Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Appl ; 26(5): 1370-1380, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27755747

RESUMO

Grazing intensity elicits changes in the composition of plant functional groups in both shortgrass steppe (SGS) and northern mixed-grass prairie (NMP) in North America. How these grazing intensity-induced changes control aboveground net primary production (ANPP) responses to precipitation remains a central open question, especially in light of predicted climate changes. Here, we evaluated effects of four levels (none, light, moderate, and heavy) of long-term (>30 yr) grazing intensity in SGS and NMP on: (1) ANPP; (2) precipitation-use efficiency (PUE, ANPP : precipitation); and (3) precipitation marginal response (PMR; slope of a linear regression model between ANPP and precipitation). We advance prior work by examining: (1) the consequences of a range of grazing intensities (more grazed vs. ungrazed); and (2) how grazing-induced changes in ANPP and PUE are related both to shifts in functional group composition and physiological responses within each functional group. Spring (April-June) precipitation, the primary determinant of ANPP, was only 12% higher in NMP than in SGS, yet ANPP and PUE were 25% higher. Doubling grazing intensity in SGS and nearly doubling it in NMP reduced ANPP and PUE by only 24% and 33%, respectively. Increased grazing intensity reduced C3 graminoid biomass and increased C4 grass biomass in both grasslands. Functional group shifts affected PUE through biomass reductions, as PUE was positively associated with the relative abundance of C3 species and negatively with C4 species across both grasslands. At the community level, PMR was similar between grasslands and unaffected by grazing intensity. However, PMR of C3 graminoids in SGS was eightfold higher in the ungrazed treatment than under any grazed level. In NMP, PMR of C3 graminoids was only reduced under heavy grazing intensity. Knowing the ecological consequences of grazing intensity provides valuable information for mitigation and adaptation strategies in response to predicted climate change. For example, moderate grazing (the recommended rate) in SGS would sequester the same amount of aboveground carbon as light grazing because ANPP was nearly the same. In contrast, reductions in grazing intensity in NMP from moderate to light intensity would increase the amount of aboveground carbon sequestrated by 25% because of increased ANPP.


Assuntos
Criação de Animais Domésticos , Comportamento Alimentar/fisiologia , Pradaria , Gado/fisiologia , Chuva , Animais , Colorado , Poaceae/classificação , Wyoming
2.
Plants (Basel) ; 12(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37687276

RESUMO

The purpose of this study was to monitor and compare the growth and productivity of maize/beans sole and inter-cropping systems under conventional (CON) and in-field rainwater harvesting (IRWH) tillage practices. During the typical drought conditions of the 2018/19 growing season, seven homestead gardens of smallholder farmers (four in Paradys and three in Morago villages) in the Thaba Nchu rural communities of South Africa were selected for on-farm demonstration trials. Two tillage systems CON and IRWH as the main plot and three cropping systems as sub-treatment (sole maize and beans and intercropping) were used to measure crop growth and productivity parameters. The results showed that IRWH tillage had significantly higher above-ground dry matter for both sole maize (29%) and intercropped maize (27%) compared to CON treatments. The grain yield under both tillage systems showed that IRWH-Sole >> IRWH-Ic >> CON-Sole >> CON-Ic, with values ranging from 878.2 kg ha-1 to 618 kg ha-1 (p ≤ 0.05). The low harvest index values (0.21-0.38) could have been due to the effect of the drought during the growing season. The results of precipitation use efficiency (PUE) showed that the IRWH tillage was more effective at converting rainwater into maize biomass and grain yield compared to CON tillage. However, the different cropping systems did not show a consistent trend in PUE. During the growing season, the PUE for AGDM varied for different tillage and cropping system treatments in Morago and Paradys. For maize, it ranged between 10.01-6.07 and 9.93-7.67 kg ha-1, while for beans, it ranged between 7.36-3.95 and 7.07-3.89 kg ha-1 mm-1. The PUE for grain yield showed similar trends with the significantly highest values of PUE under IRWH tillage systems for the Morago sites, but there were no significant differences at the Paradys site in both tillage and cropping systems. There is a critical need, therefore, to devise alternative techniques to promote an increase in smallholders' productivity based on an improved ability to capture and use resources more efficiently.

3.
Ying Yong Sheng Tai Xue Bao ; 33(12): 3253-3262, 2022 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-36601829

RESUMO

Precipitation use efficiency (PUE) is an effective index to evaluate the relationship between grassland productivity and precipitation in arid and semi-arid regions. To explore the driving mechanism of climate change and human activities on grassland PUE, we used the improved CASA model to estimate net primary productivity (NPP) of grassland from 2001 to 2020 in Otog Banner, Inner Mongolia. The PUE was obtained combining with the spatial interpolation data of precipitation. The spatiotemporal evolution of PUE and its responses to the six climate factors were analyzed using simple and piecewise linear regression. A quantitative analysis method based on partial derivatives was used to quantitatively evaluate the relative contributions of climate change and human activities to PUE dynamics. The results showed that the annual average value of PUE was 0.748 g C·m-2·mm-1 in Otog Banner, and that the inter-annual fluctuation had a significant downward trend at a rate of 0.014 g C·m-2·mm-1·a-1. Across the study area, PUE increased from west part to east part, and exhibited significant single-peak piecewise linear patterns along the growth gradients of temperature, precipitation, relative humidity, sunshine hours, and ET0. There was a sustained and significant increase pattern of fast first and then slow along the wind speed gradient. 94.3% of the grassland in the study area showed a decrease trend in PUE, and 43.6% area showed severely decreased. This prominent decrease in PUE was co-driven by climate change and human activities, whose contributions were -1.162×10-2 and -0.240×10-2 g C·m-2·mm-1·a-1, respectively. Climate change was the primary driving force and precipitation was the key climate driving factor for the decrease in PUE.


Assuntos
Mudança Climática , Pradaria , China , Ecossistema , Atividades Humanas , Modelos Lineares
4.
Sci Total Environ ; 741: 140204, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32570069

RESUMO

Elucidating aboveground net primary production (ANPP) and precipitation-use efficiency (PUE) spatial variations and mechanisms are essential for predicting how ecosystem functioning will respond to future climate change. However, a comprehensive recognition of spatial patterns of ANPP and PUE across continental scale is still lacking. Here, we integrated long-term GIMMS NDVI remote sensing, field survey ANPP and meteorological datasets to reveal the spatial variations and controls of ANPP and PUE across Eurasian grasslands for the first time. The results showed that the mean value of ANPP and PUE of Eurasian grasslands were 40.20 ± 0.40 g C m-2 yr-1 and 0.15 ± 0.01 g C m-2 mm-1, respectively. At the continental scale, the ANPP and PUE showed unimodal patterns along mean annual precipitation (MAP) and hydrothermal index (HT) gradients, while a piecewise linear pattern along mean annual temperature (MAT) gradients. The MAP exerted positive effect on the ANPP in desert and temperate grasslands, while negative effect on the ANPP in alpine grasslands. Conversely, the MAT negatively affected the ANPP in desert and temperate grasslands, while positively affected the ANPP in alpine grasslands. The results indicated that the hydrothermal conditions coupled with the transition of vegetation types and its different responses combinedly shaped the spatial patterns of ANPP and PUE in Eurasian grasslands. This study advanced our knowledge of the spatial variations of ANPP and PUE at continental scale, providing theoretical information for predicting productivity and water use changes of arid and semi-arid grasslands under climate change in the future.


Assuntos
Ecossistema , Pradaria , Mudança Climática , Chuva , Água
5.
Ying Yong Sheng Tai Xue Bao ; 29(6): 1822-1828, 2018 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-29974690

RESUMO

Total amount, distribution pattern and occurrence time of precipitation determine the water condition of alpine vegetation growth on the Tibetan Plateau, China. Precipitation use efficiency (the ratio of aboveground productivity to precipitation, PUE) is an effective indicator for the relationship between precipitation and vegetation productivity. In this study, we calculated aboveground net primary productivity (ANPP) of an alpine steppe-meadow in northern Tibetan Plateau from 2000 to 2016 based on the correlation model between long-term monitoring biomass data and enhanced vegetation index (EVI) in Damxung. Meteorological data during the same period was also analyzed. Growing season precipitation (GSP) represented the amount of precipitation, improved precipitation concentrated index (PCI) indicated their distribution pattern in the growing season, and precipitation centroid (PC) represented the time of precipitation occurrence. Structural equation model was used to explore the effects of climatic factors on PUE and ANPP, with the consideration of growing season temperature (GST). Results showed that ANPP of this alpine steppe-meadow was mainly controlled by precipitation during the growing season. GSP and ANPP showed significantly positive correlation, whereas the correlation of GST with PUE and ANPP was not significant. PCI and PUE showed significantly positive correlation, which indicated that concentrated distribution of precipitation was beneficial to the increase of PUE. Indirect coefficient between PCI and ANPP was greater than direct coefficient, indicating that PCI influenced ANPP through PUE. Changes of precipitation concentrated time did not show significant effect on PUE and ANPP. Our results suggested that under the rapid climate warming on the Tibetan Plateau, future changes of precipitation and their concentration would have important impacts on aboveground productivity of the alpine grassland.


Assuntos
Altitude , Pradaria , Chuva , Biomassa , China , Mudança Climática , Ecossistema , Tibet
6.
Ying Yong Sheng Tai Xue Bao ; 28(1): 135-141, 2017 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-29749197

RESUMO

Based on 30 years long-term fertilization experiment on the semiarid Loess Plateau in China, we studied the effect of different fertilizer treatments on the winter wheat yield, fertilizer contribution rate (FCR) and precipitation use efficiency (PUE) in different precipitation years (drought, normal and wet years). The result showed that the wheat yield, FCR and PUE were significantly higher in nitrogen + phosphorus (NP) and nitrogen + phosphorus +potassium (NPK) treatments than in control (CK) and phosphorus (P) treatments when winter wheat was planted for 30 consecutive years. The wheat yield, FCR and PUE in NPK treatment were highest, with values of 3480 kg·hm-2, 61.45 kg·kg-1 and 6.13 kg·mm-1·hm-2, respectively, and those in the wet years were higher than in drought and normal years. The stepwise regression analysis showed that wheat yield was mainly influenced by the amount of nitrogen, phosphorus input and precipitation during fallow period and wintering period. Accordingly, increasing nitrogen and phosphorus input accompanying with potassium and water conservation practices during the fallow period could improve the wheat yield on the semiarid Loess Plateau in China.


Assuntos
Nitrogênio , Fósforo , Triticum , Agricultura , China , Fertilizantes , Chuva , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA