Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Eur J Neurosci ; 59(3): 323-332, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38123136

RESUMO

Neurovascular coupling (NVC) refers to a local increase in cerebral blood flow in response to increased neuronal activity. Mechanisms of communication between neurons and blood vessels remain unclear. Astrocyte endfeet almost completely cover cerebral capillaries, suggesting that astrocytes play a role in NVC by releasing vasoactive substances near capillaries. An alternative hypothesis is that direct diffusion through the extracellular space of potassium ions (K+ ) released by neurons contributes to NVC. Here, the goal is to determine whether astrocyte endfeet present a barrier to K+ diffusion from neurons to capillaries. Two simplified 2D geometries of extracellular space, clefts between endfeet, and perivascular space are used: (i) a source 1 µm from a capillary; (ii) a neuron 15 µm from a capillary. K+ release is modelled as a step increase in [K+ ] at the outer boundary of the extracellular space. The time-dependent diffusion equation is solved numerically. In the first geometry, perivascular [K+ ] approaches its final value within 0.05 s. Decreasing endfeet cleft width or increasing perivascular space width slows the rise in [K+ ]. In the second geometry, the increase in perivascular [K+ ] occurs within 0.5 s and is insensitive to changes in cleft width or perivascular space width. Predicted levels of perivascular [K+ ] are sufficient to cause vasodilation, and the rise time is within the time for flow increase in NVC. These results suggest that direct diffusion of K+ through the extracellular space is a possible NVC signalling mechanism.


Assuntos
Astrócitos , Capilares , Astrócitos/fisiologia , Potássio , Circulação Cerebrovascular , Neurônios
2.
Small ; 20(29): e2400093, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38353062

RESUMO

For large-size potassium accommodation, heterostructure usually suffers severe delamination and exfoliation at the interfaces due to different volume expansion of two-phase during charge/discharge process, resulting in the deconstruction of heterostructures and shortened lifespan of batteries. Here, an innovative strategy is proposed through constructing a microscopic heterostructure system containing copper quantum dots (Cu QDs) highly dispersed in the triphenyl-substituted triazine graphdiyne (TPTG) substrates (TPTG@CuQDs) to solve this problem. The copper quantum dots are uniformly anchored on TPTG substrates, generating a myriad of island-like heterogeneous structures, together with tandem toroidal built-in electric field (BIEF) between every micro heterointerface. The island-like heterostructure endows both benefits of exposed contact interface and robust architecture. Generated tandem toroidal BIEF provides efficient transport pathways with lower energy barriers, reducing the diffusion resistance and facilitating the reaction kinetics of potassium ions. When used as anode, the TPTG@CuQDs exhibit highly reversible capacity and low-capacity degradation (≈0.01% over 5560 cycles at 1 A g-1). Moreover, the TPTG@CuQDs-based full cell delivers an outstanding reversible capacity of ≈110 mAh g-1 over 800 cycles at 1 A g-1. This quantum-scale heterointerface construction strategy offers a new approach toward stable heterostructure design for the application of metal ion batteries.

3.
J Biochem Mol Toxicol ; 38(1): e23531, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37724821

RESUMO

Myocardial infarction (MI) is a common type of ischemic heart disease that affects millions of people worldwide. In recent times, nanotechnology has become a very promising field with immense applications. The current exploration was conducted to synthesize the chitosan-sodium alginate-polyethylene glycol-Ally isothiocyanate nanocomposites (CSP-AIso-NCs) and evaluate their beneficial roles against the isoproterenol (ISO)-induced MI in rats. The CSP-AIso-NCs were prepared and characterized by several characterization techniques. The MI was initiated in the rats by the administration of 85 mg/kg of ISO for 2 days and treated with 10 and 20 mg/kg of CSP-AIso-NCs for 1 month. The changes in heart weight and bodyweight were measured. The cardiac function markers were assessed with echocardiography. The lipid profiles, Na+, K+, and Ca2+ ions, cardiac biomarkers, antioxidant parameters, and inflammatory cytokines were assessed using corresponding assay kits. The histopathological study was done on the heart tissues. The UV spectral analysis revealed the maximum peak at 208 nm, which confirms the formation of CSP-AIso-NCs. The FT-IR analysis revealed the occurrence of different functional groups, and the crystallinity of the CSP-AIso-NCs was proved by the XRD analysis. DLS analysis indicated the size of the CSP-AIso-NCs at 146.50 nm. The CSP-AIso-NCs treatment increased the bodyweight and decreased the HW/BW ratio in the MI rats. The status of lipids was reduced, and HDL was elevated in the CSP-AIso-NCs administered to MI rats. CSP-AIso-NCs decreased the LVEDs, LVEDd, and NT-proBNP and increased the LVEF level. The oxidative stress markers were decreased, and the antioxidants were increased by the CSP-AIso-NCs treatment in the MI rats. The Na+ and Ca+ ions were reduced, and the K+ ions were increased by the CSP-AIso-NCs. The interleukin-1ß and tumor necrosis factor-α were also depleted, and Nrf-2 was improved in the CSP-AIso-NCs administered to MI rats. The histological study revealed the ameliorative effects of CSP-AIso-NCs. Overall, our outcomes revealed that the CSP-AIso-NCs are effective against the ISO-induced MI rats. Hence, it could be a hopeful therapeutic nanomedicine for MI treatment.


Assuntos
Quitosana , Infarto do Miocárdio , Humanos , Ratos , Animais , Isoproterenol/toxicidade , Quitosana/farmacologia , Alginatos/farmacologia , Alginatos/metabolismo , Alginatos/uso terapêutico , Polietilenoglicóis/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Infarto do Miocárdio/induzido quimicamente , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/patologia , Antioxidantes/metabolismo , Estresse Oxidativo , Íons/metabolismo , Íons/farmacologia , Íons/uso terapêutico , Miocárdio/metabolismo
4.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38279231

RESUMO

Potassium (K+) is the most abundant cation in the cytosol and is maintained at high concentrations within the mitochondrial matrix through potassium channels. However, many effects of K+ at such high concentrations on mitochondria and the underlying mechanisms remain unclear. This study aims to elucidate these effects and mechanisms by employing fluorescence imaging techniques to distinguish and precisely measure signals inside and outside the mitochondria. We stained the mitochondrial matrix with fluorescent dyes sensitive to K+, pH, reactive oxygen species (ROS), and membrane potential in plasma membrane-permeabilized C6 cells and isolated mitochondria from C6 cells. Fluorescence microscopy facilitated the accurate measurement of fluorescence intensity inside and outside the matrix. Increasing extramitochondrial K+ concentration from 2 mM to 127 mM led to a reduction in matrix pH and a decrease in the generation of highly reactive ROS. In addition, elevated K+ levels electrically polarized the inner membrane of the mitochondria and promoted efficient ATP synthesis via FoF1-ATPase. Introducing protons (H+) into the matrix through phosphate addition led to further mitochondrial polarization, and this effect was more pronounced in the presence of K+. K+ at high concentrations, reaching sub-hundred millimolar levels, increased H+ concentration within the matrix, suppressing ROS generation and boosting ATP synthesis. Although this study does not elucidate the role of specific types of potassium channels in mitochondria, it does suggest that mitochondrial K+ plays a beneficial role in maintaining cellular health.


Assuntos
Mitocôndrias , Canais de Potássio , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/metabolismo , Prótons , Trifosfato de Adenosina/farmacologia , Concentração de Íons de Hidrogênio , Potássio/metabolismo
5.
Small ; 19(26): e2300046, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36929623

RESUMO

The unique properties of self-healing materials hold great potential in battery systems, which can exhibit excellent deformability and return to its original shape after cycling. Herein, a Cu3 BiS3 anode material with self-healing mechanisms is proposed for use in ultrastable potassium-ion battery (PIB) and potassium-ion hybrid capacitor (PIHC). Different from the binder design, Cu3 BiS3 anode can exhibit the dual advantages of phase and morphological reversibility, further remaining original property after potassiation/depotassiation and exhibiting ultrastable cycling performance. The reversible electrochemical reconstruction during the continuous charge/discharge processes is beneficial to maintain the structure and function of the material. Furthermore, the conversion reactions during the charge and discharge process produce two advantages: i) suppressing the shuttle effect due to the formation of the heterostructure interface between Cu (111) and Bi (012); ii) Cu can avoid the agglomeration of Bi nanoparticles (NPs), further improving the electrochemical performance and long-cycle stability of the Cu3 BiS3 electrode. As a result, the Cu3 BiS3 electrode not only exhibits a long cycle life in half cells, but also 2000 cycles and 12000 cycles in PIB and PIHC full cells, respectively.

6.
Biochemistry (Mosc) ; 87(8): 683-688, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36171650

RESUMO

The conclusions made in the three papers published in Function by Juhaszova et al. [Function, 3, 2022, zqab065, zqac001, zqac018], can be seen as a breakthrough in bioenergetics and mitochondrial medicine. For more than half a century, it has been believed that mitochondrial energetics is solely protonic and is based on the generation of electrochemical potential of hydrogen ions across the inner mitochondrial membrane upon oxidation of respiratory substrates, resulting in the generation of ATP via reverse transport of protons through the ATP synthase complex. Juhaszova et al. demonstrated that ATP synthase transfers not only protons, but also potassium ions, with the generation of ATP. This mechanism seems logical, given the fact that in eukaryotic cells, the concentration of potassium ions is several million times higher than the concentration of protons. The transport of K+ through the ATP synthase was enhanced by the activators of mitochondrial ATP-dependent K+ channel (mK/ATP), leading to the conclusion that ATP synthase is the material essence of mK/ATP. Beside ATP generation, the transport of osmotically active K+ to the mitochondrial matrix is accompanied by water entry to the matrix, leading to an increase in the matrix volume and activation of mitochondrial respiration with the corresponding increase in the ATP synthesis, which suggests an advantage of such transport for energy production. The driving force for K+ transport into the mitochondria is the membrane potential; an excess of K+ is exported from the matrix by the hypothetical K+/H+ exchangers. Inhibitory factor 1 (IF1) plays an important role in the activation of mK/ATP by increasing the chemo-mechanical efficiency of ATP synthase, which may be a positive factor in the protective anti-ischemic signaling.


Assuntos
Potássio , Prótons , Trifosfato de Adenosina , Mitocôndrias/metabolismo , Potássio/metabolismo , Canais de Potássio/fisiologia , Água
7.
Dokl Biochem Biophys ; 500(1): 321-323, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34697736

RESUMO

Using the patch-clamp method in the whole cell configuration, it was shown that external potassium ions play an important role in the regulation of calcium-activated chloride channels (CaCCs). A clear dependence of the conductivity of the СаССs on the external potassium concentration was shown. The effect of external potassium in the range 0-15 mM on the conductivity of chloride channels was significantly greater than the effect it had on other ionic currents (sodium or potassium). There is reason to believe that these changes in the conductivity of CaCCs may contribute to the development of pathophysiological processes such as hypokalemia or hyperkalemia.


Assuntos
Canais de Cloreto
8.
Biochem Biophys Res Commun ; 521(3): 699-705, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31699370

RESUMO

AmB is an antifungal drug of polyene. Although it is prone to nephrotoxicity, it is still the gold standard in the clinical treatment of fungal infection. Sterol plays a decisive role in the drug activity of AmB. The antifungal activity of AmB depends on ergosterol in fungal membranes, and its toxicity is related to cholesterol in mammalian membranes. At the same time, AmB interacts with biofilms, leading to a significant loss of potassium ions and affecting the transport of potassium ions across membranes. Meanwhile, metal cation may also affect AmB molecules' aggregation on the membrane. This paper mainly studied the effects of different concentrations of potassium ions on the interactions between AmB and lipid monolayers containing cholesterol or ergosterol and explored the differences in the impact of varying potassium ions on the drug activity of AmB on monolayers rich in these two kinds of sterols. The results show that potassium ions caused the collapse of lipid monolayer and lipid-AmB monolayer to disappear. The limiting molecular area of these monolayers also increased due to potassium ions. The limiting molecular area of the monolayer in the presence of ergosterol has a great difference in the different concentration of potassium ions, which is different from that in the presence of cholesterol. The presence of potassium ions, regardless of the intensity of K+ ions, increased the maximum elastic modulus of the lipid/sterol monolayer with and without AmB. The presence of potassium ions reduced the influence of AmB on the stability of the lipid monolayer containing cholesterol. The impact of AmB on the stability of the lipid monolayer containing ergosterol was related to the concentration of potassium ions. The potassium ions increased the area of the ordered "island" region on the lipid-AmB monolayer containing cholesterol, and the boundary of the microregion produced different degrees of curvature. However, on the lipid/ergosterol monolayer, 5 mM and 10 mM potassium ions made the holes caused by AmB more denser, and the diameter of holes become larger. These results can help to improve the effect of potassium ions on the transmembrane transport of substances affected by AmB. The results will provide a basis for further exploration of the effect mechanism of metal ions on the antifungal activity of polyene drugs.


Assuntos
Antifúngicos/farmacologia , Colesterol/metabolismo , Ergosterol/metabolismo , Fosfolipídeos/metabolismo , Polienos/farmacologia , Potássio/metabolismo , Antifúngicos/química , Cátions Monovalentes/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Fungos/efeitos dos fármacos , Fungos/metabolismo , Humanos , Membranas Artificiais , Micoses/tratamento farmacológico , Polienos/química
9.
J Bioenerg Biomembr ; 51(3): 219-229, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30982206

RESUMO

The article considers the comparative analysis of the functional activity of mitochondria isolated from the liver of grass snakes, Natrix natrix (Linnaeus, 1758) that were kept at different temperatures (23-26 °C and 4-5 °C). It was found that liver mitochondria of hypothermia-exposed grass snakes are characterized by weak coupling of oxidative phosphorylation as compared to mitochondria of active animals which is caused by inhibition of succinate-fuelled respiration in ADP-stimulated state, as well as by activation of basal non-phosphorylating rate. Inhibition of mitochondrial respiration in hibernating animals is associated with a decrease in the activity of the respiratory chain complexes of organelles. A significant decrease in the rate of K+ transport in the liver mitochondria of hibernating animals has been established. Under these conditions, a decrease in the calcium capacity of the organelles was also revealed, which indicates a decrease in the resistance of the mitochondria of hibernating animals to the induction of the Ca2+-dependent mitochondrial pore. All these changes in the functional activity of mitochondria are observed on the background of increasing H2O2 production as well as increasing the proportion of polyunsaturated fatty acids in phospholipid composition of mitochondrial membranes, which are the targets of reactive oxygen species. It can lead to increased formation of lipid peroxides and activation of destructive processes associated with the induction of Ca2+-dependent mitochondrial pore.


Assuntos
Colubridae/metabolismo , Hipotermia/metabolismo , Mitocôndrias Hepáticas/metabolismo , Necrose Dirigida por Permeabilidade Transmembrânica da Mitocôndria , Potássio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ácido Succínico/metabolismo , Animais , Transporte de Íons
10.
IUBMB Life ; 70(10): 1040-1047, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30161297

RESUMO

During fermentation Escherichia coli produces di-hydrogen (H2 ) via reversible membrane-bound [Ni-Fe]-hydrogenases (Hyd). This study describes the total and N,N'-dicyclohexylcarbodiimide (DCCD) inhibited ATPase activity and H2 production at various pHs in E. coli wild type and mutants encoding Hyd enzymes and formate dehydrogenases (FDH) on fermentation of glucose, glycerol, and formate. The highest total ATPase activity was detected at pH 7.5 in hyaB hybC selC (lacking large subunits of Hyd-1 and Hyd-2 and FDH, respectively) triple mutant. This ATPase activity was mainly due to the proton-translocating ATPase but in FDH mutant the DCCD inhibition was less compared to wild type. Potassium ions stimulated total ATPase activity at pH 5.5 ~50% and ~35% in wild type and hypF (lacking all Hyd enzymes) mutant, respectively. Moreover, K+ also stimulated DCCD inhibited ATPase activity ~1.7-fold-2-fold in strains where FDH was absent only at pH 5.5. DCCD inhibited H2 production only at pH 5.5 in all assays. Taken together it is suggested that at low pH, FDH, and Hyd enzymes are linked with the FO F1 -ATPase for regulating and maintaining the cytoplasmatic pH and thus proton motive force generation. FDH and Hyd enzymes have impact on the FO F1 -ATPase activity depending on external pH and potassium ions. © 2018 IUBMB Life, 70(10):1040-1047, 2018.


Assuntos
Escherichia coli/enzimologia , Formiato Desidrogenases/genética , ATPases Translocadoras de Prótons/genética , Carbono/metabolismo , Dicicloexilcarbodi-Imida/farmacologia , Fermentação/efeitos dos fármacos , Formiato Desidrogenases/metabolismo , Formiatos/metabolismo , Glucose/metabolismo , Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Hidrogenase/genética , Proteínas Ferro-Enxofre/genética
11.
Int J Mol Sci ; 19(4)2018 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-29690632

RESUMO

Ion channels activated by reactive oxygen species (ROS) have been found in the plasma membrane of charophyte Nitella flixilis, dicotyledon Arabidopsis thaliana, Pyrus pyrifolia and Pisum sativum, and the monocotyledon Lilium longiflorum. Their activities have been reported in charophyte giant internodes, root trichoblasts and atrichoblasts, pollen tubes, and guard cells. Hydrogen peroxide and hydroxyl radicals are major activating species for these channels. Plant ROS-activated ion channels include inwardly-rectifying, outwardly-rectifying, and voltage-independent groups. The inwardly-rectifying ROS-activated ion channels mediate Ca2+-influx for growth and development in roots and pollen tubes. The outwardly-rectifying group facilitates K⁺ efflux for the regulation of osmotic pressure in guard cells, induction of programmed cell death, and autophagy in roots. The voltage-independent group mediates both Ca2+ influx and K⁺ efflux. Most studies suggest that ROS-activated channels are non-selective cation channels. Single-channel studies revealed activation of 14.5-pS Ca2+ influx and 16-pS K⁺ efflux unitary conductances in response to ROS. The molecular nature of ROS-activated Ca2+ influx channels remains poorly understood, although annexins and cyclic nucleotide-gated channels have been proposed for this role. The ROS-activated K⁺ channels have recently been identified as products of Stellar K⁺ Outward Rectifier (SKOR) and Guard cell Outwardly Rectifying K⁺ channel (GORK) genes.


Assuntos
Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Sinalização do Cálcio/fisiologia , Humanos , Radical Hidroxila/metabolismo , Potássio/metabolismo
12.
Cryobiology ; 73(2): 248-56, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27404573

RESUMO

Potassium ions are known to have an inhibitory effect on the sperm motility of salmonids. For this reason, the addition of K(+) to the extender is frequently applied. However, the effect of the addition of K(+) to the extender has not yet been tested. The aim of this study was to test the influence of potassium ion supplementation of the extender on the sperm motility parameters from five Salmonidae species (rainbow trout (Oncorhynchus mykiss), sex-reversed female rainbow trout, whitefish (Coregonus lavaretus), brown trout (Salmo trutta) and brook trout (Salvelinus fontinalis)). Semen samples were diluted in extender containing 0.18 M glucose in 9% methanol (GM) supplemented with 0, 20 or 40 mM potassium chloride. After thawing sperm were stored for 30, 60, 120 and 240 min at 4 °C. Our results demonstrated that the presence of potassium ions in the extender had a negative effect on percentage of motile sperm in four of the salmonid species. In contrast, potassium ions appeared to have a positive effect on percentage of post-thaw motile sperm in whitefish semen. However, this effect could be mimicked by changing the osmolality of the extender (which was achieved by increasing the glucose concentration to 0.22 M). The addition of potassium ions turned out to have no positive effect on post-thaw storage time. Our results suggest that osmolality, rather than potassium ions, seems to be essential for cryopreservation success of salmonids sperm. Further studies should focus on the effects of small changes in osmolality on the post-thaw quality of semen.


Assuntos
Criopreservação/métodos , Crioprotetores/farmacologia , Potássio/farmacologia , Preservação do Sêmen/métodos , Motilidade dos Espermatozoides/efeitos dos fármacos , Animais , Íons , Masculino , Oncorhynchus mykiss
13.
Nano Lett ; 15(11): 7671-7, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26509225

RESUMO

Graphite intercalation compounds (GICs) have attracted tremendous attention due to their exceptional properties that can be finely tuned by controlling the intercalation species and concentrations. Here, we report for the first time that potassium (K) ions can electrochemically intercalate into graphitic materials, such as graphite and reduced graphene oxide (RGO) at ambient temperature and pressure. Our experiments reveal that graphite can deliver a reversible capacity of 207 mAh/g. Combining experiments with ab initio calculations, we propose a three-step staging process during the intercalation of K ions into graphite: C → KC24 (Stage III) → KC16 (Stage II) → KC8 (Stage I). Moreover, we find that K ions can also intercalate into RGO film with even higher reversible capacity (222 mAh/g). We also show that K ions intercalation can effectively increase the optical transparence of the RGO film from 29.0% to 84.3%. First-principles calculations suggest that this trend is attributed to a decreased absorbance produced by K ions intercalation. Our results open opportunities for novel nonaqueous K-ion based electrochemical battery technologies and optical applications.

14.
J Immunoassay Immunochem ; 36(2): 162-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24785341

RESUMO

Herein, a simple and novel electrochemical method for the detection of potassium ions (K(+)) was developed. In the presence of potassium ions, the potassium ions aptamer will form a G-quadruplex complex. Thus, further addition of hemin in the presence of potassium ions will lead to the formation of a recombined G-quadruplex. Then the electroactive label, hemin, will give an electrochemical response. The linear range of the method covered a large variation of K(+) concentration from 0.1 nM to 0.1 µ M and the detection limit of 0.1 nM was obtained. Moreover, this assay was able to detect K(+) with high selectivity and had great potential applications.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Quadruplex G , Potássio/análise , Técnicas Eletroquímicas , Eletrodos , Ouro , Hemina/química
15.
Toxicol Appl Pharmacol ; 274(1): 78-86, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24200993

RESUMO

Drugs that block the cardiac K(+) channel encoded by the human ether-à-go-go gene (hERG) have been associated with QT interval prolongation leading to proarrhythmia, and in some cases, sudden cardiac death. Because of special structural features of the hERG K(+) channel, it has become a promiscuous target that interacts with pharmaceuticals of widely varying chemical structures and a reason for concern in the pharmaceutical industry. The structural diversity suggests that multiple binding sites are available on the channel with possible allosteric interactions between them. In the present study, three reference compounds and nine compounds of a previously disclosed series were evaluated for their allosteric effects on the binding of [(3)H]astemizole and [(3)H]dofetilide to the hERG K(+) channel. LUF6200 was identified as an allosteric inhibitor in dissociation assays with both radioligands, yielding similar EC50 values in the low micromolar range. However, potassium ions increased the binding of the two radioligands in a concentration-dependent manner, and their EC50 values were not significantly different, indicating that potassium ions behaved as allosteric enhancers. Furthermore, addition of potassium ions resulted in a concentration-dependent leftward shift of the LUF6200 response curve, suggesting positive cooperativity and distinct allosteric sites for them. In conclusion, our investigations provide evidence for allosteric modulation of the hERG K(+) channel, which is discussed in the light of findings on other ion channels.


Assuntos
Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Canais de Potássio Éter-A-Go-Go/metabolismo , Fenetilaminas/metabolismo , Bloqueadores dos Canais de Potássio/metabolismo , Ensaio Radioligante/métodos , Sulfonamidas/metabolismo , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Relação Dose-Resposta a Droga , Canal de Potássio ERG1 , Células HEK293 , Humanos , Fenetilaminas/química , Fenetilaminas/farmacologia , Bloqueadores dos Canais de Potássio/química , Bloqueadores dos Canais de Potássio/farmacologia , Ligação Proteica/fisiologia , Sulfonamidas/química , Sulfonamidas/farmacologia
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 309: 123781, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38176190

RESUMO

Addressing the limitations observed in previous studies, where the quantitative range of nanoprobes for detecting K+ and adenosine triphosphate (ATP) did not cover concentrations found within living cells, the present study aimed to develop ratiometric nanoprobes that can accurately sense changes in K+ and ATP levels in living cells and quantify them in human fluids. The proposed nanoprobes consisted of recognition flares modified with 6-carboxyfluorescein (FAM) and 5-carboxytetramethylrhodamine (TAMRA), along with thiolate single-stranded DNA (ssDNA) and molybdenum disulfide nanosheets (MoS2 NSs). The thiolate ssDNA acts as a linker between the flares and the MoS2 NSs, directly forming a functional nanostructure at room temperature. The direct conjugation of labeled flares to the MoS2 NSs simplifies the fabrication process. In the absence of K+ and ATP, the hybridization of flares and thiolate ssDNA caused FAM to move away from TAMRA, suppressing the fluorescence resonance energy transfer (FRET) process. However, upon the introduction of K+ and ATP, the flares undergo a structural transformation via the formation of G-quadruplex formation and the generation of hairpin-shaped structures, respectively. This structural change leads to the release of the flares from the ssDNA-conjugated nanosheet surface. The release of the flares brings FAM and TAMRA into close proximity, allowing FRET to occur, leading to FRET and static quenching. By monitoring the ratio between the fluorescence intensities of FAM and TAMRA, the concentration of K+ (5-100 mM) and ATP (0.3-5 mM) can be accurately determined by the proposed nanoprobes. The advantages of these nanoprobes lie in their ability to provide ratiometric measurements, which enhance the accuracy and reliability of the quantification process. The proposed nanoprobes offer potential applications as ratiometric imaging probes for monitoring K+ and ATP-related reactions in living cells, providing valuable insights into cellular processes. Additionally, they can be employed for determining the levels of K+ and ATP in human fluids, offering potential diagnostic applications in various clinical settings.


Assuntos
Técnicas Biossensoriais , DNA de Cadeia Simples , Humanos , Trifosfato de Adenosina , Molibdênio/química , Reprodutibilidade dos Testes , Transferência Ressonante de Energia de Fluorescência/métodos , Oligonucleotídeos , Íons , Potássio , Corantes Fluorescentes/química
17.
J Neural Eng ; 21(2)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38306702

RESUMO

Objective. The controlled delivery of potassium is an interesting neuromodulation modality, being potassium ions involved in shaping neuron excitability, synaptic transmission, network synchronization, and playing a key role in pathological conditions like epilepsy and spreading depression. Despite many successful examples of pre-clinical devices able to influence the extracellular potassium concentration, computational frameworks capturing the corresponding impact on neuronal activity are still missing.Approach. We present a finite-element model describing a PEDOT:PSS-coated microelectrode (herein, simplyionic actuator) able to release potassium and thus modulate the activity of a cortical neuron in anin-vitro-like setting. The dynamics of ions in the ionic actuator, the neural membrane, and the cellular fluids are solved self-consistently.Main results. We showcase the capability of the model to describe on a physical basis the modulation of the intrinsic excitability of the cell and of the synaptic transmission following the electro-ionic stimulation produced by the actuator. We consider three case studies for the ionic actuator with different levels of selectivity to potassium: ideal selectivity, no selectivity, and selectivity achieved by embedding ionophores in the polymer.Significance. This work is the first step toward a comprehensive computational framework aimed to investigate novel neuromodulation devices targeting specific ionic species, as well as to optimize their design and performance, in terms of the induced modulation of neural activity.


Assuntos
Neurônios , Polímeros , Microeletrodos , Neurônios/fisiologia , Potássio , Íons
18.
Polymers (Basel) ; 15(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37688194

RESUMO

Sodium ions are commonly found in natural water sources, and their high concentrations can potentially lead to adverse effects on both the water sources and soil quality. In this study, we successfully synthesized potassium polyacrylate (KMAA) hydrogel through free radical polymerization and evaluated its capability to remove sodium ions from and supply potassium ions to aqueous solutions. To assess its performance, inductively coupled plasma emission spectroscopy (ICP) was employed to analyze the sodium ion removal capacity and potassium ion exchange capability of the KMAA hydrogel at various initial sodium ion concentrations and pH values. The results demonstrated that the KMAA hydrogel exhibited remarkable efficiency in removing sodium ions and providing potassium ions. At pH 7, the maximum adsorption capacity for sodium ions was measured at 70.7 mg·g-1. The Langmuir model, with a correlation coefficient of 0.98, was found to be more suitable for describing the adsorption process of sodium ions. Moreover, at pH 4, the maximum exchange capacity for potassium ions reached 243.7 mg·g-1. The Freundlich model, with a correlation coefficient of 0.99, was deemed more appropriate for characterizing the ion exchange behavior of potassium ions. In conclusion, the successfully synthesized KMAA hydrogel demonstrates superior performance in removing sodium ions and supplying potassium ions, providing valuable insights for addressing high sodium ion concentrations in water sources and facilitating potassium fertilizer supply.

19.
Front Mol Neurosci ; 16: 1153934, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37465364

RESUMO

The electroretinogram (ERG) measures the electrical activity of retinal neurons and glial cells in response to a light stimulus. Amongst other techniques, clinicians utilize the ERG to diagnose various eye diseases, including inherited conditions such as cone-rod dystrophy, rod-cone dystrophy, retinitis pigmentosa and Usher syndrome, and to assess overall retinal health. An ERG measures the scotopic and photopic systems separately and mainly consists of an a-wave and a b-wave. The other major components of the dark-adapted ERG response include the oscillatory potentials, c-wave, and d-wave. The dark-adapted a-wave is the initial corneal negative wave that arises from the outer segments of the rod and cone photoreceptors hyperpolarizing in response to a light stimulus. This is followed by the slower, positive, and prolonged b-wave, whose origins remain elusive. Despite a large body of work, there remains controversy around the mechanisms involved in the generation of the b-wave. Several hypotheses attribute the origins of the b-wave to bipolar or Müller glial cells or a dual contribution from both cell types. This review will discuss the current hypothesis for the cellular origins of the dark-adapted ERG, with a focus on the b-wave.

20.
Chemosphere ; 318: 137974, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36708783

RESUMO

During high salinity organic wastewater (HSOW) anaerobic digestion treatment, the process of methanogenesis can be severely inhibited in the high salinity environment, and the accumulation of volatile organic acids (VFAs) leads to failure of the anaerobic reaction. In this study, nano-magnetite and KCl were adopted to alleviate the inhibitory effect of high salinity and enhance the HSOW anaerobic digestion performance. The result showed that, under the optimal dosage of 200 mg/L, nano-magnetite addition promoted the anaerobic digestion performance, and the methane production increased by 11.06%. When KCl was added with a dosage of 0.174%, the methane production increased by 98.37%. The simultaneous addition of nano-magnetite (200 mg/L) and KCl showed a synergistic effect on enhancing HSOW anaerobic digestion performance, and the methane production increased by 124.85%. The addition of nano-magnetite and KCl promoted the conversion of VFAs, especially accelerated the degradation of propionic acid and butyric acid, also it promoted the activity of acetate kinase, dehydrogenase and F420, and thereby enhanced the methanogenesis process. This study could provide a new method for enhancing the anaerobic digestion of HSOW.


Assuntos
Óxido Ferroso-Férrico , Águas Residuárias , Anaerobiose , Salinidade , Potássio , Metano/metabolismo , Íons , Reatores Biológicos , Esgotos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA