chenodeoxycholic acid (CDCA) in TGR5, indicating that B1 is a TGR5 PAM. On the other hand, 12-carbonyl derivative A1 displayed 7-fold higher potency for TGR5 relative to CA. Unexpectedly, compound A1 exhibited the same positive allosteric effect as B1, suggesting that A1 is a TGR5 PAM as well. Molecular modeling study revealed that 12-carbonyl in A1 and 12-OH in B1 formed H-bolds with the key amino acid Thr131, which are significant for TGR5 allosteric property. Taken together, we found two potent TGR5 PAMs A1 and B1 through SBDD, which could be used as lead compounds to further study TGR5 allosteric functionality.


Assuntos
Desenho de Fármacos , Receptores Acoplados a Proteínas G , Ácido Cólico/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Modelos Moleculares , Regulação Alostérica
15.
Bioorg Med Chem ; 79: 117150, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36640594

RESUMO

N-Methyl-D-aspartate receptors (NMDARs) are key regulators of synaptic plasticity in the central nervous system. Potentiation of NMDARs containing GluN2A subunit has been recently recognized as a promising therapeutic approach for neurological disorders. We identified a novel series of GluN2A positive allosteric modulator (PAM) with a pyridin-2-one scaffold. Initial lead compound 1 was discovered through in silico-based screening of virtual ligands with various monocyclic scaffolds. GluN2A PAM activity was increased by introduction of a methyl group at the 6-position of the pyridin-2-one ring and a cyano group in the side chain. Modification of the aromatic ring led to the identification of potent and brain-penetrant 6-methylpyridin-2-one 17 with a negligible binding activity for α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). Oral administration of 17 significantly enhanced rat hippocampal long-term potentiation (LTP). Thus, 17 would be a useful in vivo pharmacological tool to investigate complex NMDAR functions for the discovery of therapeutics toward diseases associated with NMDAR dysfunction.


Assuntos
Disfunção Cognitiva , Receptores de N-Metil-D-Aspartato , Ratos , Animais , Receptores de N-Metil-D-Aspartato/metabolismo , Hipocampo/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo
16.
J Pharmacol Sci ; 151(4): 171-176, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36925215

RESUMO

ASP8062 is an orally available GABAB receptor positive allosteric modulator (PAM). This study assessed the potential of ASP8062 for treating opioid use disorder (OUD). Three rhesus monkeys were pretreated with ASP8062 (0.3, 1 or 3 mg/kg) by oral administration 1 h prior to a 2-h morphine self-administration session (0.03 mg/kg, iv, per injection) under a fixed-ratio 5 schedule. We further examined the potential worsening of morphine-induced respiratory suppression by ASP8062 after coadministration of morphine (10 mg/kg, sc) and ASP8062 (10 mg/kg, po) in cynomolgus monkeys using a custom-made whole-body plethysmograph. Plasma concentrations of ASP8062 (3 or 10 mg/kg, po) were assessed in cynomolgus monkeys using liquid chromatography-tandem mass spectroscopy (LC-MS/MS). ASP8062 at 3 mg/kg, po decreased the morphine self-administrations with significant differences from the vehicle-treated group (IC50 = 0.97 ± 0.36 mg/kg). Exposure levels at 3 mg/kg observed in monkeys were comparable to the clinical exposure levels which positive pharmacodynamic effects were previously shown. Further, ASP8062 did not potentiate morphine-induced respiratory suppression up to exposure levels higher than the clinically relevant dose. ASP8062 may reduce opioid use in OUD patients without affecting respiratory system, providing justification for further ASP8062 development as a potential treatment option for OUD.


Assuntos
Morfina , Espectrometria de Massas em Tandem , Animais , Macaca fascicularis , Cromatografia Líquida , Relação Dose-Resposta a Droga
17.
Dig Dis Sci ; 68(2): 439-450, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35947306

RESUMO

BACKGROUND: The specific role of the M3 muscarinic acetylcholine receptor in gastrointestinal motility under physiological conditions is unclear, due to a lack of subtype-selective compounds. AIMS: The objective of this study was to determine the region-specific role of the M3 receptor in gastrointestinal motility. METHODS: We developed a novel positive allosteric modulator (PAM) for the M3 receptor, PAM-369. The effects of PAM-369 on the carbachol-induced contractile response of porcine esophageal smooth muscle and mouse colonic smooth muscle (ex vivo) and on the transit in mouse small intestine and rat colon (in vivo) were examined. RESULTS: PAM-369 selectively potentiated the M3 receptor under the stimulation of its orthosteric ligands without agonistic or antagonistic activity. Half-maximal effective concentrations of PAM activity for human, mouse, and rat M3 receptors were 0.253, 0.345, and 0.127 µM, respectively. PAM-369 enhanced carbachol-induced contraction in porcine esophageal smooth muscle and mouse colonic smooth muscle without causing any contractile responses by itself. The oral administration of 30 mg/kg PAM-369 increased the small intestinal transit in both normal motility and loperamide-induced intestinal dysmotility mice but had no effects on the colonic transit, although the M3 receptor mRNA expression is higher in the colon than in the small intestine. CONCLUSIONS: This study provided the first direct evidence that the M3 receptor has different region-specific roles in the motility function between the small intestine and colon in physiological and pathophysiological contexts. Selective PAMs designed for targeted subtypes of muscarinic receptors are useful for elucidating the subtype-specific function.


Assuntos
Motilidade Gastrointestinal , Receptor Muscarínico M3 , Animais , Humanos , Camundongos , Ratos , Carbacol/farmacologia , Motilidade Gastrointestinal/genética , Motilidade Gastrointestinal/fisiologia , Contração Muscular , Receptor Muscarínico M2/genética , Receptor Muscarínico M2/metabolismo , Receptor Muscarínico M3/genética , Receptor Muscarínico M3/metabolismo , Receptores Muscarínicos/fisiologia , Suínos
18.
Arch Toxicol ; 97(5): 1355-1365, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36912926

RESUMO

Hexahydro-1,3,5-trinitro-1,3,5-triazine, or Royal Demolition Explosive (RDX), is a major component of plastic explosives such as C-4. Acute exposures from intentional or accidental ingestion are a documented clinical concern, especially among young male U.S. service members in the armed forces. When ingested in large enough quantity, RDX causes tonic-clonic seizures. Previous in silico and in vitro experiments predict that RDX causes seizures by inhibiting α1ß2γ2 γ-aminobutyric acid type A (GABAA) receptor-mediated chloride currents. To determine whether this mechanism translates in vivo, we established a larval zebrafish model of RDX-induced seizures. After a 3 h of exposure to 300 µM RDX, larval zebrafish exhibited a significant increase in motility in comparison to vehicle controls. Researchers blinded to experimental group manually scored a 20-min segment of video starting at 3.5 h post-exposure and found significant seizure behavior that correlated with automated seizure scores. Midazolam (MDZ), an nonselective GABAAR positive allosteric modulator (PAM), and a combination of Zolpidem (α1 selective PAM) and compound 2-261 (ß2/3-selective PAM) were effective in mitigating RDX-triggered behavioral and electrographic seizures. These findings confirm that RDX induces seizure activity via inhibition of the α1ß2γ2 GABAAR and support the use of GABAAR-targeted anti-seizure drugs for the treatment of RDX-induced seizures.


Assuntos
Receptores de GABA , Peixe-Zebra , Animais , Masculino , Larva , Triazinas/toxicidade , Receptores de GABA-A , Ácido gama-Aminobutírico
19.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36768378

RESUMO

Current antipsychotics (APs) effectively control positive psychotic symptoms, mainly by blocking dopamine (DA) D2 receptors, but have little effect on negative and cognitive symptoms. Increased glutamate (GLU) release would trigger neurotoxicity, leading to apoptosis and synaptic pruning, which is involved in the pathophysiology of schizophrenia. New pharmacological strategies are being developed such as positive allosteric modulators (PAMs) of the metabotropic GLU receptor 2 (mGluR2) that inhibit the presynaptic release of GLU. We previously reported that treatment of adult mice with JNJ-46356479 (JNJ), a recently developed mGluR2 PAM, partially improved neuropathological deficits and schizophrenia-like behavior in a postnatal ketamine mouse model. In the present study, we evaluated, for the first time, the putative neuroprotective and antiapoptotic activity of JNJ in a human neuroblastoma cell line and compared it with the effect of clozapine (CLZ) as a clinical AP with the highest efficacy and with apparent utility in managing negative symptoms. Specifically, we measured changes in cell viability, caspase 3 activity and apoptosis, as well as in the expression of key genes involved in survival and cell death, produced by CLZ and JNJ alone and in combination with a high DA or GLU concentration as apoptosis inducers. Our results suggest that JNJ is not neurotoxic and attenuates apoptosis, particularly by decreasing the caspase 3 activation induced by DA and GLU, as well as increasing and decreasing the number of viable and apoptotic cells, respectively, only when cultures were exposed to GLU. Its effects seem to be less neurotoxic and more neuroprotective than those observed with CLZ. Moreover, JNJ partially normalized altered expression levels of glycolytic genes, which could act as a protective factor and be related to its putative neuroprotective effect. More studies are needed to define the mechanisms of action of this GLU modulator and its potential to become a novel therapeutic agent for schizophrenia.


Assuntos
Clozapina , Neuroblastoma , Fármacos Neuroprotetores , Adulto , Humanos , Camundongos , Animais , Clozapina/farmacologia , Fármacos Neuroprotetores/farmacologia , Caspase 3 , Ácido Glutâmico/toxicidade , Técnicas de Cultura de Células , Neuroblastoma/tratamento farmacológico , Regulação Alostérica
20.
Molecules ; 28(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37375326

RESUMO

GABA mediates inhibitory actions through various GABAA receptor subtypes, including 19 subunits in human GABAAR. Dysregulation of GABAergic neurotransmission is associated with several psychiatric disorders, including depression, anxiety, and schizophrenia. Selective targeting of α2/3 GABAARs can treat mood and anxiety, while α5 GABAA-Rs can treat anxiety, depression, and cognitive performance. GL-II-73 and MP-III-022, α5-positive allosteric modulators have shown promising results in animal models of chronic stress, aging, and cognitive disorders, including MDD, schizophrenia, autism, and Alzheimer's disease. Described in this article is how small changes in the structure of imidazodiazepine substituents can greatly impact the subtype selectivity of benzodiazepine GABAAR. To investigate alternate and potentially more effective therapeutic compounds, modifications were made to the structure of imidazodiazepine 1 to synthesize different amide analogs. The novel ligands were screened at the NIMH PDSP against a panel of 47 receptors, ion channels, including hERG, and transporters to identify on- and off-target interactions. Any ligands with significant inhibition in primary binding were subjected to secondary binding assays to determine their Ki values. The newly synthesized imidazodiazepines were found to have variable affinities for the benzodiazepine site and negligible or no binding to any off-target profile receptors that could cause other physiological problems.


Assuntos
Disfunção Cognitiva , Receptores de GABA-A , Animais , Humanos , Receptores de GABA-A/metabolismo , Ligantes , Agonistas de Receptores de GABA-A/farmacologia , Benzodiazepinas/farmacologia , Benzodiazepinas/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA