Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 112(2): 460-475, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36036886

RESUMO

Seed dormancy is an adaptive trait that enables plants to survive adverse conditions and restart growth in a season and location suitable for vegetative and reproductive growth. Control of seed dormancy is also important for crop production and food quality because it can help induce uniform germination and prevent preharvest sprouting. Rice preharvest sprouting quantitative trait locus analysis has identified Seed dormancy 4 (Sdr4) as a positive regulator of dormancy development. Here, we analyzed the loss-of-function mutant of the Arabidopsis ortholog, Sdr4 Like1 (SFL1), and found that the sfl1-1 seeds showed precocious germination at the mid- to late-maturation stage similar to rice sdr4 mutant, but converted to become more dormant than the wild type during maturation drying. Coordinated with the dormancy levels, expression levels of the seed maturation and dormancy master regulator genes, ABI3, FUS3, and DOG1 in sfl1-1 seeds were lower than in wild type at early- and mid-maturation stages, but higher at the late-maturation stage. In addition to the seed dormancy phenotype, sfl1-1 seedlings showed a growth arrest phenotype and heterochronic expression of LAFL (LEC1, ABI3, FUS3, LEC2) and DOG1 in the seedlings. These data suggest that SFL1 is a positive regulator of initiation and termination of the seed dormancy program. We also found genetic interaction between SFL1 and the SFL2, SFL3, and SFL4 paralogs of SFL1, which impacts on the timing of the phase transition from embryo maturation to seedling growth.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Oryza , Arabidopsis/metabolismo , Dormência de Plantas/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Germinação/genética , Sementes/metabolismo , Plântula/genética , Oryza/genética , Oryza/metabolismo
2.
Int J Mol Sci ; 23(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35269823

RESUMO

Restriction of pollen germination before the pollen grain is pollinated to stigma is essential for successful fertilization in angiosperms. However, the mechanisms underlying the process remain poorly understood. Here, we report functional characterization of the MAPKKK kinases, MAP3Kε1 and MAP3Kε2, involve in control of pollen germination in Arabidopsis. The two genes were expressed in different tissues with higher expression levels in the tricellular pollen grains. The map3kε1 map3kε2 double mutation caused abnormal callose accumulation, increasing level of JA and precocious pollen germination, resulting in significantly reduced seed set. Furthermore, the map3kε1 map3kε2 double mutations obviously upregulated the expression levels of genes in JA biosynthesis and signaling. The MAP3Kε1/2 interacted with MOB1A/1B which shared homology with the core components of Hippo singling pathway in yeast. The Arabidopsis mob1a mob1b mutant also exhibited a similar phenotype of precocious pollen germination to that in map3kε1 map3kε2 mutants. Taken together, these results suggested that the MAP3Kεs interacted with MOB1s and played important role in restriction of the precocious pollen germination, possibly through crosstalk with JA signaling and influencing callose accumulation in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação , Mutação , Pólen/genética , Pólen/metabolismo , Polinização
3.
Methods Mol Biol ; 2830: 131-136, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38977574

RESUMO

Seed dormancy genes typically suppress germination and cell division. Therefore, overexpressing these genes can negatively affect tissue culture, interfering with the generation of transgenic plants and thus hampering the analysis of gene function. Transient expression in target cells is a useful approach for studying the function of seed dormancy genes. Here, we describe a protocol for transiently expressing genes related to seed dormancy in the scutellum of immature wheat (Triticum aestivum) embryos to analyze their effects on germination.


Assuntos
Regulação da Expressão Gênica de Plantas , Germinação , Dormência de Plantas , Sementes , Triticum , Triticum/genética , Triticum/crescimento & desenvolvimento , Dormência de Plantas/genética , Sementes/genética , Sementes/crescimento & desenvolvimento , Germinação/genética , Biolística/métodos , Plantas Geneticamente Modificadas/genética , Genes de Plantas , Expressão Gênica/genética
4.
Front Plant Sci ; 13: 1061747, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36684724

RESUMO

Vivipary is a rare sexual reproduction phenomenon where embryos germinate directly on the maternal plants. However, it is a common genetic event of woody mangroves in the Rhizophoraceae family. The ecological benefits of vivipary in mangroves include the nurturing of seedlings in harsh coastal and saline environments, but the genetic and molecular mechanisms of vivipary remain unclear. Here we investigate the viviparous embryo development and germination processes in mangrove Kandelia obovata by a transcriptomic approach. Many key biological pathways and functional genes were enriched in different tissues and stages, contributing to vivipary. Reduced production of abscisic acid set a non-dormant condition for the embryo to germinate directly. Genes involved in the metabolism of and response to other phytohormones (gibberellic acid, brassinosteroids, cytokinin, and auxin) are expressed precociously in the axis of non-vivipary stages, thus promoting the embryo to grow through the seed coat. Network analysis of these genes identified the central regulatory roles of LEC1 and FUS3, which maintain embryo identity in Arabidopsis. Moreover, photosynthesis related pathways were significantly up-regulated in viviparous embryos, and substance transporter genes were highly expressed in the seed coat, suggesting a partial self-provision and maternal nursing. We conclude that the viviparous phenomenon is a combinatorial result of precocious loss of dormancy and enhanced germination potential during viviparous seed development. These results shed light on the relationship between seed development and germination, where the continual growth of the embryo replaces a biphasic phenomenon until a mature propagule is established.

5.
Plants (Basel) ; 10(3)2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33670959

RESUMO

Quinoa (Chenopodium quinoa Willd.) is a culturally significant staple food source that has been grown for thousands of years in South America. Due to its natural drought and salinity tolerance, quinoa has emerged as an agronomically important crop for production in marginal soils, in highly variable climates, and as part of diverse crop rotations. Primary areas of quinoa research have focused on improving resistance to abiotic stresses and disease, improving yields, and increasing nutrition. However, an evolving issue impacting quinoa seed end-use quality is preharvest sprouting (PHS), which is when seeds with little to no dormancy experience a rain event prior to harvest and sprout on the panicle. Far less is understood about the mechanisms that regulate quinoa seed dormancy and seed viability. This review will cover topics including seed dormancy, orthodox and unorthodox dormancy programs, desiccation sensitivity, environmental and hormonal mechanisms that regulate seed dormancy, and breeding and non-breeding strategies for enhancing resistance to PHS in quinoa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA