Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biol Reprod ; 100(3): 601-617, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30265288

RESUMO

Methionine adenosyltransferase II (MAT2A) is essential to the synthesis of S-adenosylmethionine, a major methyl donor, from L-methionine and ATP. Upon fertilization, zygotic genome activation (ZGA) marks the period that transforms the genome from transcriptional quiescence to robust transcriptional activity. During this period, embryonic epigenome undergoes extensive modifications, including histone methylation changes. However, whether MAT2A participates in histone methylation at the ZGA stage is unknown. Herein, we identified that MAT2A is a pivotal factor for ZGA in mouse embryos. Mat2a knockdown exhibited 2-cell embryo arrest and reduced transcriptional activity but did not affect H3K4me2/3 and H3K9me2/3. When the cycloleucine, a selective inhibitor of MAT2A catalytic activity, was added to a culture medium, embryos were arrested at the morula stage in the same manner as the embryos cultured in an L-methionine-deficient medium. Under these two culture conditions, H3K4me3 levels of morula and blastocyst were much lower than those cultured under normal medium. Furthermore, cycloleucine treatment or methionine starvation apparently reduced the developmental potential of blastocysts. Thus, Mat2a is indispensable for ZGA and morula-to-blastocyst transition.


Assuntos
Blastocisto/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Genoma/fisiologia , Metionina Adenosiltransferase/metabolismo , Mórula/fisiologia , Zigoto/metabolismo , Animais , Linhagem Celular , Desenvolvimento Embrionário , Feminino , Técnicas de Silenciamento de Genes , Inativação Gênica , Hepatócitos/fisiologia , Humanos , Masculino , Metionina Adenosiltransferase/genética , Camundongos , RNA Mensageiro
2.
Development ; 142(20): 3468-77, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26395495

RESUMO

During mammalian pre-implantation embryo development, when the first asymmetry emerges and how it develops to direct distinct cell fates remain longstanding questions. Here, by analyzing single-blastomere transcriptome data from mouse and human pre-implantation embryos, we revealed that the initial blastomere-to-blastomere biases emerge as early as the first embryonic cleavage division, following a binomial distribution pattern. The subsequent zygotic transcriptional activation further elevated overall blastomere-to-blastomere biases during the two- to 16-cell embryo stages. The trends of transcriptional asymmetry fell into two distinct patterns: for some genes, the extent of asymmetry was minimized between blastomeres (monostable pattern), whereas other genes, including those known to be lineage specifiers, showed ever-increasing asymmetry between blastomeres (bistable pattern), supposedly controlled by negative or positive feedbacks. Moreover, our analysis supports a scenario in which opposing lineage specifiers within an early blastomere constantly compete with each other based on their relative ratio, forming an inclined 'lineage strength' that pushes the blastomere onto a predisposed, yet flexible, lineage track before morphological distinction.


Assuntos
Blastômeros/fisiologia , Desenvolvimento Embrionário , Análise de Sequência de RNA/métodos , Transcrição Gênica , Animais , Blastocisto , Padronização Corporal , Fator de Transcrição CDX2 , Linhagem da Célula , Análise por Conglomerados , Implantação do Embrião , Embrião de Mamíferos , Feminino , Proteínas de Homeodomínio/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteína-Arginina N-Metiltransferases/fisiologia , RNA/análise , Análise de Célula Única , Fatores de Tempo , Fatores de Transcrição/fisiologia , Ativação Transcricional , Zigoto/fisiologia
3.
Cells ; 12(22)2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37998375

RESUMO

The culture of embryos in the non-essential amino acid L-proline (Pro) or its analogues pipecolic acid (PA) and L-4-thiazolidine carboxylic acid (L4T) improves embryo development, increasing the percentage that develop to the blastocyst stage and hatch. Staining of 2-cell and 4-cell embryos with tetramethylrhodamine methyl ester and 2',7'-dichlorofluorescein diacetate showed that the culture of embryos in the presence of Pro, or either of these analogues, reduced mitochondrial activity and reactive oxygen species (ROS), respectively, indicating potential mechanisms by which embryo development is improved. Inhibition of the Pro metabolism enzyme, proline oxidase, by tetrahydro-2-furoic-acid prevented these reductions and concomitantly prevented the improved development. The ways in which Pro, PA and L4T reduce mitochondrial activity and ROS appear to differ, despite their structural similarity. Specifically, the results are consistent with Pro reducing ROS by reducing mitochondrial activity while PA and L4T may be acting as ROS scavengers. All three may work to reduce ROS by contributing to the GSH pool. Overall, our results indicate that reduction in mitochondrial activity and oxidative stress are potential mechanisms by which Pro and its analogues act to improve pre-implantation embryo development.


Assuntos
Estresse Oxidativo , Prolina , Animais , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Prolina/farmacologia , Prolina/metabolismo , Blastocisto/metabolismo , Desenvolvimento Embrionário/fisiologia
4.
Stem Cell Reports ; 18(1): 81-96, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36563685

RESUMO

Alternative polyadenylation (APA) gives rise to transcripts with distinct 3' untranslated regions (3' UTRs), thereby affecting the fate of mRNAs. APA is strongly associated with cell proliferation and differentiation status, and thus likely plays a critical role in the embryo development. However, the pattern of APA in mammalian early embryos is still unknown. Here, we analyzed the 3' UTR lengths in human and mouse pre-implantation embryos using available single cell RNA-seq datasets and explored the underlying mechanism driving the changes. Although human and mouse early embryos displayed distinct patterns of 3' UTR changing, RNA metabolism pathways were involved in both species. The 3' UTR lengths are likely determined by the abundance of the cleavage factor I complex (CFIm) components NUDT21 and CPSF6 in the nucleus. Importantly, depletion of either component resulted in early embryo development arrest and 3' UTR shortening. Collectively, these data highlight an essential role for APA in the development of mammalian early embryos.


Assuntos
Mamíferos , Poliadenilação , Humanos , Camundongos , Animais , Regiões 3' não Traduzidas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Diferenciação Celular , Proliferação de Células , Mamíferos/metabolismo , Fator de Especificidade de Clivagem e Poliadenilação/genética , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo
5.
Stem Cell Reports ; 17(9): 1991-2004, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35961310

RESUMO

IL-6 has been shown to be required for somatic cell reprogramming into induced pluripotent stem cells (iPSCs). However, how Il6 expression is regulated and whether it plays a role during embryo development remains unknown. Here, we describe that IL-6 is necessary for C/EBPα-enhanced reprogramming of B cells into iPSCs but not for B cell to macrophage transdifferentiation. C/EBPα overexpression activates both Il6 and Il6ra genes in B cells and in PSCs. In embryo development, Cebpa is enriched in the trophectoderm of blastocysts together with Il6, while Il6ra is mostly expressed in the inner cell mass (ICM). In addition, Il6 expression in blastocysts requires Cebpa. Blastocysts secrete IL-6 and neutralization of the cytokine delays the morula to blastocyst transition. The observed requirement of C/EBPα-regulated IL-6 signaling for pluripotency during somatic cell reprogramming thus recapitulates a physiologic mechanism in which the trophectoderm acts as niche for the ICM through the secretion of IL-6.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT , Interleucina-6 , Blastocisto , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Desenvolvimento Embrionário , Interleucina-6/metabolismo , Mórula/metabolismo
6.
Andrology ; 9(2): 640-656, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33112482

RESUMO

BACKGROUND: In prepubertal boys with cancer, fertility preservation relies on testicular tissue freezing before treatment. In vitro maturation of frozen/thawed tissues could be one of the procedures envisaged to restore the fertility of cured patients. It is necessary to ascertain in the mouse model that in vitro-generated spermatozoa are able to ensure embryo development, without altering the epigenetic processes occurring during the pre-implantation period. OBJECTIVES: The aims of the present study were to investigate the fertilizing ability of in vitro-produced spermatozoa and explore several epigenetic marks at different stages of embryo development. MATERIALS AND METHODS: Fresh or controlled slow-frozen (CSF)/thawed testicular tissues from 6 to 7 days post-partum (dpp) mice were cultured for 30 days. Intracytoplasmic sperm injection (ICSI) experiments were performed using in vitro-produced spermatozoa. Testicular spermatozoa from 36 to 37 dpp mice were used as in vivo controls. DNA methylation/hydroxymethylation and histone post-translational modifications (H3K4me3, H3K27me3 and H3K9ac) were analysed by immunofluorescence from the zygote to the blastocyst stages. RESULTS: The spermatozoa generated in cultures of fresh or CSF testicular tissues were able to initiate embryonic development. The freezing of prepubertal testicular tissues limits the production of spermatozoa in vitro and the fertilization rate after ICSI. Similar levels of H3K4me3, H3K27me3 and H3K9ac were found in ICSI embryos derived from in vitro- and in vivo-produced spermatozoa. DNA methylation levels were increased in 4-cell embryos and morula obtained by ICSI with in vitro-produced spermatozoa. DISCUSSION AND CONCLUSION: Our study shows for the first time that the use of in vitro-produced spermatozoa alters DNA methylation/demethylation dynamics but has little impact on H3K4me3, H3K27me3 and H3K9ac levels in mouse early embryos. Further work will have to be performed to determine whether the use of these gametes is not deleterious for embryo development before considering a human application.


Assuntos
Desenvolvimento Embrionário/genética , Epigênese Genética , Injeções de Esperma Intracitoplásmicas , Espermatozoides/fisiologia , Animais , Blastocisto , Células Cultivadas , Metilação de DNA , Feminino , Fertilização , Histona Desmetilases com o Domínio Jumonji/metabolismo , Masculino , Camundongos , Recuperação Espermática , Espermatozoides/citologia , Testículo/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA