Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Cell ; 186(1): 98-111.e21, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36608662

RESUMO

In eukaryotes, DNA replication initiation requires assembly and activation of the minichromosome maintenance (MCM) 2-7 double hexamer (DH) to melt origin DNA strands. However, the mechanism for this initial melting is unknown. Here, we report a 2.59-Å cryo-electron microscopy structure of the human MCM-DH (hMCM-DH), also known as the pre-replication complex. In this structure, the hMCM-DH with a constricted central channel untwists and stretches the DNA strands such that almost a half turn of the bound duplex DNA is distorted with 1 base pair completely separated, generating an initial open structure (IOS) at the hexamer junction. Disturbing the IOS inhibits DH formation and replication initiation. Mapping of hMCM-DH footprints indicates that IOSs are distributed across the genome in large clusters aligning well with initiation zones designed for stochastic origin firing. This work unravels an intrinsic mechanism that couples DH formation with initial DNA melting to license replication initiation in human cells.


Assuntos
Replicação do DNA , Humanos , Proteínas de Ciclo Celular/metabolismo , Microscopia Crioeletrônica , Proteínas de Ligação a DNA/metabolismo , Proteínas de Manutenção de Minicromossomo/metabolismo , Origem de Replicação
2.
Mol Cell ; 67(2): 168-179, 2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-28732205

RESUMO

A family of six homologous subunits, Mcm2, -3, -4, -5, -6, and -7, each with its own unique features, forms the catalytic core of the eukaryotic replicative helicase. The necessity of six similar but non-identical subunits has been a mystery since its initial discovery. Recent cryo-EM structures of the Mcm2-7 (MCM) double hexamer, its precursors, and the origin recognition complex (ORC)-Cdc6-Cdt1-Mcm2-7 (OCCM) intermediate showed that each of these subunits plays a distinct role in orchestrating the assembly of the pre-replication complex (pre-RC) by ORC-Cdc6 and Cdt1.


Assuntos
Replicação do DNA , Proteínas de Manutenção de Minicromossomo/metabolismo , Complexo de Reconhecimento de Origem/metabolismo , Animais , Domínio Catalítico , Proteínas de Ciclo Celular/metabolismo , Humanos , Proteínas de Manutenção de Minicromossomo/química , Proteínas de Manutenção de Minicromossomo/ultraestrutura , Modelos Moleculares , Complexos Multiproteicos , Proteínas Nucleares/metabolismo , Conformação de Ácido Nucleico , Complexo de Reconhecimento de Origem/química , Complexo de Reconhecimento de Origem/ultraestrutura , Ligação Proteica , Subunidades Proteicas , Relação Estrutura-Atividade
3.
Genes Dev ; 31(11): 1073-1088, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28717046

RESUMO

DNA replication results in the doubling of the genome prior to cell division. This process requires the assembly of 50 or more protein factors into a replication fork. Here, we review recent structural and biochemical insights that start to explain how specific proteins recognize DNA replication origins, load the replicative helicase on DNA, unwind DNA, synthesize new DNA strands, and reassemble chromatin. We focus on the minichromosome maintenance (MCM2-7) proteins, which form the core of the eukaryotic replication fork, as this complex undergoes major structural rearrangements in order to engage with DNA, regulate its DNA-unwinding activity, and maintain genome stability.


Assuntos
Replicação do DNA/fisiologia , Animais , Cromatina/metabolismo , DNA Helicases/metabolismo , Replicação do DNA/genética , Evolução Molecular , Instabilidade Genômica/genética , Humanos , Proteínas de Manutenção de Minicromossomo/genética , Proteínas de Manutenção de Minicromossomo/metabolismo , Origem de Replicação/fisiologia
4.
Genes Dev ; 28(15): 1653-66, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25085418

RESUMO

The regulated loading of the replicative helicase minichromosome maintenance proteins 2-7 (MCM2-7) onto replication origins is a prerequisite for replication fork establishment and genomic stability. Origin recognition complex (ORC), Cdc6, and Cdt1 assemble two MCM2-7 hexamers into one double hexamer around dsDNA. Although the MCM2-7 hexamer can adopt a ring shape with a gap between Mcm2 and Mcm5, it is unknown which Mcm interface functions as the DNA entry gate during regulated helicase loading. Here, we establish that the Saccharomyces cerevisiae MCM2-7 hexamer assumes a closed ring structure, suggesting that helicase loading requires active ring opening. Using a chemical biology approach, we show that ORC-Cdc6-Cdt1-dependent helicase loading occurs through a unique DNA entry gate comprised of the Mcm2 and Mcm5 subunits. Controlled inhibition of DNA insertion triggers ATPase-driven complex disassembly in vitro, while in vivo analysis establishes that Mcm2/Mcm5 gate opening is essential for both helicase loading onto chromatin and cell cycle progression. Importantly, we demonstrate that the MCM2-7 helicase becomes loaded onto DNA as a single hexamer during ORC/Cdc6/Cdt1/MCM2-7 complex formation prior to MCM2-7 double hexamer formation. Our study establishes the existence of a unique DNA entry gate for regulated helicase loading, revealing key mechanisms in helicase loading, which has important implications for helicase activation.


Assuntos
DNA Fúngico/metabolismo , Proteínas de Manutenção de Minicromossomo/metabolismo , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/enzimologia , Trifosfato de Adenosina/metabolismo , Ciclo Celular , Cromossomos Fúngicos/metabolismo , Ativação Enzimática , Hidrólise , Proteínas de Manutenção de Minicromossomo/química , Proteínas de Manutenção de Minicromossomo/genética , Proteínas de Manutenção de Minicromossomo/ultraestrutura , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/ultraestrutura , Subunidades Proteicas/química , Subunidades Proteicas/genética , Origem de Replicação/fisiologia , Saccharomyces cerevisiae/genética
5.
J Biol Chem ; 292(15): 6056-6075, 2017 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-28223353

RESUMO

A central step in the initiation of chromosomal DNA replication in eukaryotes is the assembly of pre-replicative complex (pre-RC) at late M and early G1 phase of the cell cycles. Since 1973, four proteins or protein complexes, including cell division control protein 6 (Cdc6)/Cdc18, minichromosome maintenance protein complex, origin recognition complex (ORC), and Cdt1, are known components of the pre-RC. Previously, we reported that a non-ORC protein binds to the essential element Δ9 of the Schizosaccharomyces pombe DNA-replication origin ARS3001. In this study, we identified that the non-ORC protein is Sap1. Like ORC, Sap1 binds to DNA origins during cell growth cycles. But unlike ORC, which binds to asymmetric AT-rich sequences through its nine AT-hook motifs, Sap1 preferentially binds to a DNA sequence of 5'-(A/T) n (C/G)(A/T)9-10(G/C)(A/T) n -3' (n ≥ 1). We also found that Sap1 and ORC physically interact. We further demonstrated that Sap1 is required for the assembly of the pre-RC because of its essential role in recruiting Cdc18 to DNA origins. Thus, we conclude that Sap1 is a replication-initiation factor that directly participates in the assembly of the pre-RC. DNA-replication origins in fission yeast are defined by possessing two essential elements with one bound by ORC and the other by Sap1.


Assuntos
Replicação do DNA/fisiologia , DNA Fúngico/biossíntese , Proteínas de Ligação a DNA/metabolismo , Motivos de Nucleotídeos/fisiologia , Origem de Replicação/fisiologia , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , DNA Fúngico/genética , Proteínas de Ligação a DNA/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
6.
Adv Exp Med Biol ; 1042: 61-78, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29357053

RESUMO

DNA replication is a fundamental process required for the accurate and timely duplication of chromosomes. During late mitosis to G1 phase, the MCM2-7 complex is loaded onto chromatin in a manner dependent on ORC, CDC6, and Cdt1, and chromatin becomes licensed for replication. Although every eukaryotic organism shares common features in replication control, there are also some differences among species. For example, in higher eukaryotic cells including human cells, no strict sequence specificity has been observed for replication origins, unlike budding yeast or bacterial replication origins. Therefore, elements other than beyond DNA sequences are important for regulating replication. For example, the stability and precise positioning of nucleosomes affects replication control. However, little is known about how nucleosome structure is regulated when replication licensing occurs. During the last decade, histone acetylation enzyme HBO1, chromatin remodeler SNF2H, and histone chaperone GRWD1 have been identified as chromatin-handling factors involved in the promotion of replication licensing. In this review, we discuss how the rearrangement of nucleosome formation by these factors affects replication licensing.


Assuntos
Montagem e Desmontagem da Cromatina/fisiologia , Cromatina/metabolismo , Replicação do DNA/fisiologia , Células Eucarióticas/metabolismo , Proteínas de Manutenção de Minicromossomo/metabolismo , Origem de Replicação , Animais , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Montagem e Desmontagem da Cromatina/genética , Células Eucarióticas/fisiologia , Fase G1/genética , Histonas/metabolismo , Humanos , Mamíferos/genética
7.
Semin Cell Dev Biol ; 30: 104-9, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24637008

RESUMO

A central step in eukaryotic initiation of DNA replication is the loading of the helicase at replication origins, misregulation of this reaction leads to DNA damage and genome instability. Here we discuss how the helicase becomes recruited to origins and loaded into a double-hexamer around double-stranded DNA. We specifically describe the individual steps in complex assembly and explain how this process is regulated to maintain genome stability. Structural analysis of the helicase loader and the helicase has provided key insights into the process of double-hexamer formation. A structural comparison of the bacterial and eukaryotic system suggests a mechanism of helicase loading.


Assuntos
Proteínas de Manutenção de Minicromossomo/metabolismo , Multimerização Proteica , Animais , Replicação do DNA , Instabilidade Genômica , Humanos , Proteínas de Manutenção de Minicromossomo/química , Modelos Moleculares , Estrutura Quaternária de Proteína , Origem de Replicação
8.
J Biol Chem ; 289(44): 30810-30821, 2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25231993

RESUMO

The initial step in initiation of eukaryotic DNA replication involves the assembly of pre-replicative complexes (pre-RCs) at origins of replication during the G1 phase of the cell cycle. In metazoans initiation is inhibited by the regulatory factor Geminin. We have purified the human pre-RC proteins, studied their interactions in vitro with each other and with origin DNA, and analyzed the effects of HsGeminin on formation of DNA-protein complexes. The formation of an initial complex containing the human origin recognition complex (HsORC), HsCdt1, HsCdc6, and origin DNA is cooperative, involving all possible binary interactions among the components. Maximal association of HsMCM2-7, a component of the replicative helicase, requires HsORC, HsCdc6, HsCdt1, and ATP, and is driven by interactions of HsCdt1 and HsCdc6 with multiple HsMCM2-7 subunits. Formation of stable complexes, resistant to high salt, requires ATP hydrolysis. In the absence of HsMCM proteins, HsGeminin inhibits the association of HsCdt1 with DNA or with HsORC-HsCdc6-DNA complexes. However, HsGeminin does not inhibit recruitment of HsMCM2-7 to DNA to form complexes containing all of the pre-RC proteins. In fact, HsGeminin itself is a component of such complexes, and interacts directly with the HsMcm3 and HsMcm5 subunits of HsMCM2-7, as well as with HsCdt1. Although HsGeminin does not prevent the initial formation of DNA-protein complexes containing the pre-RC proteins, it strongly inhibits the formation of stable pre-RCs that are resistant to high salt. We suggest that bound HsGeminin prevents transition of the pre-RC to a state that is competent for initiation of DNA replication.


Assuntos
Replicação do DNA , Geminina/química , Ácidos Nucleicos Imobilizados/química , Proteínas de Ciclo Celular/química , Células HEK293 , Humanos , Proteínas de Manutenção de Minicromossomo/química , Proteínas Nucleares/química , Complexo de Reconhecimento de Origem/química , Ligação Proteica , Estabilidade Proteica
9.
Biology (Basel) ; 13(3)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38534422

RESUMO

In all eukaryotes, the initiation of DNA replication requires a stepwise assembly of factors onto the origins of DNA replication. This is pioneered by the Origin Recognition Complex, which recruits Cdc6. Together, they bring Cdt1, which shepherds MCM2-7 to form the OCCM complex. Sequentially, a second Cdt1-bound hexamer of MCM2-7 is recruited by ORC-Cdc6 to form an MCM double hexamer, which forms a part of the pre-RC. Although the mechanism of ORC binding to DNA varies across eukaryotes, how ORC is recruited to replication origins in human cells remains an area of intense investigation. This review discusses how the chromatin environment influences pre-RC assembly, function, and, eventually, origin activity.

10.
Cell Rep ; 30(10): 3323-3338.e6, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32160540

RESUMO

Eukaryotic DNA replication licensing is a prerequisite for, and plays a role in, regulating genome duplication that occurs exactly once per cell cycle. ORC (origin recognition complex) binds to and marks replication origins throughout the cell cycle and loads other replication-initiation proteins onto replication origins to form pre-replicative complexes (pre-RCs), completing replication licensing. However, how an asymmetric single-heterohexameric ORC structure loads the symmetric MCM (minichromosome maintenance) double hexamers is controversial, and importantly, it remains unknown when and how ORC proteins associate with the newly replicated origins to protect them from invasion by histones. Here, we report an essential and cell-cycle-dependent ORC "dimerization cycle" that plays three fundamental roles in the regulation of DNA replication: providing a symmetric platform to load the symmetric pre-RCs, marking and protecting the nascent sister replication origins for the next licensing, and playing a crucial role to prevent origin re-licensing within the same cell cycle.


Assuntos
Ciclo Celular , Cromossomos Fúngicos/metabolismo , Replicação do DNA , Dimerização , Origem de Replicação , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proliferação de Células , Cromatina/metabolismo , Modelos Biológicos , Mutação/genética , Fosforilação , Subunidades Proteicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Cell Cycle ; 18(5): 605-620, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30741601

RESUMO

Noc3p (Nucleolar Complex-associated protein) is an essential protein in budding yeast DNA replication licensing. Noc3p mediates the loading of Cdc6p and MCM proteins onto replication origins during the M-to-G1 transition by interacting with ORC (Origin Recognition Complex) and MCM (Minichromosome Maintenance) proteins. FAD24 (Factor for Adipocyte Differentiation, clone number 24), the human homolog of Noc3p (hNOC3), was previously reported to play roles in the regulation of DNA replication and proliferation in human cells. However, the role of hNOC3 in replication licensing was unclear. Here we report that hNOC3 physically interacts with multiple human pre-replicative complex (pre-RC) proteins and associates with known replication origins throughout the cell cycle. Moreover, knockdown of hNOC3 in HeLa cells abrogates the chromatin association of other pre-RC proteins including hCDC6 and hMCM, leading to DNA replication defects and eventual apoptosis in an abortive S-phase. In comparison, specific inhibition of the ribosome biogenesis pathway by preventing pre-rRNA synthesis, does not lead to any cell cycle or DNA replication defect or apoptosis in the same timeframe as the hNOC3 knockdown experiments. Our findings strongly suggest that hNOC3 plays an essential role in pre-RC formation and the initiation of DNA replication independent of its potential role in ribosome biogenesis in human cells.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Replicação do DNA , Proteínas Nucleares/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose , Fatores de Transcrição de Zíper de Leucina Básica/antagonistas & inibidores , Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Células HeLa , Humanos , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Origem de Replicação , Ribossomos/metabolismo , Pontos de Checagem da Fase S do Ciclo Celular , Técnicas do Sistema de Duplo-Híbrido
12.
Front Microbiol ; 7: 54, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26870016

RESUMO

Kaposi's sarcoma associated herpesvirus (KSHV) or human herpesvirus 8 (HHV8) is a major etiological agent for multiple severe malignancies in immune-compromised patients. KSHV establishes lifetime persistence in the infected individuals and displays two distinct life cycles, generally a prolonged passive latent, and a short productive or lytic cycle. During latent phase, the viral episome is tethered to the host chromosome and replicates once during every cell division. Latency-associated nuclear antigen (LANA) is a predominant multifunctional nuclear protein expressed during latency, which plays a central role in episome tethering, replication and perpetual segregation of the episomes during cell division. LANA binds cooperatively to LANA binding sites (LBS) within the terminal repeat (TR) region of the viral episome as well as to the cellular nucleosomal proteins to tether viral episome to the host chromosome. LANA has been shown to modulate multiple cellular signaling pathways and recruits various cellular proteins such as chromatin modifying enzymes, replication factors, transcription factors, and cellular mitotic framework to maintain a successful latent infection. Although, many other regions within the KSHV genome can initiate replication, KSHV TR is important for latent DNA replication and possible segregation of the replicated episomes. Binding of LANA to LBS favors the recruitment of various replication factors to initiate LANA dependent DNA replication. In this review, we discuss the molecular mechanisms relevant to KSHV genome replication, segregation, and maintenance of latency.

13.
Genes (Basel) ; 8(1)2016 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-28025526

RESUMO

Successful cell proliferation requires efficient and precise genome duplication followed by accurate chromosome segregation. The Cdc10-dependent transcript 1 protein (Cdt1) is required for the first step in DNA replication, and in human cells Cdt1 is also required during mitosis. Tight cell cycle controls over Cdt1 abundance and activity are critical to normal development and genome stability. We review here recent advances in elucidating Cdt1 molecular functions in both origin licensing and kinetochore-microtubule attachment, and we describe the current understanding of human Cdt1 regulation.

14.
Front Oncol ; 5: 187, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26380219

RESUMO

Aurora-A is a well-known mitotic kinase that regulates mitotic entry, spindle formation, and chromosome maturation as a canonical role. During mitosis, Aurora-A protein is stabilized by its phosphorylation at Ser51 via blocking anaphase-promoting complex/cyclosome-mediated proteolysis. Importantly, overexpression and/or hyperactivation of Aurora-A is involved in tumorigenesis via aneuploidy and genomic instability. Recently, the novel function of Aurora-A for DNA replication has been revealed. In mammalian cells, DNA replication is strictly regulated for preventing over-replication. Pre-replication complex (pre-RC) formation is required for DNA replication as an initiation step occurring at the origin of replication. The timing of pre-RC formation depends on the protein level of geminin, which is controlled by the ubiquitin-proteasome pathway. Aurora-A phosphorylates geminin to prevent its ubiquitin-mediated proteolysis at the mitotic phase to ensure proper pre-RC formation and ensuing DNA replication. In this review, we introduce the novel non-canonical role of Aurora-A in DNA replication.

15.
Cell Cycle ; 14(7): 1010-23, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25602506

RESUMO

Eukaryotic DNA replication is initiated through stepwise assembly of evolutionarily conserved replication proteins onto replication origins, but how the origin DNA is unwound during the assembly process remains elusive. Here, we established a site-specific origin on a plasmid DNA, using in vitro replication systems derived from Xenopus egg extracts. We found that the pre-replicative complex (pre-RC) was preferentially assembled in the vicinity of GAL4 DNA-binding sites of the plasmid, depending on the binding of Cdc6 fused with a GAL4 DNA-binding domain in Cdc6-depleted extracts. Subsequent addition of nucleoplasmic S-phase extracts to the GAL4-dependent pre-RC promoted initiation of DNA replication from the origin, and components of the pre-initiation complex (pre-IC) and the replisome were recruited to the origin concomitant with origin unwinding. In this replication system, RecQ4 is dispensable for both recruitment of Cdc45 onto the origin and stable binding of Cdc45 and GINS to the pre-RC assembled plasmid. However, both origin binding of DNA polymerase α and unwinding of DNA were diminished upon depletion of RecQ4 from the extracts. These results suggest that RecQ4 plays an important role in the conversion of pre-ICs into active replisomes requiring the unwinding of origin DNA in vertebrates.


Assuntos
Replicação do DNA , RecQ Helicases/fisiologia , Origem de Replicação , Proteínas de Xenopus/fisiologia , Animais , Sítios de Ligação , Extratos Celulares , Sistema Livre de Células , Células Cultivadas , Oócitos , Plasmídeos/genética , Fatores de Transcrição/fisiologia , Xenopus laevis
16.
Cell Cycle ; 14(7): 1001-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25602958

RESUMO

Though RecQL4 was shown to be essential for the initiation of DNA replication in mammalian cells, its role in initiation is poorly understood. Here, we show that RecQL4 is required for the origin binding of Mcm10 and Ctf4, and their physical interactions and association with replication origins are controlled by the concerted action of both CDK and DDK activities. Although RecQL4-dependent binding of Mcm10 and Ctf4 to chromatin can occur in the absence of pre-replicative complex, their association with replication origins requires the presence of the pre-replicative complex and CDK and DDK activities. Their association with replication origins and physical interactions are also targets of the DNA damage checkpoint pathways which prevent initiation of DNA replication at replication origins. Taken together, the RecQL4-dependent association of Mcm10 and Ctf4 with replication origins appears to be the first important step controlled by S phase promoting kinases and checkpoint pathways for the initiation of DNA replication in human cells.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Manutenção de Minicromossomo/metabolismo , RecQ Helicases/fisiologia , Origem de Replicação , Proteínas de Ciclo Celular/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Dano ao DNA , Replicação do DNA , Células HeLa , Humanos , Proteínas Serina-Treonina Quinases/metabolismo
17.
DNA Repair (Amst) ; 19: 182-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24767947

RESUMO

The ability of a eukaryotic cell to precisely and accurately replicate its DNA is crucial to maintain genome stability. Here we describe our current understanding of the process by which origins are licensed for DNA replication and review recent work suggesting that fork stalling has exerted a strong selective pressure on the positioning of licensed origins. In light of this, we discuss the complex and disparate phenotypes observed in mouse models and humans patients that arise due to defects in replication licensing proteins.


Assuntos
Replicação do DNA/genética , Genética Médica , Instabilidade Genômica/genética , Origem de Replicação/genética , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Camundongos , Proteínas de Manutenção de Minicromossomo/genética , Mitose/genética
18.
J Mol Biol ; 425(23): 4696-705, 2013 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-24076190

RESUMO

Eukaryotic replication origins are activated at different times during the S phase of the cell cycle, following a temporal program that is stably transmitted to daughter cells. Although the mechanisms that control initiation at the level of individual origins are now well understood, much less is known on how cells coordinate replication at hundreds of origins distributed on the chromosomes. In this review, we discuss recent advances shedding new light on how this complex process is regulated in the budding yeast Saccharomyces cerevisiae. The picture that emerges from these studies is that replication timing is regulated in cis by mechanisms modulating the chromatin structure and the subnuclear organization of origins. These mechanisms do not affect the licensing of replication origins but determine their ability to compete for limiting initiation factors, which are recycled from early to late origins throughout the length of the S phase.


Assuntos
Cromossomos , Replicação do DNA , Origem de Replicação , Replicon , Saccharomycetales/genética , Período de Replicação do DNA , Fase S , Saccharomycetales/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA