Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37175511

RESUMO

The risk of oxidative stress is unavoidable in preterm infants and increases the risk of neonatal morbidities. Premature infants often require sedation and analgesia, and the commonly used opioids and benzodiazepines are associated with adverse effects. Impairment of cerebellar functions during cognitive development could be a crucial factor in neurodevelopmental disorders of prematurity. Recent studies have focused on dexmedetomidine (DEX), which has been associated with potential neuroprotective properties and is used as an off-label application in neonatal units. Wistar rats (P6) were exposed to 80% hyperoxia for 24 h and received as pretreatment a single dose of DEX (5µg/kg, i.p.). Analyses in the immature rat cerebellum immediately after hyperoxia (P7) and after recovery to room air (P9, P11, and P14) included examinations for cell death and inflammatory and oxidative responses. Acute exposure to high oxygen concentrations caused a significant oxidative stress response, with a return to normal levels by P14. A marked reduction of hyperoxia-mediated damage was demonstrated after DEX pretreatment. DEX produced a much earlier recovery than in controls, confirming a neuroprotective effect of DEX on alterations elicited by oxygen stress on the developing cerebellum.


Assuntos
Dexmedetomidina , Hiperóxia , Recém-Nascido , Animais , Ratos , Humanos , Hiperóxia/complicações , Hiperóxia/tratamento farmacológico , Ratos Wistar , Animais Recém-Nascidos , Dexmedetomidina/farmacologia , Dexmedetomidina/uso terapêutico , Recém-Nascido Prematuro , Apoptose , Estresse Oxidativo , Oxigênio/farmacologia , Interneurônios
2.
Antioxidants (Basel) ; 12(2)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36829854

RESUMO

High-risk preterm infants are affected by a higher incidence of cognitive developmental deficits due to the unavoidable risk factor of oxygen toxicity. Caffeine is known to have a protective effect in preventing bronchopulmonary dysplasia associated with improved neurologic outcomes, although very early initiation of therapy is controversial. In this study, we used newborn rats in an oxygen injury model to test the hypothesis that near-birth caffeine administration modulates neuronal maturation and differentiation in the hippocampus of the developing brain. For this purpose, newborn Wistar rats were exposed to 21% or 80% oxygen on the day of birth for 3 or 5 days and treated with vehicle or caffeine (10 mg/kg/48 h). Postnatal exposure to 80% oxygen resulted in a drastic reduction of associated neuronal mediators for radial glia, mitotic/postmitotic neurons, and impaired cell-cycle regulation, predominantly persistent even after recovery to room air until postnatal day 15. Systemic caffeine administration significantly counteracted the effects of oxygen insult on neuronal maturation in the hippocampus. Interestingly, under normoxia, caffeine inhibited the transcription of neuronal mediators of maturing and mature neurons. The early administration of caffeine modulated hyperoxia-induced decreased neurogenesis in the hippocampus and showed neuroprotective properties in the neonatal rat oxygen toxicity model.

3.
Antioxidants (Basel) ; 12(4)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37107355

RESUMO

Impaired cerebellar development of premature infants and the associated impairment of cerebellar functions in cognitive development could be crucial factors for neurodevelopmental disorders. Anesthetic- and hyperoxia-induced neurotoxicity of the immature brain can lead to learning and behavioral disorders. Dexmedetomidine (DEX), which is associated with neuroprotective properties, is increasingly being studied for off-label use in the NICU. For this purpose, six-day-old Wistar rats (P6) were exposed to hyperoxia (80% O2) or normoxia (21% O2) for 24 h after DEX (5 µg/kg, i.p.) or vehicle (0.9% NaCl) application. An initial detection in the immature rat cerebellum was performed after the termination of hyperoxia at P7 and then after recovery in room air at P9, P11, and P14. Hyperoxia reduced the proportion of Calb1+-Purkinje cells and affected the dendrite length at P7 and/or P9/P11. Proliferating Pax6+-granule progenitors remained reduced after hyperoxia and until P14. The expression of neurotrophins and neuronal transcription factors/markers of proliferation, migration, and survival were also reduced by oxidative stress in different manners. DEX demonstrated protective effects on hyperoxia-injured Purkinje cells, and DEX without hyperoxia modulated neuronal transcription in the short term without any effects at the cellular level. DEX protects hyperoxia-damaged Purkinje cells and appears to differentially affect cerebellar granular cell neurogenesis following oxidative stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA