Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Ecotoxicol Environ Saf ; 269: 115725, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38029580

RESUMO

In the industrial corridor of Boyacá, Colombia, population growth is accompanied by anthropogenic activities such as industrial operations, vehicle exhaust fumes, mining, smelting, atmospheric deposition, and excessive use of chemical products to promote crop growth. These activities are known to have a significant impact on urban and rural soils, contributing significantly to elevated concentrations of potentially hazardous elements in the environment. This industrial corridor is an area of economic and social development that needs to provide reference information that will allow us to know the state of soil quality to preserve and manage the public and geoenvironmental health of this region. Anthropogenic activities have contributed to the accumulation of potentially hazardous elements in the environment, affecting various levels of life and creating risks with economic and social implications. However, igneous activity or detrital deposition also enriches soils and creates geochemical anomalies in specific locations. In these cases, the identification of potentially hazardous elements involves the determination of likely sources of contamination and their relationship to the geological setting. In this study, the concentrations of As, Cd, Pb, Mn, Fe, Zn, Hg, Cu and Ni were determined in eighty-one soil samples from the Boyacá industrial corridor (Colombia). The sequential trend of the concentrations of potentially hazardous elements was as follows: Fe > Mn > Zn > Ni > Cu> Pb > As > Cd > Hg. Furthermore, the application of spatial analysis criteria in GIS software with multivariate statistical tools and geochemical indices allowed the identification of anthropogenic and geogenic sources. Most of the potentially hazardous elements were found in soils exposed to industrial and agricultural activities, except for iron. This element showed low variability in all samples, regardless of the geological formations. Due to the lack of reference values for potentially hazardous elements in Colombia, the concentrations were compared with the environmental standards of the Environmental Protection Agency (EPA) and the Ecuadorian Ministry of Environment, Water and Ecological Transition (MAE). The results demonstrate the complexity of the soil and represent the first exploratory study of potentially hazardous elements in this industrial corridor. These results are the starting point for the establishment of geochemical background lines in Colombia and for inspection policies for areas where productive activities converge.


Assuntos
Mercúrio , Metais Pesados , Poluentes do Solo , Solo , Metais Pesados/análise , Sistemas de Informação Geográfica , Colômbia , Cádmio/análise , Chumbo/análise , Poluentes do Solo/análise , Monitoramento Ambiental/métodos , Mercúrio/análise , Medição de Risco , China
2.
Environ Res ; 201: 111567, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34171377

RESUMO

In this study, concentration of potentially hazardous elements (PHEs) including slice (Si), strontium (Sr), aluminum (Al), Fluoride (F), Iron (Fe), Zinc (Zn), Barium (Ba), Lead (Pb), Lithium (Li), Vanadium (V), selenium (Se), Chrome (Cr), Arsenic (As) and Uranium (U) in tap drinking water (n = 40) and filtration plant (n = 22) in Bandar Abbas city between March to July 2020 were analyzed. Analysis of PHEs ions was conducted by inductively coupled plasma mass spectrometry (ICP-MS). Also, concentration of F was measured by SPADNS Method. The non-carcinogenic risk in the exposed population (adult and children) were estimated. Concentration of PHEs between tap drinking water and filtration plant was compared using T statistical test. In addition, association among PHEs in tap drinking water and water filtration plant using Pearson correlation coefficient. The rank order of PHEs in tap drinking water was Si (6356.25 µg/l) > Sr (3980 µg/l) > Al (115.42 µg/l) > Fe (30.00 µg/l) > Zn (14.59 µg/l) > Ba (13.91 µg/l) > Pb (13.01 µg/l) > Li (11.60 µg/l) > V (4.43 µg/l) > Se (4.17 µg/l) > Cr (2.51 µg/l) > As (2.00 µg/l) > U (0.65 µg/l) > F (0.31 µg/l) and also in filtration plant was Si (1825.00 µg/l) > Sr (539.00 µg/l) > Fe (45.00 µg/l) > Al (26.00 µg/l) > Zn (8.08 µg/l) > Ba (2.24 µg/l) > Se (1.36 µg/l)> Pb(1.28 µg/l) > Li (1.26 µg/l) > Cr (1.17 µg/l) > F (0.66 µg/l) > V (0.61 µg/l) > As (LOD < ) ~ U (LOD <). The most of PHEs in tap drinking water was considerable different with filtration plant (p value < 0.05) therefore the chemical quality of tap drinking water should be more attention. The results of non-carcinogenic risk assessment revealed that TTHQ in the adults and children due to drinking tap water content of PHEs was 2.59E-3 and 6.05E-3 and filtration plant was 8.88E-04 and 2.07E-03, respectively. Therefore, TTHQ in adults and children was lower than 1; therefore, consumers are in the safe range due to drinking tap water and water filtration plant content of PHEs.


Assuntos
Água Potável , Criança , Humanos , Irã (Geográfico)
3.
Environ Geochem Health ; 43(4): 1583-1597, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32144520

RESUMO

The contamination of bodies of water by potentially hazardous elements has in recent decades become an environmental problem that poses serious risks to humans, fauna, flora and microbiota, compromising the quality of life of the present ecosystem. Therefore, effluents must be properly treated in a legally acceptable manner before their disposal in the environment. With this in mind, adsorption presents itself as an inexpensive efficient technique for the removal of potentially hazardous elements from effluents with excellent adsorption capacities when natural adsorbents are used. In this study, fava d'anta fodder was used in its crude and alkalinized form to remove Cu(II) and Pb(II) ions. Equilibrium studies were carried out using adsorption isotherms in batch systems with mono- and multi-elementary systems containing the two ions. The Langmuir and Freundlich models were applied to the isotherm studies, with the ions being better suited to the Langmuir model, with maximum adsorption capacities of 24.45 mg g-1 and 68.49 mg g-1 (crude form) and 11.12 mg g-1 and 35.34 mg g-1 (alkalinized form) in the mono-elementary system for Cu(II) and Pb(II) ions, respectively.


Assuntos
Cobre/isolamento & purificação , Fabaceae/química , Chumbo/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Adsorção , Ecossistema , Humanos , Concentração de Íons de Hidrogênio , Cinética , Qualidade de Vida , Águas Residuárias , Água
4.
Environ Geochem Health ; 43(4): 1415-1426, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32737634

RESUMO

The present study aimed to elucidate the remediation potential of visibly dominant, naturally growing plants obtained from an early colonized fly ash dump near a coal-based thermal power station. The vegetation comprised of grasses like Saccharum spontaneum L., Cynodon dactylon (L.) Pers., herbs such as Tephrosia purpurea (L.) Pers., Sida rhombifolia L., Dysphania ambrosioides (L.) Mosyakin & Clemants, Chromolaena odorata (L.) King & H.E. Robins along with tree saplings Butea monosperma (Lam.) Taub. The growth of the vegetation improved the N and P content of the ash. Average metal concentrations (mg kg-1) in the ash samples and plants were in order Mn (345.1) > Zn (63.7) > Ni (29.3) > Cu (16.8) > Cr (9.9) > Pb (1.7) > Cd (0.41) and Cr (58.58) > Zn (52.74) > Mn (39.09) > Cu (10.71) > Ni (7.45) > Pb (5.52) > Cd (0.14), respectively. The plants showed fly ash dump phytostabilization potential and accumulated Cr (80.19-178.11 mg kg-1) above maximum allowable concentrations for plant tissues. Positive correlations were also obtained for metal concentration in plant roots versus fly ash. Saccharum spontaneum showed highest biomass and is the most efficient plant which can be used for the restoration of ash dumps.


Assuntos
Biodegradação Ambiental , Cinza de Carvão , Poluentes Ambientais/análise , Metais/análise , Plantas/química , Cromo/análise , Cromo/farmacocinética , Carvão Mineral , Cinza de Carvão/análise , Cinza de Carvão/química , Poluentes Ambientais/farmacocinética , Índia , Metais/farmacocinética , Nitrogênio/análise , Desenvolvimento Vegetal , Raízes de Plantas/química , Plantas/metabolismo , Especificidade da Espécie
5.
Sci Total Environ ; 944: 173928, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-38871308

RESUMO

Mercury (Hg) pollution in soil has grown into a severe environmental issue. Effective in situ immobilization techniques are crucially demanded. In this study, we explored the application of carboxymethyl cellulose stabilized iron sulfide nanoparticles (CMC-FeS) for in situ immobilization of Hg in soil. CMC-FeS (a CMC-to-FeS molar ratio of 0.0004) was prepared via the reaction between FeSO4 and Na2S using CMC as a stabilizer. Remedying the Hg-polluted soil using 0.03 % CMC-FeS via batch experiments effectively reduced the acid leachable Hg by 97.5 % upon equilibrium after 71 days. Column elution tests demonstrated that the addition of CMC-FeS decreased the peak Hg concentration by 89.9 % and the total Hg mass eluted by 94.9 % after 523 pore volumes. CMC-FeS immobilized Hg in soil via chemical precipitation, ion exchange, and surface complexation. After the CMC-FeS treatment, Hg was transformed from more available exchangeable, carbonate-bound, and organic material-bound forms into the less available residual fraction, reducing the environmental risk of soil Hg from medium to low. The application of CMC-FeS boosted the soil enzyme activities and enhanced the soil bacterial diversity whereas decreased the production of methylmercury. CMC-FeS also facilitated long-term immobilization of Hg in soil. The acid leachable Hg and relative Hg bioaccessibility was decreased. Lift cycle assessment indicated that the preparation and application of CMC-FeS for in situ Hg remediation in soil met green chemistry principles. The present study confirms that CMC-FeS can be applied as an efficient and "green" amending agent for long-term Hg immobilization in soil/sediment.

6.
Environ Sci Pollut Res Int ; 30(10): 26397-26416, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36367653

RESUMO

Potentially hazardous elements (PHEs) are non-biodegradable and accumulate in places like water, soil, and plants where they endanger environmental health. There are a considerable number of wetlands having both national and worldwide importance in Türkiye. Regarding PHE accumulation, sediments and Ceratophyllum demersum were examined in the Miliç Wetland (MW), situated in a basin with intense hazelnut and rice farming, which is next to the international highway on the Central Black Sea Coast of Türkiye. The quantification of PHEs in the study subjects was undertaken using a validated inductively coupled plasma-mass spectrometry (ICP-MS) method, and mean concentrations (mg/kg) of PHEs in the sediments were in the order of Al (13,133) > Fe (10,790) > Mn (205.84) > Cu (17.95) > Cr (16.40) > Zn (15.55) > Ni (11.74) > Pb (9.17) > Co (6.30) > As (2.07) > Cd (0.19). The ecotoxicological risk was assessed using sediment quality guidelines (SQGs) and certain geological indices, indicating mostly low ecological risk, low pollution, and no hazardous risk. Based on the modified hazard quotient (mHQ) classification of values, Ni showed low contamination, while Cd, Pb, As, and Cu displayed very low contamination, and Zn presented minor contamination. The findings of total lifetime cancer risk (LCR), hazard quotient (HQ), and hazard index (HI) identified that exposure of adults or children to sediments containing PHEs would not represent a major health risk. As a recommendation, it is necessary to avoid the direct entrance of agricultural pesticides and fertilizers to enhance the sediment quality of the MW. Since the highway was constructed close to MW, this is considered a significant source of human-caused pollution. Consequently, all PHEs analyzed, except for Cd, displayed a bioconcentration factor (BCF) value of more than 1000, indicating that Ceratophyllum demersum is a promising plant for phytoremediation in PHE-polluted ecological systems involving wetlands, and it can efficiently be employed as an indicator species in biological screening investigations.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Criança , Humanos , Metais Pesados/análise , Monitoramento Ambiental/métodos , Cádmio/análise , Áreas Alagadas , Chumbo/análise , Poluentes Químicos da Água/análise , Sedimentos Geológicos/química , Plantas , Medição de Risco
7.
Chemosphere ; 340: 139977, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37648168

RESUMO

Pollution of lentic ecosystems by potentially hazardous elements (PHE) due to human activities has become a global concern. In this study, the contents of eight PHEs in the sediments of 10 most important ponds located in the Saros Bay region (Türkiye) were evaluated. The contents of PHEs in the sediments of the ponds ranged from 0.14 mg/kg for Cd to 274 mg/kg for Mn. According to the enrichment factor (EF) results, ponds P3, P8 and P9 for Cd and pond P8 for Pb showed "moderate enrichment". However, the pollution load index (PLI) results indicated that all ponds were in a "baseline contamination" state due to the combined effect of all PHEs. Similarly, based on ecological risk assessment indices, no ecological risk from PHEs was identified. In addition, Cd, Zn, As, Cr, Cu and Pb contents in all ponds were found below threshold effect concentrations. The results of the health risk assessment indicated that non-carcinogenic and carcinogenic risks were not expected for recreational receptors due to exposure to the PHEs in the sediments via incidental ingestion and dermal contact. Correlation and cluster analysis results indicated that although agricultural activities contributed slightly to the As content, all PHEs mainly originated from natural sources.


Assuntos
Cádmio , Ecossistema , Humanos , Chumbo , Lagoas , Agricultura
8.
Plants (Basel) ; 12(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37514296

RESUMO

Reclamation of abandoned mining areas can be a potentially viable solution to tackle three major problems: waste mismanagement, environmental contamination, and growing food demand. This study aims to evaluate the rehabilitation of mining areas into agricultural production areas using integrated biotechnology and combining Technosols with a multipurpose (forage, food, ornamental and medicinal) drought-resistant legume, the Lablab purpureus (L.) Sweet. Two Technosols were prepared by combining gossan waste (GW) from an abandoned mining area with a mix of low-cost organic and inorganic materials. Before and after plant growth, several parameters were analysed, such as soil physicochemical characteristics, nutritional status, bioavailable concentrations of potentially hazardous elements (PHE), soil enzymatic activities, and development and accumulation of PHE in Lablab, among others. Both Technosols improved physicochemical conditions, nutritional status and microbiological activity, and reduced the bioavailability of most PHE (except As) of GW. Lablab thrived in both Technosols and showed PHE accumulation mainly in the roots, with PHE concentrations in the shoots that are safe for cattle and sheep consumption. Thus, this is a potential plant that, in conjunction with Technosols, constitutes a potential integrated biotechnology approach for the conversion of marginal lands, such as abandoned mining areas, into food-production areas.

9.
Chemosphere ; 279: 130431, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33894515

RESUMO

In this study, the concentration of potentially hazardous elements (PHEs) in the muscle of Blue crabs (Callinectes sapidus) from the Strait of Hormuz was analyzed and following the health risk in the consumers by uncertainty and sensitivity analysis in the Monte Carlo simulation (MCS) technique was estimated. Fifty-eight blue card samples (male blue crabs = 33 samples; female blue crabs = 25 samples) were collected in the Strait of Hormuz from May to September 2020 for analysis of Nickel (Ni), Lead (Pb), Cadmium (Cd), and Iron (Fe) using Flame Absorption Spectrometer (FAAS). The order of PHEs in the in muscle male blue crabs was Fe (414.37 ± 288.07 µg/kg.ww) > Pb (238.78 ± 87.83 µg/kg.ww) > Ni (92.57 ± 39.72 µg/kg.ww) > Cd (52.73 ± 18.39 µg/kg.ww) and in female blue crabs Fe (461.16 ± 320.56 µg/kg.ww) > Pb (230.79 ± 125.59 µg/kg.ww) > Ni (84.13 ± 46.07 µg/kg.ww) > Cd (67.412 ± 43.93 µg/kg.ww). The concentration of PHEs muscle of male blue crabs and female blue crabs was not significantly different (P-value > 0.05). Uncertainty of non-carcinogenic risk revealed that P95% of total target hazard quotient (TTHQ) in the adult and children consumers due to ingestion male blue crabs was 5.30E-3 and 1.08E-3, respectively, and P95% of TTHQ in the adult and children due to ingestion female blue crabs was 7.05E-3 and 1.20E-3, respectively. P95% of TTHQ in both adult and children consumers was lower than one value. Therefore, consumers are at the acceptable range of the non-carcinogenic risk due to ingestion muscle of male and female blue crabs in Bandar Abbas. Although the non-carcinogenic risk of blue crab was in the safe range, due to the increase in its consumption and the increase of pollution sources in the Persian Gulf, it is recommended to monitor PHEs in Blue's muscle crabs.


Assuntos
Braquiúros , Adulto , Animais , Cádmio/análise , Criança , Monitoramento Ambiental , Feminino , Humanos , Oceano Índico , Masculino , Músculos/química
10.
J Health Pollut ; 11(30): 210613, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34268000

RESUMO

BACKGROUND: Environmental surveys have characterized trace elements such as lead (Pb), cadmium (Cd) and arsenic (As) as potential risk factors for non-communicable diseases. There have been few studies conducted in the Caribbean region to explore, define or clarify such findings locally. Furthermore, local pollution control efforts are often juxtaposed against more seemingly immediate economic concerns in poor communities. OBJECTIVES: The present commentary is a call to action for the evaluation of potentially hazardous elements as potential risk indicators and/or factors of common noncommunicable diseases in the Caribbean. DISCUSSION: Findings from Jamaican studies have identified exposure to potentially hazardous elements (PHE) via water, food, and other anthropogenic activities to the detriment of the resident population. Several attempts have been made to abate toxic metal exposure in children with relative success. However, high levels of PHE have been noted in vulnerable populations such as patients with hypertension, diabetes mellitus and chronic kidney disease. Currently, there is low priority towards infrastructure building within the Caribbean region that would promote and sustain long term monitoring and better inform environmental polices impacting chronic diseases. CONCLUSIONS: Further investigations are needed to clarify the role that PHE play in increasing the risk or progression of non-communicable diseases, especially in vulnerable groups. COMPETING INTERESTS: The authors declare no competing financial interests.

11.
Plants (Basel) ; 11(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35009108

RESUMO

Mining activities have turned many areas of the Iberian Pyrite Belt (IPB) into extreme environments with high concentrations of metal(loid)s. These harsh conditions can inhibit or reduce the colonization and/or development of most vegetation. However, some species or populations have developed ecophysiological responses to tolerate stress factors and contaminated soils. The main objectives of this study are: (i) to assess the differences in germination, growth, development and physiological behaviour against oxidative stress caused by metal(loid)s in Lavandula pedunculata (Mill.) Cav. from two different origins (a contaminated area in São Domingos mine, SE of Portugal and an uncontaminated area from Serra do Caldeirão, S of Portugal) under controlled conditions; and (ii) to assess whether it is possible to use this species for the rehabilitation of mine areas of the IPB. After germination, seedlings from São Domingos (LC) and Caldeirão (L) were planted in pots with a contaminated soil developed on gossan (CS) and in pots with an uncontaminated soil (US) under controlled conditions. Multielemental concentrations were determined in soils (total and available fractions) and plants (shoots and roots). Germination rate, shoot height, dry biomass and leaf area were determined, and pigments, glutathione, ascorbate and H2O2 contents were measured in plant shoots. Total concentrations of As, Cr, Cu, Pb and Sb in CS, and As in US exceed the intervention and maximum limits for ecosystem protection and human health. The main results showed that L. pedunculata, regardless of the seed origin, activated defence mechanisms against oxidative stress caused by high concentrations of metal(loid)s. Plants grown from seeds of both origins increased the production of AsA to preserve its reduction levels and kept the contents of GSH stable to maintain the cell's redox state. Plants grown from seeds collected in non-contaminated areas showed a high capacity for adaptation to extreme conditions. This species showed a greater growth capacity when seeds from a contaminated area were sown in uncontaminated soils. Thus, L. pedunculata, mainly grown from seeds from contaminated areas, may be used in phytostabilization programmes in areas with soils with high contents of metal(loid)s.

12.
Artigo em Inglês | MEDLINE | ID: mdl-32998367

RESUMO

The correct assessment of the presence of potentially contaminating elements in soil, as well as in fruits cultivated and harvested from the same places has major importance for both the environment and human health. To address this task, in the case of the Republic of Moldova where the fruit production has a significant contribution to the gross domestic product, the mass fractions of 37 elements (Na, Mg, Al, Ca, Si, K, Mn, Fe, Sc, Ti, V, Cr, Co, Ni, Zn, As, Br, Rb, Sr, Zr, Mo, Cd, Sb, Cs, Ba, La, Ce, Nd, Sm, Eu, Tb, Yb, Hf, Ta, W, Th, and U) were determined by instrumental neutron activation analysis in soil collected from four Moldavian orchards. In the case of three types of fruits, grapes, apples, and plums, all of them collected from the same places, only 22 elements (Na, Mg, Cl, K, Ca, Sc, Mn, Fe, Co, Ni, Cu, Zn, As, Br, Rb, Sr, Sb, Cs, Ba, La, Th, and U) were detected. The enrichment factor, contamination factor, geo-accumulation index, as well as pollution load index were calculated to assess the soil contamination. At the same time, the metal uptake from the soil into fruits was estimated by means of transfer factors. Soil samples showed for almost all elements mass fractions closer to the upper continental crust with the exception of a slightly increased content of As, Br, and Sb, but without overpassing the officially defined alarm thresholds. In the case of fruits, the hazard quotients for all elements with the exception of Sb in fruits collected in two orchards were below unity. A subsequent discriminant analysis allowed grouping all fruits according to their type and provenance.


Assuntos
Poluentes do Solo/análise , Oligoelementos/análise , Poluição Ambiental , Frutas/química , Humanos , Metais/análise , Solo
13.
Chemosphere ; 259: 127453, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32610175

RESUMO

Exposure to ambient coarse and fine particulate matter (PM10 and PM2.5) causes premature death worldwide due to the nature of their particle size. It contains potentially hazardous elements (PHEs) and polycyclic aromatic hydrocarbons (PAHs). This study aims to quantify the particulate matter (PM) loads on the surface of soil in twenty-five different locations including residential and roadside areas of an urban area in Northeast India. This study shows that the 24h mean concentration of PM (121 ± 49 µg/m3 for PM2.5 and 153 ± 45 µg/m3 for PM10) exceeded more than three times the WHO's air quality standard limit for both PM2.5 (25 µg/m3) and PM10 (50 µg/m3) indicating poor air quality in the urban area during monsoon season. The health risk assessment of PAHs and PHEs including mutagenic or carcinogenic potency was observed to be higher as compared to other studies carried out on road traffic emissions in a similar type of urban area. This study also provides a brief database on the deposition of PM on the soil surfaces due to wet-deposition that would help to increase public awareness in such type of urban area for the control of PM pollution and further remediation.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Substâncias Perigosas/análise , Material Particulado/análise , Poluição do Ar/análise , Carcinógenos , Índia , Tamanho da Partícula , Hidrocarbonetos Policíclicos Aromáticos/análise , Medição de Risco , Estações do Ano , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA